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The bideterministic concatenation product

Jean-Eric Pin and Denis Thérien∗

Bull Research and Development, Rue Jean-Jaurès, 78340 Les
Clayes-sous-Bois, France

Abstract

This paper is devoted to the study of the bideterministic concatenation
product, a variant of the concatenation product. We give an algebraic char-
acterization of the varieties of languages closed under this product. More pre-
cisely, let V be a variety of monoids, V the corresponding variety of languages
and V̂ the smallest variety containing V and the bideterministic products of
two languages of V. We give an algebraic description of the variety of monoids
bV corresponding to V̂ . For instance, we compute bV when V is one of the
following varieties : the variety of idempotent and commutative monoids, the
variety of monoids which are semilattices of groups of a given variety of groups,
the variety of R-trivial and idempotent monoids. In particular, we show that
the smallest variety of languages closed under bideterministic product and con-
taining the language {1}, corresponds to the variety of J -trivial monoids with
commuting idempotents. Similar results were known for the other variants
of the concatenation product, but the corresponding algebraic operations on
varieties of monoids were based on variants of the semidirect product and of
the Malcev product. Here the operation V → bV makes use of a construction
which associates to any finite monoid M an expansion cM , with the following
properties:

(1) M is a quotient of cM ,

(2) the morphism π : cM → M induces an isomorphism between the sub-

monoids of cM and of M generated by the regular elements and

(3) the inverse image under π of an idempotent of M is a 2-nilpotent semi-
group.

This paper assumes some familiarity with Eilenberg’s theory of varieties and
especially the notion of syntactic monoid of a recognizable language. References
for this theory are [6, 7, 10]. The main result of this theory states that there
exists a one-to-one correspondence between certain families of recognizable sets (the
varieties of languages) and certain families of finite semigroups (the varieties of finite
semigroups).

A fundamental result of Schützenberger [13] states that the smallest variety of
languages closed under concatenation product corresponds to the variety of ape-
riodic monoids. Since then, an important part of the existing literature on vari-
eties has been devoted to the study of the concatenation product and its variants.
These variants include the weak forms of the concatenation product introduced by
Schützenberger [14] (the unambiguous product and the left and right deterministic
products) and the counter product introduced by Straubing [15]. This paper is de-
voted to the study of the two-sided version of the deterministic products, called the
bideterministic product.

∗Research on this paper was supported for the first author by PRC ”Mathématiques et Infor-

matique” and for the second author by the NSERC grant no. A4546 et FCAR grant no 89-EQ-2933.
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The general setting for this type of result can be summarized as follows. Let ◦
be a binary operation on languages — in our case the concatenation product or one
of its variants — and let V be the variety of languages corresponding to a variety
of monoids V. Denote by V ′ the smallest variety containing V and closed under ◦.
The question is to describe the varieties of monoids V′ corresponding to V ′. For
all the variants of concatenation mentionned previously, the variety V′ is equal to
a Malcev product of the form W M©V, where W is a certain variety of semigroups
[16, 8, 9, 12, 17, 18]. This variety W is given in the following table:

Product type Variety W such that V′ = W M©V

concatenation aperiodic semigroups

unambiguous semigroups S such that eSe = e for each idempotent e ∈ S

right deterministic semigroups S such that eS = e for each idempotent e ∈ S

left deterministic semigroups S such that Se = e for each idempotent e ∈ S

counter semigroups which are locally solvable groups

This is no longer true for the bideterministic product: in this case, the variety V′

cannot be written as a Malcev product of some variety with V and a new algebraic
operation is required. This new operation relies on a construction of independent
interest, which associates to any monoid M a certain expansion M̂ , with the following
properties: M is a quotient of M̂ and the morphism π : M̂ → M induces an
isomorphism from 〈Reg(M̂)〉, the submonoid of M̂ generated by the regular elements

of M̂ , onto 〈Reg(M)〉. Furthermore,the inverse image under π of an idempotent of
M is a 2-nilpotent semigroup. Our construction is somewhat reminiscent of the
expansion proposed by Birget, Margolis and Rhodes in [4, 5], but turns out to be
different, as we shall see on an example.

Now the key result states that a variety of languages is closed under bidetermin-
istic product if and only if the corresponding variety of monoids is closed under this
expansion. We also give a more precise version of this result. Let V be a variety of
languages and let V be the corresponding variety of monoids. Let V̂ be the smallest
variety containing V and the bideterministic products of two languages of V . Then
the variety of monoids corresponding to V̂ is the variety of monoids generated by
the monoids of the form M̂ for some M ∈ V. Similar results are known for the
other variants of products, but again, there are based on totally different algebraic
constructions (essentially variants of the semidirect product).

We compute V̂ for various varities V, including the variety of idempotent and
commutative monoids, the variety of monoids which are semilattices of groups of a
given variety of groups and the variety of R-trivial and idempotent monoids.

As a byproduct, we characterize the smallest non trivial variety of languages
containing the language {1} and closed under bideterministic product : the corre-
sponding variety of monoids is the variety of J -trivial monoids whose idempotents
commute.

1 Some preliminaries.

In this section, we recall some basic definitions or facts about finite semigroups and
languages. All semigroups and monoids considered in this paper are either finite or
free, although some results could be easily extended to periodic semigroups.

Let S be a semigroup. We denote by S1 the semigroup equal to S if S has an
identity and to S∪{1}, where 1 is a new identity, otherwise. We denote by E(S) the
set of idempotents of S. For each element s of S, the subsemigroup of S generated
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by s contains a unique idempotent, denoted sω. If P is a subset of M , 〈P 〉 denotes
the submonoid generated by P .

Given s, t ∈ S, we say that s is R-below t (denoted s ≤R t) if there exists x ∈ S1

such that s = tx. The elements s and t are R-equivalent (denoted s R t) if s ≤R t
and t ≤R s. Finally, we denote s <R t if s is R-below t but is not R-equivalent
with t. The relations ≤L, L and <L are defined dually. For instance, s ≤L t if there
exists x ∈ S1 such that s = xt.

Let s be a semigroup and let s be an element of S. An element s̄ of S is called a
weak inverse of s if s̄ss̄ = s̄. It is an inverse of s if s̄ss̄ = s̄ and ss̄s = s. In this case,
s is an inverse of s̄. An element which has an inverse is called regular. We denote
by Reg(S) the set of regular elements of a semigroup S. The following propositions
state some elementary properties of weak inverses.

Proposition 1.1 Let s̄ be a weak inverse of s. Then ss̄ and s̄s are idempotent and
s̄ is an inverse of ss̄s.

Proof. If s̄ is a weak inverse of s, we have s̄ss̄ = s̄. This implies in particular
ss̄ss̄ = ss̄ and s̄ss̄s = s̄s and thus ss̄ and s̄s are idempotent. We also have

(ss̄s)s̄(ss̄s) = (ss̄)(ss̄)(ss̄)s = ss̄s and s̄(ss̄s)s̄ = s̄

Thus s̄ is an inverse of ss̄s.

Proposition 1.2 Let s and t be elements of a semigroup S such that s R st (resp.
ts L s). Then there exists a weak inverse t̄ of t such that stt̄ = s (resp. t̄ts = s).

Proof. Since s R st, there exists an element t′ ∈ S1 such that stt′ = s. Let
ω be an integer such that (tt′)ω is idempotent, and set t̄ = t′(tt′)2ω−1. Then
stt̄ = stt′(tt′)2ω−1 = s. Furthermore t̄tt̄ = t′(tt′)2ω−1tt′(tt′)2ω−1 = t′(tt′)4ω−1 =
t′(tt′)2ω−1 = t̄. Thus t̄ is a weak inverse of t. The proof for the L relation is
dual.

