
HAL Id: hal-00020069
https://hal.science/hal-00020069v1

Submitted on 4 Mar 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the expressive power of temporal logic for finite
words

Joelle Cohen, Dominique Perrin, Jean-Eric Pin

To cite this version:
Joelle Cohen, Dominique Perrin, Jean-Eric Pin. On the expressive power of temporal logic for finite
words. Journal of Computer and System Sciences, 1993, 46, pp.271-294. �10.1016/0022-0000(93)90005-
H�. �hal-00020069�

https://hal.science/hal-00020069v1
https://hal.archives-ouvertes.fr

On the expressive power of temporal logic ∗

Joëlle Cohen, Dominique Perrin and Jean-Eric Pin

LITP, Paris, FRANCE

Abstract

We study the expressive power of linear propositional temporal
logic interpreted on finite sequences or words. We first give a trans-
parent proof of the fact that a formal language is expressible in this
logic if and only if its syntactic semigroup is finite and aperiodic. This
gives an effective algorithm to decide whether a given rational lan-
guage is expressible. Our main result states a similar condition for the
“restricted” temporal logic (RTL), obtained by discarding the “un-
til” operator. A formal language is RTL-expressible if and only if its
syntactic semigroup is finite and satisfies a certain simple algebraic
condition. This leads to a polynomial time algorithm to check whether
the formal language accepted by an n-state deterministic automaton
is RTL-expressible.

Temporal logic is a particular case of modal logic. It was introduced by
Pnueli [16] in connection with applications to the specification, development
and verification of possibly parallel or non-deterministic processes. This
logical language admits several variations, one of them being propositional
linear temporal logic (PTL). It uses three connectives suggestively called
“next”, “eventually” and “until”.

In this paper we are interested in the descriptive power of propositional
linear temporal logic and of a restriction of temporal logic (RTL) obtained
by considering only the operators “next” and “eventually”. In both cases,
we interpret temporal logic on finite words only. In this case, a temporal
formula defines a set of words (that is, a formal language) and our problem
is to determine precisely which formal languages can be specified in this
way. In the case of PTL, the solution has been known for some time, as a
consequence of a series of deep results. Indeed, Kamp [6] has shown that
PTL is expressively equivalent to first-order logic when interpreted on words.
Next, McNaughton [10] proved that a formal language is first-order definable
if and only if it is star-free. Finally, star-free languages are characterized by a

∗Research on this paper was partially supported by PRC “Mathématiques et Infor-
matique”.

1

deep theorem of Schützenberger [17]: a rational (or regular) language is star-
free if and only if its syntactic semigroup is group-free. Since the syntactic
semigroup of a given rational language can be effectively computed, this
provides an algorithm to determining whether a rational language is PTL-
definable.

Various proofs of the equivalence between “first-order”, “star-free” and
“PTL-definable” have been announced or given in the literature [5, 6, 11, 12]
but all these proofs are rather involved. In this paper, we give a short and
simple proof of the equivalence between star-free and PTL-definable, based
on a weak version of the Krohn-Rhodes decomposition theorem for finite
semigroups. Our proof was inspired by the work of [11], whose proof uses
an interesting connection with Petri nets.

Our main result concerns the descriptive power of RTL. It was known
[5, 7] that RTL is strictly less expressive than PTL, but an effective charac-
terization of RTL-definable formal languages was still to be found. We show
here that RTL-definable languages admit a syntactic characterization anal-
ogous to Schützenberger’s theorem: a rational language is RTL-definable if
and only if its syntactic semigroup is “locally L-trivial”. This provides a de-
cision procedure to determine whether a formal language is RTL-definable.
This algebraic characterization also leads to a polynomial time algorithm
to check whether the formal language accepted by an n-state (complete)
deterministic automaton is RTL-definable. We give another (non-effective)
description of RTL-definable formal languages: these formal languages form
the smallest boolean algebra of formal languages containing the languages
aA∗ and closed under the operations L→ aL and L→ A∗L for every letter
a.