A monoid M divides a monoid N if M is a quotient of a submonoid of N . A
variety of finite monoids is a class of finite monoids closed under taking submonoids,
quotients and finite direct products.

Recall that a relational morphism between monoids M and N is a relation τ :
M → N such that:

(1) (mτ)(nτ) ⊂ (mn)τ for all m, n ∈ M ,

(2) (mτ) is non-empty for all m ∈ M ,

(3) 1 ∈ 1τ

Equivalently, τ is a relation whose graph

graph(τ) = { (m, n) | n ∈ mτ }

is a submonoid of M × N that projects onto M .
Let V and W be varieties. The Malcev product of V and W is the variety

V M©W defined as follows

V M©W = { M | There is a relational morphism τ : M → N with N ∈ W

and such that eτ−1 ∈ V for all idempotents e ∈ N }

Let A be a finite set, called the alphabet, whose elements are letters. We denote by
A∗ the free monoid over A. Elements of A∗ are words. In particular, the empty
word, denoted by 1, is the identity of A∗. A language is a subset of A∗.
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Let M be a monoid and L be a language of A∗. A monoid morphism ϕ : A∗ → M
recognizes a language L if there exists a subset P of M such that L = ϕ−1(P ). The
syntactic congruence of L is the equivalence ∼L on A∗ defined by

u ∼L v if and only if, for every x, y ∈ A∗ (xuy ∈ L ⇐⇒ xvy ∈ L).

The quotient A∗/∼L is the syntactic monoid of L and the natural morphism η :
A∗ → M(L) is called the syntactic morphism: it recognizes L and every surjective
morphism ϕ : A∗ → M that recognizes L can be factorized through it, that is, there
is a surjective morphism α : M → M(L) such that η = α ◦ ϕ.

For technical reasons, it is more appropriate to use a variant of the concatenation
product called the marked product. The results stated in the introduction refer to
this product. Given a finite alphabet A and a letter a of A, the marked product of
two subsets (also called languages) L0 and L1 of the free monoid A∗ is the language

L0aL1 = {u ∈ A∗ | u = u0au1 for some u0 ∈ L0 and u1 ∈ L1}

Unambiguous, left and right deterministic products were introduced by Schützen-
berger. A product L = L0aL1 is unambiguous if every word u of L has a unique
decomposition of the form u = u0au1 with u0 ∈ L0 and u1 ∈ L1. It is left deter-
ministic if every word of L has exactly one prefix in L0a. This means that in order
to find the decomposition u = u0au1 of a word of L, it suffices to read u from left
to right: the first prefix of u in L0a will give u0a, and thus the decomposition. Du-
ally, a product L = L0aL1 is right deterministic if every word of L has exactly one
suffix in aL1. A product is called bideterministic if it is both deterministic and an-
tideterministic. Schützenberger [14] characterized the smallest variety of languages
containing the language {1} and closed under unambiguous (resp. deterministic,
antideterministic) products. Later on, it was shown in [8, 9, 12] that the closure of
a variety of languages under unambiguous (resp. left deterministic, right determin-
istic) product correspond to the Malcev product V → LI M©V (resp. V → K M©V,
V → Kr M©V), where LI, K and Kr are respectively the varieties of semigroups S
such that, for every idempotent e ∈ S, eSe = e, (resp. eS = e, Se = e).

2 An expansion.

In this section, we give the formal definition of our new expansion, which is related
to certain special factorizations of words.

Let M be a monoid, and let ϕ : A∗ → M be a surjective (monoid) morphism.
A good factorization (with respect to ϕ) is a triple (x0, a, x1) ∈ A∗ × A × A∗ such
that ϕ(x0a) <R ϕ(x0) and ϕ(ax1) <L ϕ(x1). A good factorization of a word x ∈ A∗

is a good factorization (x0, a, x1) such that x = x0ax1. Two good factorizations
(x0, a, x1) and (y0, b, y1) are equivalent if ϕ(x0) = ϕ(y0), ϕ(x1) = ϕ(y1) and a = b.
In particular, this implies ϕ(x0ax1) = ϕ(y0by1). Here is a first useful lemma.

Lemma 2.1 Let (x0, a, x1) be a good factorization, let x′
0 be a right factor of x0 and

let x′
1 be a left factor of x1. Then (x′

0, a, x′
1) is a good factorization.

Proof. Set x0 = x′′
0x′

0 and x1 = x′
1x

′′
1 . If (x′

0, a, x′
1) is not a good factorization,

then ϕ(x′
0a) R ϕ(x′

0) or ϕ(ax′
1) L ϕ(x′

1). We treat the first case, but the other case
is dual. Since R is stable on the left, we have ϕ(x′′

0 )ϕ(x′
0a) R ϕ(x′′

0 )ϕ(x′
0), whence

ϕ(x0) R ϕ(x0a), a contradiction, since (x0, a, x1) is a good factorization.

Define a relation ∼ϕ on A∗, by setting, for each x, y ∈ A∗, x ∼ϕ y if and only if the
following three conditions are satisfied:
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(1) ϕ(x) = ϕ(y),

(2) each good factorization of x is equivalent to some good factorization of y,

(3) each good factorization of y is equivalent to some good factorization of x.

Then one can state.

Proposition 2.2 The relation ∼ϕ is a congruence on A∗.

Proof. By symmetry, it suffices to prove that x ∼ϕ y implies xb ∼ϕ yb for each
b ∈ A. Suppose that x ∼ϕ y. Then ϕ(xb) = ϕ(yb). By symmetry again, it suffices to
show that each good factorization of xb is equivalent to some good factorization of yb.
Let (x0, a, x1) be a good factorization of xb. If x1 = 1, then (x0, a, x1) = (x, b, 1), and
(y, a, 1) is a good factorization of yb equivalent to (x0, a, x1). Otherwise, (x0, a, x1) =
(x0, a, x′

1b) for some x′
1 ∈ A∗, and by Lemma 2.1, (x0, a, x′

1) is a good factorization
of x. Since x ∼ϕ y, there exists an equivalent good factorization (y0, a, y′

1) of y. We
claim that (y0, a, y′

1b) is a good factorization of yb equivalent to (x0, a, x1). The only
thing to prove is that ϕ(ay′

1b) <L ϕ(y′
1b). But this is clear, since

ϕ(ay′
1b) = ϕ(a)ϕ(y′

1)ϕ(b) = ϕ(a)ϕ(x′
1)ϕ(b)

= ϕ(a)ϕ(x1) <L ϕ(x1) = ϕ(x′
1)ϕ(b) = ϕ(y′

1b).

Put M̂ = A∗/∼ϕ and let ϕ̂ : A∗ → M̂ be the natural morphism induced by ∼ϕ. By
definition, ϕ̂ will be called the expansion of ϕ. Since x ∼ϕ y implies ϕ(x) = ϕ(y),

there exists a surjective morphism π : M̂ → M such that the following diagram
commutes:

M̂

M

A∗

ϕ

ϕ̂

π

More generally, a monoid M̂ is said to be an expansion of a monoid M if there exists
a free monoid A∗ and a surjective morphism ϕ : A∗ → M such that ϕ̂ : A∗ → M̂ is
the expansion of ϕ.