1 Semigroups and formal languages.

In this section, we briefly review some basic facts about finite semigroups
and rational languages. All the definitions and results presented in this
section are standard, and are reproduced for the convenience of the reader.
More information on this subject can be found in [3, 8, 15]. For the most
part, we follow the notations and terminology of Eilenberg [3]. In particular,
if ϕ : S → T is a function from S into T , we denote by sϕ (instead of the
usual ϕ(s)) the image of an element s of S by ϕ. We also use the term
“rational language” instead of “regular language” for two reasons: first,
the term “rational” has a much better mathematical foundation (rational
languages are deeply connected with rational series), and second the term
“regular” is also used in semigroup theory with a totally different meaning,
and could be misleading in our context.

2

1.1 Semigroups.

A semigroup is a set S together with an associative multiplication. A monoid
M is a semigroup that has an identity element, usually denoted by 1. The
free monoid (resp. semigroup) on a set A is the set, usualy denoted A∗

(resp. A+) of all words (resp. non-empty words) over A, equipped with the
concatenation of words as multiplication. Thus A∗ = A+ ∪ {1}, where 1 is
the empty word. Given two semigroups S and T , a semigroup morphism
ϕ : S → T is a function from S into T such that, for every s, s′ ∈ S,

(sϕ)(s′ϕ) = (ss′)ϕ.

All semigroups considered in this paper are finite except for free semigroups
and free monoids. Therefore, we shall use in the sequel the term “semigroup”
instead of “finite semigroup”. An element e of a semigroup S is idempotent
if e2 = e. The set of idempotents of a semigroup S is denoted by E(S).
Every non-empty semigroup contains at least one idempotent. This is a
particular case of the following well-known result:

Proposition 1.1 For any semigroup S, there exists an integer n ≤ Card(S)
such that, for every s ∈ S, sn is idempotent.

The smallest integer n satisfying this property is called the exponent of
S and is usually denoted ω(S) or simply ω. Thus sω is a convenient notation
for the (unique) idempotent which is a power of s. For instance, if x, y ∈ S,
(xωyω)ω denotes the idempotent which is a power of ef , where e (resp. f) is
the idempotent which is a power of x (resp. y). We shall frequently use this
type of notation in the sequel. If S is a semigroup, the reverse semigroup
Sr is the semigroup with underlying set S together with the operation ∗
defined by s ∗ t = ts.

If S is a semigroup, we denote by S1 the monoid equal to S if S is already
a monoid, and otherwise equal to S∪{1}, where 1 is a new identity element.

We shall consider in particular three semigroups, denoted respectively
U1, U2, and B(1, 2): U1 is the semigroup {0, 1} with the multiplication given
by 1.1 = 1 and 0.1 = 1.0 = 0.0 = 0, B(1, 2) = {a, b} with the multiplication
given by a.b = b.b = b and a.a = b.a = a, and U2 = B(1, 2)1 = {1, a, b}.

The Green’s relations R and L on a semigroup S are the equivalence
relations defined as follows:

s R t if and only if there exist u, v ∈ S1 such that su = t and tv = s,

s L t if and only if there exist u, v ∈ S1 such that us = t and vt = s

A semigroup S is R-trivial (respectively L-trivial) if the relation R (respec-
tively L) is equality. For instance, U1 is both R-trivial and L-trivial, and
B(1, 2) and U2 are L but not R-trivial, since a R b.

3

Given a semigroup S, and an idempotent e of S, the three subsets

eS = {es | s ∈ S}, eSe = {ese | s ∈ S}, Se = {se | s ∈ S}

are subsemigroups of S. The subsemigroup eSe is called the local semigroup
associated with e. It is in fact a monoid, since e is clearly an identity of eSe.
A semigroup S is said to have a property locally if for every idempotent e
of S, the subsemigroup eSe has the property. In particular, a semigroup S
is locally R-trivial (respectively locally L-trivial) if, for every idempotent e
of S, eSe is R-trivial (respectively L-trivial). For instance, B(1, 2) is locally
R-trivial, but U2 is not, since 1.U2.1 = U2 is not R-trivial.

Proposition 1.2 Let S be a semigroup. Then

(1) S is locally R-trivial if and only if, for every e ∈ E(S), Se is R-trivial.

(2) S is locally L-trivial if and only if, for every e ∈ E(S), eS is L-trivial.

Proof. Clearly, (2) is a dual version of (1). Let S be a locally R-trivial
semigroup. Let e ∈ E(S), and suppose that se R te for some s, t ∈ S.
Then there exist ue, ve ∈ (Se)1 such that seue = te and teve = se. Thus
s(eue)(eve) = se. Furthermore [(eue)(eve)]ω R [(eue)(eve)]ω(eue) holds in
eSe, and since eSe is R-trivial, it follows

[(eue)(eve)]ω = [(eue)(eve)]ω(eue).

Therefore

se = s[(eue)(eve)]ω = s[(eue)(eve)]ω(eue) = s(eue) = te.

Conversely, assume that Se is R-trivial. Then eSe, which is a subsemigroup
of Se, is also R-trivial.

A semigroup S is aperiodic if for every s ∈ S, there exists an n > 0 such
that sn = sn+1. For instance the three semigroups U1, U2, and B(1, 2) are
aperiodic, but a non-trivial group is not aperiodic.

1.2 Transformation semigroups.

Let Q be a set, and let S be a semigroup. An action of S on Q is a function
1 from Q× S into Q, denoted (q, s) → q · s, such that, for every q ∈ Q and
every s1, s2 ∈ S,

(q · s1) · s2 = q · (s1s2).

Let T (Q) be the semigroup of all functions from Q into itself, with left-to-
right composition of functions as the multiplication. Any action of S on Q
defines a semigroup morphism ρ : S → T (Q), given, for every s ∈ S, by

q · (sρ) = q · s for every q ∈ Q

1The definition of Eilenberg [3] allows partial functions, but we don’t need this more
general definition.

4

The action of S on Q is faithful if ρ is injective, that is, if two elements of
S having the same action on Q are equal. A transformation semigroup (ts
for short) is a pair (Q,S), where Q is a set (the set of states) and S is a
semigroup acting faithfully on Q.

Two natural examples of transformation semigroups are frequently used:
first, every semigroup S defines a transformation semigroup (S1, S), the
action being simply the product in S. This transformation semigroup is
usually denoted simply S, and the context suffices to decide whether one
considers a semigroup or a transformation semigroup. The second example is
the notion of transformation semigroup of an automaton. Let A = (Q,A, ·)
be a (complete) deterministic automaton. By definition, every word w of
A+ defines a function wρ from Q into Q, given, for every q ∈ Q, by

q(wρ) = q · w

This defines a semigroup morphism ρ : A∗ → T (Q). The range of ρ is a
subsemigroup of T (Q) denoted S(A) and called the semigroup of A, and the
transformation semigroup TS(A) =

(

Q,S(A)
)

is called the transformation
semigroup of A. In practice, the notation wρ is almost always simplified to
w, and the context makes clear whether one is considering w as a word or as
an element of T (Q). For instance, if A is the automaton represented below

0

1 2

a

b

b a

a, b

Figure 1: The automaton A.

then TS(A) = ({0, 1, 2}, {a, b, ab, ba, aa}) where the action of each element
is represented in the following table:

a b ab ba aa

0 0 0 0 0 0

1 2 0 1 0 0

2 0 1 0 2 0

We shall also use the transformation semigroup 2 = ({1, 2}, B(1, 2)) where
the action is given by the formulas 1 · a = 2 · a = 1 and 1 · b = 2 · b = 2.

5

1 2a b

b

a

Figure 2: The transformation semigroup 2.