Example 2.1 Let ϕ : {a, b}∗ → U1 = {1, 0} be the surjective monoid morphism
defined by ϕ(a) = 1 and ϕ(b) = 0. Then (aa, b, 1) is a good factorization. The
congruence ∼ϕ has three classes C1 = {u | |u|b = 0}, C2 = {u | |u|b = 1}, and

C3 = {u | |u|b > 1}. Therefore Û1 = {1, s, 0}, where s2 = 0, and ϕ̂ : A∗ → Û1

is defined by ϕ̂(a) = 1 and ϕ̂(b) = s. The morphism π : Û1 → U1 is defined by
π(1) = 1 and π(s) = π(0) = 0.

This example shows that our expansion is different from the expansion M̃ con-
sidered by Birget, Margolis and Rhodes in [4, 5]. Indeed, one has Ũ1 = U1, but

Û1 6= U1.

Example 2.2 Let G be a group and let ϕ : A∗ → G be a surjective monoid mor-
phism. Then there is no good factorization, and thus Ĝ = G.

We now verify the universal properties of our construction.

Proposition 2.3 Let ϕ : A∗ → M , ϕ′ : A∗ → M ′ and σ : M ′ → M be surjective
morphisms such that σ ◦ ϕ′ = ϕ. Then there exists a surjective morphism σ̂ : M̂ ′ →
M̂ such that the following diagram commutes
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M̂ M

A∗

M ′M̂ ′

ϕϕ̂

π

σσ̂

ϕ′ϕ̂′

π

Proof. We have to show that x ∼ϕ′ y implies x ∼ϕ y. First, x ∼ϕ′ y implies
ϕ′(x) = ϕ′(y), whence ϕ(x) = ϕ(y). Let (x0, a, x1) be a good factorization of x with
respect to ϕ. Then (x0, a, x1) is also a good factorization of x with respect to ϕ′,
because if ϕ′(x0a) R ϕ′(x0), then ϕ(x0a) = σ(ϕ′(x0a)) R σ(ϕ′(x0)) = ϕ(x0), and,
dually, ϕ′(ax1) L ϕ′(x1) implies ϕ(ax1) L ϕ(x1). Since x ∼ϕ′ y, there exists a good
factorization of y with respect to ϕ′ equivalent to (x0, a, x1), say (y0, a, y1). Then
ϕ′(x0) = ϕ′(y0) whence ϕ(x0) = ϕ(y0), and similarly, ϕ(x1) = ϕ(y1). Therefore,
(y0, a, y1) is a good factorization of y with respect to ϕ equivalent to (x0, a, x1).
Dually, each good factorization of y is equivalent to some good factorization of x,
and x ∼ϕ y. This proves the existence of a surjective morphism σ̂ : M̂ ′ → M̂ such

that σ̂ ◦ ϕ̂′ = ϕ̂. It follows that

π ◦ σ̂ ◦ ϕ̂′ = π ◦ ϕ̂ = ϕ = σ ◦ ϕ′ = σ ◦ π′ ◦ ϕ̂′

whence π ◦ σ̂ = σ ◦ π′ since ϕ̂′ is surjective.

We now study the algebraic properties of our expansion. Recall that a semigroup
is n-nilpotent if it satisfies the identity s1s2 · · · sn = t1t2 · · · tn, or equivalently, if
S has a zero, and if the set Sn = {s1s2 · · · sn | s1, . . . , sn ∈ S} is equal to {0}.

Proposition 2.4 For every idempotent e of M , the semigroup π−1(e) is a 2-nilpotent
semigroup.

Proof. Let s, t ∈ π−1(e) and let x, y ∈ A∗ be words such that ϕ̂(x) = s and ϕ̂(y) = t.
Then ϕ(x) = ϕ(y) = e. We claim that xy has no good factorization. Indeed, let
(u0, a, u1) be a factorization of xy. By symmetry, we may assume that x is a left
factor of u0. Set u0 = xu′

0. Then

ϕ(x) = ϕ(x)ϕ(x) = ϕ(xy) = ϕ(xu′
0au1) ≤R ϕ(xu′

0a) ≤R ϕ(xu′
0) ≤R ϕ(x)

whence ϕ(xu′
0) R ϕ(xu′

0a) and thus (u0, a, u1) is not a good factorization of xy.
Therefore the words of ϕ−1(e) which have no good factorization are ∼ϕ-equivalent.
It follows that π−1(e) satisfies the equation s1s2 = t1t2 and thus is a 2-nilpotent
semigroup.

Proposition 2.5 Let s, s0 and s1 be elements of M̂ such that π(s0s) = π(s0) and
π(ss1) = π(s1). Then s0ss1 = s0s1.

Proof. Let x, x0, x1 ∈ A∗ be such that ϕ̂(x) = s, ϕ̂(x0) = s0 and ϕ̂(x1) = s1. By
assumption, ϕ(x0x) = ϕ(x0) and ϕ(xx1) = ϕ(x1). We claim that x0xx1 ∼ϕ x0x1.
Let (u0, a, u1) be a good factorization of x0xx1. If x = x′

0ax′
1 for some words

x′
0, x

′
1 such that u0 = x0x

′
0 and u1 = x′

1x1, then ϕ(x0) = ϕ(x0x) <R ϕ(x0x
′
0) ≤R

ϕ(x0), a contradiction. Thus either x0x is a prefix or u0 or xx1 is a suffix of u1.
Suppose for instance u0 = x0xu′

0. Then since ϕ(x0x) = ϕ(x0), (x0u
′
0, a, u1) is a

good factorization of x0x1 equivalent with (u0, a, u1). Conversely, let (u0, a, u1) be
a good factorization of x0x1. Then either x0 is a prefix of u0 or x1 is a suffix of
u1. Suppose for instance u0 = x0u

′
0. Then since ϕ(x0x) = ϕ(x0), (x0xu′

0, a, u1) is
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a good factorization of x0xx1 equivalent with (u0, a, u1). This proves the claim and
thus s0ss1 = ϕ̂(x0xx1) = ϕ̂(x0x1) = s0s1.

We arrive at the main property of our expansion.

Theorem 2.6 The morphism π : M̂ → M induces a bijection from E(M̂) onto

E(M), a bijection from Reg(M̂) onto Reg(M) and an isomorphism from 〈Reg(M̂)〉
onto 〈Reg(M)〉.

Proof. Since the image of a regular element is regular, π(〈Reg(M̂)〉) is certainly

contained in 〈Reg(M)〉. We first show that π induces a surjection from Reg(M̂)

onto Reg(M). Let r ∈ Reg(M) and let r̄ be an inverse of r. Let s, t ∈ M̂ be such
that π(s) = r and π(t) = r̄. Then π(st) = rr̄ is idempotent, and by Proposition 2.4,
(st)3 is idempotent. Therefore x = (st)3s is a regular element such that π(x) = r.

Similarly, π induces a surjection from E(M̂) onto E(M).

We now show that the restriction of π to 〈Reg(M̂)〉 is injective. This will show

that π induces a bijection from E(M̂) onto E(M), a bijection from Reg(M̂) onto

Reg(M) and an isomorphism from 〈Reg(M̂)〉 onto 〈Reg(M)〉. Let R be the set of
all words which have no good factorizations. We claim that R is a submonoid of A∗.
Indeed, if x, y ∈ R, and if (u0, a, u1) is a good factorization of xy, then either x is
a left factor of u0, or y is a right factor of u1. Suppose, for instance, that u0 = xu′

0

for some u′
0 ∈ A∗ (the other case is symmetrical). Then, by Lemma 2.1, (u′

0, a, u1)
is a good factorization of y, a contradiction. Thus xy ∈ R, proving the claim.
Furthermore, it follows from the definition that R is saturated by ∼ϕ, and that
two elements r and r′ of R are congruent modulo ∼ϕ if and only if ϕ(r) = ϕ(r′).
In particular, π induces an isomorphism from ϕ̂(R) onto ϕ(R). Since ϕ̂(R) is a

submonoid of M̂ , it remains to show that ϕ̂(R) contains Reg(M̂). This is the object
of the next lemma.