A transformation semigroup (P, S) divides a transformation semigroup (Q,T)
if there exists a surjective partial function ϕ : Q→ P , and, for every s ∈ S,
there exists an element ŝ ∈ T such that, for every q ∈ Q, (qϕ) · s = (q · ŝ)ϕ.
For instance both B(1, 2) and U1 divide U2.

1.3 Formal languages.

Let A+ be a free semigroup. The set A is called the alphabet and the elements
of A are letters. The length of a word w ∈ A+ is denoted by |w|. A subset of
A+ is called a (formal) language. Rational languages form the smallest class
of languages containing letters and closed under union, concatenation and
the plus operation (L+ =

⋃

n>0
Ln). Star-free languages form the smallest

class of languages containing letters and closed under boolean operations
(union, intersection and complementation) and concatenation product.

The notion of the language recognized by an automaton can be easily
adapted to transformation semigroups as follows: a transformation semi-
group (Q,S) recognizes a language L ⊂ A+ if there is a semigroup morphism
η : A+ → S, a state q0 ∈ Q (the initial state), a set of states F (the final
states) such that L = {u ∈ A+ | q0 · (uη) ∈ F}. When the transformation
semigroup is of the form S = (S1, S), there is a more convenient equivalent
definition, that does not refer to transformation semigroups: a semigroup S
recognizes a language L ⊂ A+ if there is a morphism η : A+ → S, and a
subset P of S, such that L = Pη−1. It is easy to see that if a language L is
recognized by a transformation semigroup X, and if X divides a transfor-
mation semigroup Y , then Y also recognizes L.

For instance, if a ∈ A and B ⊂ A, the languages A∗aA∗, A∗aB∗ and A∗a
are recognized by U1, U2 and B(1, 2), respectively. Conversely, we have the
following lemma (see [15], chapter 2).

Lemma 1.3

(1) If a language of A+ is recognized by U1, then it is a boolean combination
of languages of the form A∗aA∗ where a ∈ A.

(2) If a language of A+ is recognized by U2, then it is a boolean combination
of languages of the form A∗aB∗ where a ∈ A and B ⊂ A.

(3) If a language of A+ is recognized by B(1, 2), then it is a boolean com-
bination of languages of the form A∗a where a ∈ A.

6

The syntactic semigroup of a language L ⊂ A+, denoted S(L), is the
quotient of A+ by the congruence ∼L defined by

u ∼L v if and only if, for every x, y ∈ A∗, xuy ∈ L⇔ xvy ∈ L.

The syntactic semigroup of a language L is the smallest semigroup that
recognizes L. It is also the semigroup of the minimal automaton of L. As
is well-known, a language is rational if and only if it can be recognized by
a finite automaton. Since there are standard algorithms to compute the
minimal automaton of a given rational language, this provides an algorithm
to compute the syntactic semigroup of a rational language.

For star-free languages, we have the following important result, due to
Schützenberger [17]. A proof can be found in [3, 8, 15, 14].

Theorem 1.4 Let L be a language. The following conditions are equivalent

(1) L is star-free,

(2) L is recognized by an aperiodic semigroup,

(3) the syntactic semigroup of L is aperiodic.

1.4 Wreath product.

The wreath product of two transformation semigroups X = (P, S) and Y =
(Q,T) is the transformation semigroup X ◦ Y = (P × Q,SQ × T), with
multiplication given by 2

(f1, t1)(f2, t2) = (f, t1t2), where, for everyq ∈ Q, qf = (qf1)(qt1)f2

and where the action of an element (f, t) of SQ×T on a state (p, q) of P ×Q
is given by

(p, q) · (f, t) = (p · (qf), q · t).

The wreath product is an associative operation on transformation semi-
groups. Aperiodic, R-trivial and locally R-trivial semigroups admit simple
wreath-product decompositions using the three transformation semigroups
U1, U2, and 2 defined in section 1.1 and 1.2. For a proof, see [3, Vol. B] or
[20].