Lemma 2.7 Let x be a word such that ϕ̂(x) is regular. Then x has no good factor-
ization.

Proof. . Let s = ϕ̂(x). Since s is regular, there exists an element s̄ ∈ M such that
ss̄s = s. Let x̄ be a word of A∗ such that ϕ̂(x̄) = s̄. In particular, ϕ̂(xx̄x) = ϕ̂(x).
Suppose that x has a good factorization. Then since xx̄x ∼ϕ x, xx̄x also has a good
factorization. There are three possible types for this factorization, depending on the
place of the middle letter

(1) (x0, a, x1x̄x), where x0ax1 = x,

(2) (xx̄0, a, x̄1x), where x̄0ax̄1 = x̄,

(3) (xx̄x0, a, x1), where x0ax1 = x.

But (1) is not a good factorization, since ϕ(x1x̄x) L ϕ(ax1x̄x), (2) is not a good
factorization, since ϕ(xx̄0) R ϕ(xx̄0a), and finally (3) is not a good factorization,
since ϕ(xx̄x0) R ϕ(xx̄x0a). Therefore x cannot have any good factorization. This
concludes the proofs of Lemma 2.7 and Theorem 2.6.

3 Monoids in which the regular elements form a

submonoid

The results of the previous section can be made precise if the regular elements of M
form a submonoid of M . This condition is satisfied in particular if the product of
two idempotents is an idempotent.
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Proposition 3.1 Let S be a semigroup in which the idempotents form a subsemi-
group. Then the regular elements of S form a subsemigroup of S.

Proof. Let r1 and r2 be regular elements of S. Then there exist idempotents e and
f such that e L r1 and r2 R f . Therefore, there exist x, y ∈ S1 such that

xr1 = e r1e = r1 r2y = f fr2 = r2

whence r1r2 = r1efr2. It follows that ef J r1r2 since

x(r1efr2)y = (xr1)(ef)(r2y) = e(ef)f = ef.

Thus r1r2 is regular.

We need the following property of the semigroups in which the regular elements
form a subsemigroup.

Lemma 3.2 Let S be a semigroup in which the regular elements form a subsemi-
group. If s̄1 (resp. s̄2) is a weak inverse of s1 (resp. s2), then there exist a weak
inverse s̄ of s1s2 such that (s1s̄1s1)(s2s̄2s2) = (s1s̄1)(s1s2)s̄(s1s2)(s̄2s2).

Proof. By Proposition 1.1, s1s̄1s1 and s2s̄2s2 are regular, and thus

s = (s1s̄1s1)(s2s̄2s2)

is also regular and has an inverse s′. Set s̄ = s̄2s2s
′s1s̄1. We get s1s̄1s1s2s̄s1s2s̄2s2 =

ss′s = s. Furthermore s̄ is a weak inverse of s1s2 since

s̄s1s2s̄ = s̄2s2s
′s1s̄1s1s2s̄2s2s

′s1s̄1 = s̄2s2s
′ss′s1s̄1 = s̄2s2s

′s1s̄1 = s̄.

Theorem 3.3 Let M be a monoid in which the regular elements form a submonoid.
Let s1, . . . , sn be elements of M such that, for 1 ≤ i ≤ n, either s1 · · · si−1 R s1 · · · si

or si · · · sn L si+1 · · · sn. Then s1s2 · · · sn is regular.

Proof. We prove the result by induction on n. If n = 1, we have either 1 R s1 or
s1 L 1 and thus s1 is regular. Assume that for some i < n we have s1 · · · si−1 R
s1 · · · si and s1 · · · si R s1 · · · si+1. Then s1 · · · si−1 R s1 · · · si−1(sisi+1) and one may
apply the induction hypothesis to the sequence s1, . . . , si−1, (sisi+1), si+2, . . . , sn

to show that s1s2 · · · sn is regular.
Next assume that 1 R s1. Then s1 is a unit in M and thus every relation of

the form s1 · · · si−1 R s1 · · · si is equivalent with s2 · · · si−1 R s2 · · · si. Therefore,
induction applied to the sequence s2, . . . , sn shows that s2 · · · sn is regular. Since
s1 is regular, s1s2 · · · sn is also regular.

A dual argument can be applied to the L relation, and thus we are left with the
case where the following relations hold:

s1s2 · · · sn L s2 · · · sn (i = 1)

s1 R s1s2 (i = 2)

s3s4 · · · sn L s4 · · · sn (i = 3)

s1s2s3 R s1s2s3s4 (i = 4)

...

s1 · · · sn−1 R s1s2 · · · sn (i = n)

This implies in particular that n is even. By Proposition 1.2, there exist for 1 ≤ i ≤ n
a weak inverse s̄i of si such that

si+1 · · · sn = s̄isi(si+1 · · · sn) if i is odd

s1 · · · si−1 = (s1 · · · si−1)sis̄i if i is even

}
(3.1)
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Set, for 1 ≤ j ≤ n, s1,j = s1 · · · sj . We show by induction on j that for 1 ≤ j ≤ n,
there exist weak inverses s̄1,j of s1,j such that

s1 · · · sn = s1,1s̄1,1s1,2s̄1,2s1,3s̄1,3 · · · s1,j s̄1,js1,jsj+1 · · · sn (3.2)

First apply (3.1) with i = 1. We get s2 · · · sn = s̄1s1s2 · · · sn and thus s1s2 · · · sn =
s1s̄1s1s2 · · · sn, proving (3.2) for j = 1. By induction, assume that the result holds
for j. If j + 1 is odd, we have by (3.1)

(sj+1s̄j+1sj+1)(sj+2 · · · sn) = sj+1(sj+2 · · · sn) (3.3)

Therefore

s1,j s̄1,js1,jsj+1 · · · sn = (s1,j s̄1,js1,j)(sj+1 s̄j+1sj+1)(sj+2 · · · sn)

Now by Lemma 3.2, there exists a weak inverse s̄1,j+1 of s1,jsj+1 = s1,j+1 such that

(s1,j s̄1,js1,j)(sj+1s̄j+1sj+1) = (s1,j s̄1,j)(s1,jsj+1)s̄1,j+1(s1,jsj+1)(s̄j+1sj+1)

= (s1,j s̄1,j)(s1,j+1s̄1,j+1s1,j+1)(s̄j+1sj+1)

It follows that

s1,j s̄1,js1,jsj+1 · · · sn = (s1,j s̄1,j)(s1,j+1s̄1,j+1s1,j+1)(s̄j+1sj+1)(sj+2 · · · sn)

= (s1,j s̄1,j)(s1,j+1s̄1,j+1)(s1,j+1sj+2 · · · sn) by (3.3)

and thus (3.2) holds for j + 1.
If j + 1 is even, we have by (3.1)

s1,jsj+1 = s1 · · · sjsj+1 = s1 · · · sjsj+1s̄j+1sj+1 = s1,jsj+1s̄j+1sj+1 (3.4)