Theorem 1.5

(1) A semigroup is R-trivial if and only if it divides a wreath product of
the form U1 ◦ · · · ◦ U1.

(2) A semigroup is locally R-trivial if and only if it divides a wreath prod-
uct of the form U1 ◦ · · · ◦ U1 ◦ 2 ◦ · · · ◦ 2.

2SQ denotes the set of all functions from Q to S. Thus if f ∈ SQ and q ∈ Q, qf is an
element of S.

7

(3) A semigroup is aperiodic if and only if it divides a wreath product of
the form U2 ◦ · · · ◦ U2.

Wreath products are deeply related to sequential functions. Recall that a
transducer T = (Q,A,B, q0, ., ∗) is given by a finite set of states Q, an input
alphabet A, an output alphabet B, an initial state q0, a next-state function
Q × A → Q, denoted (q, a) → q · a, and an output function Q × A → B+,
denoted (q, a) → q ∗ a. The next-state function is extended to a function
Q × A+ → Q by setting q · (ua) = (q · u) · a for each u ∈ A∗ and a ∈ A.
Similarly, the output function is extended to a function Q × A+ → B+ by
setting q ∗ ua = (q ∗ u)((q · u) ∗ a).

The function σ : A+ → B+ defined by uσ = q0 ∗u is called the sequential
function defined by T . Then we can state

Proposition 1.6 [3] Let σ : A+ → B+ be a sequential function realized
by a transducer T = (Q,A,B, q0, ·, ∗) and let S(σ) be the transformation
semigroup of the automaton (Q,A, ·). If a language L ⊂ B+ is recognized
by a semigroup S, then Lσ−1 is recognized by S ◦ S(σ).

The following result is a first application of Proposition 1.6 to a syntactic
property of the operators L→ LaA∗ and L→ La on languages.

Proposition 1.7 [3, 22] Let L ⊂ A+ be a recognizable language. Then

(1) S(LaA∗) divides U1 ◦ S(L),

(2) S(La) divides B(1, 2) ◦ S(L).

Proof. Let ϕ : A+ → S = S(L) be the syntactic morphism of L. This
morphism can be extended to a monoid morphism ϕ : A∗ → S1. Put
P = Lϕ, B = S1 × A, and let σ : A+ → B+ be the sequential function
defined by

(a1 · · · an)σ = (1ϕ, a1) · · · ((a1 · · · an−1)ϕ, an).

Note that σ is realized by a transducer (that is, a deterministic automaton
with output) with S1 as the set of states and next-state and output functions
defined by the following diagram.

s s(aϕ)
a | (s, a)

Figure 3: A transducer realizing σ.

8

In particular, the semigroup S(σ) is equal to S. Put C = P × {a}. Then C
is a subset of B and we have

(B∗CB∗)σ−1 = {u ∈ A+ | uσ ∈ B∗CB∗}

= {a1 · · · an ∈ A
+ | ∃i ∈ {1, · · · , n− 1} ((a1 · · · ai)ϕai+1) ∈ C}

= {a1 · · · an ∈ A
+ | ∃i ∈ {1, · · · , n− 1} a1 · · · ai ∈ Pϕ

−1

and ai+1 = a}

= (Pϕ−1)aA∗ = LaA∗.

Therefore, by Proposition 1.6, LaA∗ is recognized by S(B∗CB∗) ◦ S(σ).
Statement (1) follows, since S(B∗CB∗) = U1. Similarly, we have

(B∗C)σ−1 = {u ∈ A+ | uσ ∈ B∗C}

= {a1 · · · an ∈ A
+ | ((a1 · · · an−1)ϕ, an) ∈ C}

= {a1 · · · an ∈ A
+ | a1 · · · an−1 ∈ Pϕ

−1 and an = a}

= (Pϕ−1)a = La.

Therefore, by Proposition 1.6, La is recognized by S(B∗C)◦S(σ). Statement
(2) follows, since S(B∗C) = B(1, 2).