Therefore by the induction hypothesis,

s1 · · · sn = s1,1s̄1,1s1,2s̄1,2 · · · s1,j s̄1,js1,jsj+1 · · · sn

= s1,1s̄1,1s1,2s̄1,2 · · · s1,j s̄1,js1,jsj+1s̄j+1sj+1 · · · sn

Now by Lemma 3.2, there exists a weak inverse s̄1,j+1 of s1,jsj+1 = s1,j+1 such that

(s1,j s̄1,js1,j)(sj+1s̄j+1sj+1) = (s1,j s̄1,j)(s1,jsj+1)s̄1,j+1(s1,jsj+1)(s̄j+1sj+1)

= (s1,j s̄1,j)(s1,j+1s̄1,j+1s1,j+1)(s̄j+1sj+1)

It follows that

s1 · · · sn = s1,1s̄1,1s1,2s̄1,2 · · · (s1,j s̄1,j)(s1,j+1s̄1,j+1s1,j+1)(s̄j+1sj+1)sj+2 · · · sn

= s1,1s̄1,1s1,2s̄1,2 · · · (s1,j s̄1,j)(s1,j+1s̄1,j+1s1,j+1)sj+2 · · · sn by (3.4)

and thus (3.2) also holds for j + 1. In particular, (3.2) gives for j = n,

s1 · · · sn = (s1,1s̄1,1)(s1,2s̄1,2) · · · (s1,ns̄1,n)s1,n

and thus s1 · · · sn is regular, as a product of the regular elements s1,1s̄1,1, . . . ,
s̄1,n−1s1,n−1 and s1,ns̄1,ns1,n.

If M is a monoid in which the regular elements form a submonoid, Lemma 2.7
can be completed as follows.

Proposition 3.4 Let ϕ : A∗ → M be a surjective monoid morphism, where M is a
monoid in which the regular elements form a submonoid. A word x ∈ A∗ has a good
factorization if and only if ϕ̂(x) is non-regular.
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Proof. If x has a good factorization, then ϕ̂(x) is non-regular by Lemma 2.7. Con-
versely, suppose that ϕ̂(x) is non-regular. If ϕ(x) is regular, then there exists by
Theorem 2.6 a word y such that ϕ̂(y) is regular and ϕ(x) = ϕ(y). On the other hand,
ϕ̂(x) 6= ϕ̂(y) since ϕ̂(x) is non-regular. Therefore, since y has no good factorization
by Lemma 2.7, x must have a good factorization, otherwise x ∼ϕ y and ϕ̂(x) = ϕ̂(y).

Now suppose ϕ(x) non-regular. Let x = a1 · · ·ak, with a1, . . . , ak ∈ A, and
set for 1 ≤ i ≤ k, si = ϕ(ai). If x has no good factorization, then in particular
(a1 · · ·ai−1, ai, ai+1 · · ·ak) is not a good factorization of x, whence

either ϕ(a1) · · ·ϕ(ai−1) R ϕ(a1) · · ·ϕ(ai) or ϕ(ai+1) · · ·ϕ(ak) L ϕ(ai) · · ·ϕ(ak).

Now by Theorem 3.3, ϕ(x) = ϕ(a1 · · · ak) is regular, a contradiction.

This last result has an important consequence. Let M be a monoid in which the
regular elements form a submonoid and let α : A∗ → M be a surjective morphism.
Suppose that M has a zero and a 0-minimal null ideal J and let β : M → M/J

be the natural morphism. Finally, set ϕ = β ◦ α : A∗ → M/J and let M̂/J be the
expansion of M/J relative to ϕ. These notations are summarized in the following
diagram.

M/J

M̂/JM

A∗

α
ϕ

ϕ̂

β

Theorem 3.5 With the previous notations, M is a quotient of M̂/J.

Proof. Set K = J \{0}. It suffices to show that, for every u, v ∈ A∗, u ∼ϕ v implies
α(u) = α(v). Since u ∼ϕ v implies ϕ(u) = ϕ(v), it suffices to consider the case
α(u), α(v) ∈ J .

Lemma 3.6 Let x be a word such that α(x) ∈ K. Then x has a good factorization.

Proof. Let x = a1 · · · ak, with a1, . . . , ak ∈ A, and put si = α(ai) for 1 ≤ i ≤ k.
First assume that si ∈ K for some i. We claim that fi = (a1 · · · ai−1, ai, ai+1 · · · ak)
is a good factorization of x. Indeed, α(a1 · · · ai−1) /∈ K, otherwise

α(x) = α(a1 · · ·ai−1)α(ai)α(ai+1 · · ·ak) = 0

since J is null. Similarly, α(ai+1 · · · ak) /∈ K, and thus ϕ(a1 · · ·ai−1) 6= 0, ϕ(ai) = 0,
ϕ(ai+1 · · · ak) 6= 0, proving the claim.

Suppose now si /∈ K for 1 ≤ i ≤ k. Then ϕ(ai) = α(ai) = si. If x has
no good factorization, then none of the factorizations fi is good. It follows that
for 1 ≤ i ≤ k, either s1 · · · si−1 R s1 · · · si or si+1 · · · sk L si · · · sk. Therefore by
Theorem 3.3, α(x) = s1 · · · sk is regular, a contradiction.

We now complete the proof of Theorem 3.5. If α(u) ∈ K, (or if α(v) ∈ K), u (or
v) has a good factorization by Lemma 3.6. Since u ∼ϕ v, u and v have equivalent
factorizations, (u0, a, u1) and (v0, a, v1) respectively. Since ϕ(u) <R ϕ(u0), ϕ(u0) 6=
0, whence ϕ(u0) = α(u0). Similarly ϕ(u1) = α(u1), ϕ(v0) = α(v0) and ϕ(v1) =
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α(v1). Now since (u0, a, u1) and (v0, a, v1) are equivalent factorizations, ϕ(u0) =
ϕ(v0) and ϕ(u1) = ϕ(v1). It follows that

α(u) = α(u0au1) = α(u0)α(a)α(u1) = ϕ(u0)α(a)ϕ(u1)

= ϕ(v0)α(a)ϕ(v1) = α(v0)α(a)α(v1) = α(v0av1) = α(v).

Finally if α(u) /∈ K and α(v) /∈ K, then α(u) = α(v) = 0.

4 Bideterministic concatenation product

We now apply the results of the previous sections to the study of the bideterministic
concatenation product.

Theorem 4.1 Let ϕ : A∗ → M be a surjective morphism. Every language rec-
ognized by ϕ̂ is a finite boolean combination of languages recognized by M or of
bideterministic products of the form L0aL1, where L0 and L1 are recognized by M .

Proof. Since any language recognized by ϕ̂ is a finite union of sets of the form
ϕ̂−1(s), it suffices to establish the result for L = ϕ̂−1(s), where s ∈ M̂ . Set m = π(s),
and fix an element x of L. Put

T = {(m0, a, m1) ∈ M × A × M | m0ϕ(a)m1 = m, m0ϕ(a) <R m0 and

ϕ(a)m1 <L m1}.

This set is the disjoint union of two sets E and F , defined as follows

E = {(m0, a, m1) ∈ T | there exists a good factorization (x0, a, x1) of x

such that ϕ(x0) = m0 and ϕ(x1) = m1},

F = {(m0, a, m1) ∈ T | there exists no good factorization (x0, a, x1) of x

such that ϕ(x0) = m0 and ϕ(x1) = m1}.

Note that the definition of E and F depends on s, but does not depend on the choice
of x in L, since all the elements of L are congruent modulo ∼ϕ . We claim that

L = ϕ−1(m)∩
([ ⋂

(m0,a,m1)∈E

ϕ−1(m0)aϕ−1(m1)
]
\
[ ⋃

(m0,a,m1)∈F

ϕ−1(m0)aϕ−1(m1)
])

.

First ϕ−1(m) = ϕ̂−1
(
π−1(m)

)
contains ϕ̂−1(s) = L. Let u ∈ ϕ−1(m) and let

(m0, a, m1) ∈ T . Then u ∈ ϕ−1(m0)aϕ−1(m1) if and only if u has a good factoriza-
tion (u0, a, u1) such that ϕ(u0) = m0 and ϕ(u1) = m1. Therefore,

u ∈
⋂

(m0,a,m1)∈E

ϕ−1(m0)aϕ−1(m1) (4.1)

if and only if each good factorization of x is equivalent to a good factorization of u,
and

u ∈ A∗ \
⋃

(m0,a,m1)∈F

ϕ−1(m0)aϕ−1(m1) (4.2)

if and only if each good factorization of u is equivalent to a good factorization of x.
Therefore u satisfies (1), (2) and ϕ(u) = m, if and only if u ∼ϕ x, or equivalently, if
u ∈ L. This proves the claim and the theorem.

Let ϕ0 : A∗ → M0 and ϕ1 : A∗ → M1 be two surjective morphisms recognizing
the languages L0 and L1, respectively, and let a be a letter of A. Let ϕ : A∗ →
M0 × M1 be the morphism defined by ϕ(u) = (ϕ0(u), ϕ1(u)), and let M = ϕ(A∗).
Then we can state
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Theorem 4.2 If the product L = L0aL1 is bideterministic, then L is recognized by
ϕ̂.

Proof. Put L = L0aL1. It suffices to show that x ∼ϕ y implies x ∼L y. First,
x ∼ϕ y implies ϕ0(x) = ϕ0(y) and ϕ1(x) = ϕ1(y). Suppose that uxv ∈ L. Three
cases may occur

(1) uxv = u0au1xv, with u0au1 = u, u0 ∈ L0 and u1xv ∈ L1. Then x ∼L1
y since

ϕ1(x) = ϕ1(y), and thus u1yv ∈ L1 and uyv = u0au1yv ∈ L.

(2) uxv = uxv0av1, with v0av1 = v, uxv0 ∈ L0 and v1 ∈ L1. This case is
symmetrical to (1) and thus uyv ∈ L.

(3) uxv = ux0ax1v, with x0ax1 = x, ux0 ∈ L0 and x1v ∈ L1. If ϕ0(ux0a) R
ϕ0(ux0), there exists a word t such that ϕ0(ux0at) = ϕ0(ux0), whence ux0at ∈
L0 and L0aA∗∩L0 6= ∅. Therefore, ϕ0(ux0a) <R ϕ0(ux0), whence ϕ(ux0a) <R

ϕ(ux0) and dually ϕ(ax1v) <L ϕ(x1v). It follows that (ux0, a, x1v) is a good
factorization of uxv. Now x ∼ϕ y implies uxv ∼ϕ uyv, and there exists a
good factorization (w0, a, w1) of uyv equivalent to (ux0, a, x1v). In particular,
ϕ(w0) = ϕ(ux0), whence ϕ0(w0) = ϕ0(ux0), and w0 ∈ L0. Similarly, w1 ∈ L1

and uyv = w0aw1 ∈ L. Thus uxv ∈ L implies uyv ∈ L. Now, uyv ∈ L implies
uxv ∈ L by a dual argument and x ∼L y.

The previous results can be converted into results on varieties. Let V be a variety
of monoids and let V be the corresponding variety of languages. We denote by V̂

the variety of monoids generated by the monoids M̂ for M ∈ V. Finally, we denote
by V̂ the variety of languages associated with V̂.

Theorem 4.3 For each alphabet A, V̂(A∗) is the boolean algebra generated by lan-
guages of the form L or L0aL1, where L, L0 and L1 are in V(A∗) and L0aL1 is a
bideterministic product.

Proof. Let C(A∗) be the boolean algebra generated by languages of the form L or
L0aL1, where L, L0 and L1 are in V(A∗) and L0aL1 is a bideterministic product.

We claim that C(A∗) is contained in V̂(A∗). By definition of a variety of languages,

V̂(A∗) is a boolean algebra of languages and since V is a subvariety of V̂, V̂(A∗)
contains the languages of V(A∗). Let L0aL1 be a bideterministic product with L0

and L1 in V(A∗). Let ϕ0 : A∗ → M0 and ϕ1 : A∗ → M1 be two surjective morphisms
recognizing the languages L0 and L1, respectively, with M0, M1 ∈ V. By Theorem
4.2, L0aL1 is recognized by a monoid M̂ , where M is a submonoid of M0 × M1.
Since V is a variety, it follows that M ∈ V and M̂ ∈ V̂, and thus L0aL1 ∈ V̂(A∗),
proving the claim.

We now show that V̂(A∗) is contained in C(A∗). Let L ∈ V̂(A∗). By definition,

L is recognized by a monoid M̂ , where M ∈ V. Therefore, there exist a morphism
α : A∗ → M̂ such that L = α−1(P ), where P = α(L), and a surjective morphism ϕ :

B∗ → M which defines the expansion ϕ̂ : B∗ → M̂ . Then, by the universal property
of the free monoid A∗, there exists a morphism β : A∗ → B∗ such that α = ϕ̂◦β. In
particular L = β−1

(
ϕ̂−1(P )

)
. Now, ϕ̂−1(P ) is recognized by ϕ̂ and thus, by Theorem

4.1, is in C(B∗). Therefore, it suffices to show that β−1(C(B∗)) ⊂ C(A∗). Since β−1

commutes with boolean operations, we need only consider the generators of C(B∗).
If K is a language of V(B∗), then β−1(K) ∈ V(A∗) by definition of a variety of
languages. Therefore, it only remains to verify that if K0bK1 is a bideterministic
product, where b ∈ B and K0, K1 ∈ V(B∗), then β−1(K0bK1) ∈ C(A∗). Given a
subset S of B∗ and a word x ∈ B∗, we define the right and left quotients of S by x
as follows

Sx−1 = {y ∈ B∗ | yx ∈ S} and x−1S = {y ∈ B∗ | xy ∈ S}
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We claim that

β−1(K0bK1) =
⋃

{a|β(a)=x0bx1}

β−1(K0x
−1
0 )aβ−1(x−1

1 K1) (4.3)

Indeed, if β(a) = x0bx1, then

β
(
β−1(K0x

−1
0 )aβ−1(x−1

1 K1)
)
⊂ (K0x

−1
0 )x0bx1(x

−1
1 K1) ⊂ K0bK1

In the opposite direction, take u ∈ β−1(K0bK1). Then β(u) ∈ K0bK1 and there
exists a factorization β(u) = k0bk1 with k0 ∈ K0 and k1 ∈ K1. Therefore, there is a
factorization u = u0au1 such that β(a) = x0bx1, β(u0) = k0x

−1
0 and β(u1) = x−1

1 k1.
It follows that u ∈ β−1(K0x

−1
0 )aβ−1(x−1

1 K1), proving the claim. Notice that
formula (4.3) gives an expression of β−1(K0bK1) as a finite union of languages
since any rational language has only a finite number of right (resp. left) quo-
tients. Since a variety of languages is closed under left and right quotients, we
have K0x

−1
0 , x−1

1 K1 ∈ V(B∗) and thus β−1(K0x
−1
0 ), β−1(x−1

1 K1) ∈ V(A∗). Further-
more, each product P = β−1(K0x

−1
0 )aβ−1(x−1

1 K1) is bideterministic. Indeed, if for
instance the product P was not deterministic, then there would be a word u ∈ P
with a factorization of the form u = u0au′au1 with u0a, u0au′a ∈ β−1(K0x

−1
0 )a and

u′au1, u1 ∈ β−1(x−1
1 K1). Then β(u) would be a word of K0bK1 with two distinct

prefixes in K0b, a contradiction. Therefore, P ∈ C(A∗) and β−1(K0bK1) ∈ C(A∗),
concluding the proof.

With the previous notations, we denote by V̄ the smallest variety containing V

and closed under the operation M → M̂ . This variety is in general larger than V̂

since V̂ is not necessarily closed under the operation M → M̂ . On the other hand,
if V = V̂, then V = V̄. Let V̄ be the corresponding variety of languages. A set
S of languages of A∗ is said to be closed under bideterministic product if, for every
bideterministic product L0aL1, with L0, L1 ∈ S, one has L0aL1 ∈ S.

Theorem 4.4 For each alphabet A, V̄(A∗) is the smallest boolean algebra containing
V(A∗) and closed under bideterministic product.

Corollary 4.5 Let V be a variety of monoids and let V be the corresponding variety
of languages. Then V is closed under bideterministic product if and only if V = V̂.

The next results give an explicit computation of V̄ for various varieties V.

Proposition 4.6 The following varieties of monoids V satisfy V = V̄: any va-
riety of groups, aperiodic monoids, R-trivial monoids, L-trivial monoids, J -trivial
monoids, monoids whose regular D-classes are groups (respectively semigroups, idem-
potent semigroups, etc.), monoids whose idempotents form a submonoid, monoids
with commuting idempotents and all the possible intersections of these varieties. In
particular, the corresponding varieties of languages are closed under bideterministic
product.

Proof. Example 2.2 shows that any variety of groups V satisfies V = V̄. By
Theorem 2.6, the expansion M̂ preserves regular elements and idempotents. This
proves that V = V̄ for the variety of monoids whose regular D-classes are groups
(respectively semigroups, idempotent semigroups, etc.), for the variety of monoids
whose idempotents form a submonoid and for the variety of monoids with commuting
idempotents. Furthermore it is well known (see [10] for instance) that a monoid is
aperiodic (resp. R-trivial, L-trivial, J -trivial) if and only if its regular H-classes
(resp. R-classes, L-classes, J -classes) are trivial. Thus V = V̄ also holds for these
varieties.
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The proofs of the next theorems share a few standard decomposition techniques
(see [1] for instance) which we recall below.

Proposition 4.7 Let M be a monoid and let I be its minimal ideal. Let Mr (resp.
M`) be the transformation monoid defined by the right (resp. left) action of M on I.
Then M is a submonoid of (M/I) ×Mr ×M`. Furthermore, if I is R-trivial (resp.
L-trivial), then M is a submonoid of (M/I) × M` (resp. (M/I) × Mr).

Corollary 4.8 If the minimal ideal G of a monoid M is a group, then M is a
submonoid of (M/G) × G.

Proposition 4.9 Suppose that a monoid M has a zero and a unique 0-minimal
ideal J . If J \ {0} is a subsemigroup of M , then M \ {0} is a submonoid of M and
M is a quotient of (M \ {0}) × U1.

Proof. Let I = J \ {0}. Let x, y ∈ M \ {0} and let s ∈ I . Since J is the unique 0-
minimal ideal of M , I is contained in the ideal generated by x (resp. y). In particular,
s = x1xx2 = y1yy2 for some x1, x2, y1, y2 ∈ M . Since I is a simple semigroup, it
follows that s2 = sx1xx2 ∈ I whence sx1x R s and sx1x ∈ I . Similarly, yy2s ∈ I
and thus sx1xyy2s ∈ I . In particular, xy 6= 0. Therefore, M \ {0} is a submonoid of
M .

Let π : (M \ {0}) × U1 → M be the map defined, for every m ∈ M \ {0}, by
π(m, 1) = m and π(m, 0) = 0. Then π is a surjective morphism and thus M is a
quotient (M \ {0}) × U1.

Proposition 4.10 Suppose that a monoid M has a zero and two distinct 0-minimal
ideals J1 and J2. Then M is a submonoid of (M/J1) × (M/J2).

Proof. Let π1 : M → M/J1 and π2 : M → M/J2 be the natural morphisms. Let
π : M → (M/J1)×(M/J2) be the morphism defined by π(m) =

(
π1(m), π2(m)

)
. We

claim that π is injective. Indeed, suppose that π(m) = π(m′). Then π1(m) = π1(m
′)

and π2(m) = π2(m
′) and thus m and m′ are either simultaneously in J1 (resp. J2)

or simultaneously in M \ J1 (resp. M \ J2). In the latter case, we have m = m′.
Thus we may assume that m and m′ belong to J1 and to J2. But the intersection
of two distinct 0-minimal ideals is equal to {0} and thus m = m′ = 0. This proves
the claim and the proposition.

Theorem 4.11 If Sl is the variety of idempotent and commutative monoids, then
Sl is the variety of J -trivial monoids with commuting idempotents.

Proof. By Proposition 4.6, the variety V of J -trivial monoids with commuting
idempotents satisfies V = V̄. Since Sl ⊂ V, it follows that Sl ⊂ V.

Conversely, let M ∈ V. We show by induction on Card(M) that M ∈ Sl. The
result is clear if Card(M) = 1, so we may assume Card(M) > 1. Since M is J -
trivial, M has a zero. If M has (at least) two 0-minimal ideals J1 and J2, then M
divides (M/J1) × (M/J2) by Proposition 4.10. Now since Card(M/J1) < Card(M)
and Card(M/J2) < Card(M), it follows that M/J1, M/J2 ∈ Sl by the induction
hypothesis, whence M ∈ Sl.

Assume now that M has a unique 0-minimal ideal J , and put J = {s, 0}. If
s is regular, then by Proposition 4.9, M divides (M/J) × U1. Since U1 ∈ Sl and
Card(M/J) < Card(M), it follows that M/J ∈ Sl by the induction hypothesis, and
thus M ∈ Sl. Finally suppose that s2 = 0, so that J2 = 0. Then by Proposition

3.1 and Theorem 3.5, M is a quotient of M̂/J . But M/J ∈ Sl by the induction
hypothesis, and thus M ∈ Sl.
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Theorem 4.11 can be extended as follows :

Theorem 4.12 Let H be a variety of groups and let Sl(H) be the variety of monoids
which are semilattices of groups of the variety H. Then Sl(H) is the variety of
monoids with commuting idempotents whose regular J -classes are groups of the va-
riety H.

Proof. By prop 4.6, the variety W of all monoids with commuting idempotents
whose regular J -classes are groups of H satisfies W = W. Since Sl(H) ⊂ W, it
follows that Sl(H) ⊂ W.

Conversely, let M be a monoid in W. We show by induction on Card(M) that
M ∈ Sl(H). The result is clear if Card(M) = 1, so we may assume Card(M) > 1.
Since M ∈ W, the minimal ideal of M is a group G, and by Corollary 4.8, M
divides (M/G) × G. But G ∈ Sl(H), and thus it suffices to show that M/G ∈
Sl(H). In other words, we may assume that M has a zero. If M has (at least)
two 0-minimal ideals J1 and J2, then M divides (M/J1) × (M/J2) by Proposition
4.10. Since Card(M/J1) < Card(M) and Card(M/J2) < Card(M), it follows that
M/J1, M/J2 ∈ Sl(H) by the induction hypothesis, whence M ∈ Sl(H).

Assume now that M has a unique 0-minimal ideal J , and put I = J \ {0}. If I
is regular (and thus, is a group), then M divides (M/J) × U1 by Proposition 4.9.
Since U1 ∈ Sl and Card(M/J) < Card(M), it follows that M/J ∈ Sl(H) by the
induction hypothesis, and thus M ∈ Sl(H). Finally suppose that I is not regular,

that is, J2 = 0. Then by Theorem 3.5, M is a quotient of M̂/J . But M/J ∈ Sl(H)
by the induction hypothesis, and thus M ∈ Sl(H).

Corollary 4.13 Let V be the variety of J -trivial monoids with commuting idempo-
tents and let V be the corresponding variety of languages. Then, for every alphabet
A, V(A∗) is the smallest boolean algebra containing the languages of the form B∗,
where B is a subset of A and closed under bideterministic product.

Proof. It is well known (see [6, 7, 10] for instance) that, for every alphabet A, the
class of languages of A∗ recognized by an idempotent and commutative monoid is
the boolean algebra generated by the languages of the form B∗, where B is a subset
of A. The result now follows from Theorems 4.4 and 4.11.

Corollary 4.14 Let H be a variety of groups. Let V be the variety of monoids
with commuting idempotents whose regular J -classes are groups of the variety H.
Then, for every alphabet A, V(A∗) is the smallest boolean algebra closed under bide-
terministic product containing the languages B∗, where B is a subset of A and the
languages whose syntactic monoid is a group of the variety H.

Proof. The variety V of monoids which are semilattices of groups of the variety H

is equal to Sl ∨ H, the join of the varieties H and Sl. Let V be the corresponding
variety of languages. Then for every alphabet A, V(A∗) is the boolean algebra
generated by the languages whose syntactic monoid is a group of the variety H and
by the languages of the form B∗, where B is a subset of A. The result now follows
from Theorems 4.4 and 4.11.

Corollaries 4.13 and 4.14 should be compared with the following results of [3].

Theorem 4.15 Let L ∈ A∗ be a recognizable language and let M be its syntactic
monoid. The following conditions are equivalent:

(1) M is J -trivial with commuting idempotents,
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(2) L is a boolean combination of languages of the form A∗
0a1A

∗
1a2 · · · akA∗

k, where
k ≥ 0, a1, . . . , ak ∈ A, A0, . . . , Ak ⊂ A, and, for 1 ≤ i ≤ k, ai /∈ Ai−1 ∪ Ai.

Theorem 4.16 Let H be a variety of groups. Let L ∈ A∗ be a recognizable language
and let M be its syntactic monoid. The following conditions are equivalent:

(1) M is a monoid with commuting idempotents whose regular J -classes are groups
of the variety H,

(2) L is a boolean combination of languages of the form L0a1L1a2 · · ·akLk, where
k ≥ 0, a1, . . . , ak ∈ A, and Li ⊂ A∗

i , where Ai is a subset of A such that
ai /∈ Ai−1 ∪Ai and the syntactic monoid of Li in A∗

i is a group of the variety
H.

Our next result gives a description of the variety V̄ when V is the variety of
R-trivial and idempotent monoids (also called left regular bands). The variety V̄ is
given by three equations. Two of the three equations of this description, namely

(1) (xy)ω = (xy)ωx and (2) xωyωx = xωyω

characterize the R-trivial monoids in which idempotents form a submonoid. Indeed,
let M be an R-trivial monoid in which idempotents form a submonoid, and let
x, y ∈ M . Then (xy)ω R (xy)ωx and thus (xy)ω = (xy)ωx. Similarly, since xωyω is
idempotent, xωyωx R xωyω and thus xωyωx = xωyω. Conversely, if M satisfies the
equations (1) and (2), M is R-trivial (see [6, 10] for instance) and the product of
two idempotents is idempotent since, by (2), xωyωxωyω = xωyωyω = xωyω.

The third equation of the description is x(xy)ω = (xy)ω and is not a consequence
of the two first equations.

Theorem 4.17 If V is the variety of R-trivial and idempotent monoids, then V̄ is
the variety defined by the equations x(xy)ω = (xy)ω = (xy)ωx and xωyωx = xωyω.

Proof. Let W be the variety defined by the equations x(xy)ω = (xy)ω = (xy)ωx

and xωyωx = xωyω. We first show that Ŵ = W. Let M ∈ W and let π : M̂ → M
be an expansion of M . Since M ∈ W, M is R-trivial and the idempotents of M form
a submonoid and by Proposition 4.6, the same properties hold in M̂ . In particular,
M̂ satisfies the equations (xy)ω = (xy)ωx and xωyωx = xωyω. It follows that, for
every x, y ∈ M̂ ,

(xy)ω = (xy)ωx =
(
(xy)ωx

)2
= (xy)ωx(xy)ωx = (xy)ωx(xy)ω

In particular, x(xy)ω L (xy)ω and thus (xy)ω and x(xy)ω are regular elements of M̂ .

Now, by Theorem 2.6, π induces an isomorphism from 〈Reg(M̂)〉 onto 〈Reg(M)〉.
But since M ∈ W, π

(
x(xy)ω

)
= π

(
(xy)ω

)
and thus x(xy)ω = (xy)ω . Thus M̂ ∈ W

and Ŵ = W. Since V ⊂ W, it follows that V̄ ⊂ W.
Conversely, let M be a monoid in W. We show by induction on Card(M) that

M ∈ V̄. The result is clear if Card(M) = 1, so we may assume Card(M) > 1. Let I
be the minimal ideal of M . By Proposition 4.7, M is a submonoid of (M/I) × M`.
We claim that M` ∈ V. Since M` divides M , M` is R-trivial and it suffices to show
that M` is idempotent. Let x ∈ M and let y ∈ I . Then xy ∈ I and thus xy is
idempotent. It follows that xy = (xy)ω = x(xy)ω = xxy = x2y. This shows that
x and x2 have the same left action on I , proving the claim. Therefore it suffices to
show now that M/I ∈ V̄. If Card(I) ≥ 2, one can conclude by induction. Otherwise,
we may suppose that I = {0}.

If M has (at least) two 0-minimal ideals J1 and J2, then M divides (M/J1) ×
(M/J2) by Proposition 4.10 and we conclude by induction. Assume now that M
has a unique 0-minimal ideal J , and put I = J \ {0}. If I is regular, then M
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divides (M/J)×U1 by Proposition 4.9. Since U1 ∈ Sl and Card(M/J) < Card(M),
it follows that M/J ∈ V̄ by the induction hypothesis, and thus M ∈ V̄. Finally
suppose that I is not regular, that is, J2 = 0. Then by Theorem 3.5, M is a quotient

of M̂/J . But M/J ∈ V̄ by the induction hypothesis, and thus M ∈ V̄.

Corollary 4.18 Let V be the variety defined by the equations x(xy)ω = (xy)ω =
(xy)ωx and xωyωx = xωyω and let V be the corresponding variety of languages. Then
for every alphabet A, V(A∗) is the smallest boolean algebra containing the languages
of the form B∗aA∗, where B is a subset of A, and closed under bideterministic
product.
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langages, Thèse de troisième cycle, Université Paris VII, (1985).
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