Straubing’s “wreath product principle” recalled below gives a descrip-
tion of the languages recognized by the wreath product of two transforma-
tion semigroups. Let X = (P, S) and Y = (Q,T) be two transformation
semigroups, and let Z = X ◦ Y = (P × Q,R), where R = SQ × T . Let
L be a language of A+ recognized by Z: then there exist an initial state
(p0, q0) ∈ P×Q, a set of final states F in P×Q and a morphism η : A+ → R
such that

L = {u ∈ A+ | (p0, q0) · (uη) ∈ F}.

The morphism η defines an action of A+ on P × Q by setting (p, q) · a =
(p, q)(aη).

Let π be the natural projection π : R = SQ×T → T . Define a sequential
function σ : A+ → (Q×A)+ by

(a1 · · · an)σ = (q0, a1)(q0 · (a1ηπ), a2) · · · (q0 · (a1 · · · an−1)ηπ, an).

We can now state

Proposition 1.8 (Wreath product principle [21]) The language L is a finite
union of languages of the form U ∩ V σ−1, where U is a language of A+

recognized by Y and V is a language of (Q×A)+ recognized by X.

Proposition 1.8, or some similar statement, together with Theorem 1.5,
has been used to prove Theorem 1.4 [2, 3, 9].

9

1.5 Varieties of semigroups.

A variety of semigroups is a class of semigroups closed under taking sub-
semigroups, quotients and finite direct products3. The following varieties
will be used in this article:

A, the variety of aperiodic semigroups,
R, the variety of R-trivial semigroups,
L, the variety of L-trivial semigroups,
LR, the variety of locally R-trivial semigroups,
LL, the variety of locally L-trivial semigroups.

It is often convenient to define varities by identities. Let u, v ∈ A+. For-
mally, a semigroup S satisfies the identity u = v if and only if, for every
semigroup morphism ϕ : A+ → S, uϕ = vϕ. For instance, a semigroup is
commutative if and only if it satisfies the identity xy = yx. The next propo-
sition gives identities defining the varieties A, R, L, LR and LL. In fact,
there are not identities in the strict sense4, since they involve the exponent
ω, which depends on the semigroup S.

Proposition 1.9

(1) A semigroup is aperiodic if and only if it satisfies the identity xω =
xω+1,

(2) A semigroup is R-trivial if and only if it satisfies the identity (xy)ωx =
(xy)ω,

(3) A semigroup is L-trivial if and only if it satisfies the identity y(xy)ω =
(xy)ω,

(4) A semigroup is locally R-trivial if and only if it satisfies the identity
(uxωvxω)ωuxω = (uxωvxω)ω, or, equivalently, the identity

(xωuxωvxω)ωxωuxω = (xωuxωvxω)ω,

(5) A semigroup is locally L-trivial if and only if it satisfies the identity
xωv(xωuxωv)ω = (xωuxωv)ω, or, equivalently, the identity

xωv(xωuxωvxω)ω = (xωuxωvxω)ω.

A variety of semigroups V is closed under wreath product if, given two
transformation semigroups X = (P, S) and Y = (Q,T) and their wreath
product (P × Q,R), the conditions S, T ∈ V imply R ∈ V. The next
proposition is the “variety version” of Theorem 1.5.

Proposition 1.10 [3, 20]

3The correct terminology should be “pseudovariety” to avoid a possible confusion with
Birkhoff’s varieties. However, we have preferred to avoid this rather awkward terminology.

4Again, the correct terminology should be “pseudoidentity”.

10

(1) R is the smallest variety of semigroups closed under wreath product
containing U1.

(2) LR is the smallest variety of semigroups closed under wreath product
containing U1 and B(1, 2).

(3) A is the smallest variety of semigroups closed under wreath product
containing U2.

2 Propositional temporal logic.

Propositional temporal logic (PTL for short) on an alphabet A is defined as
follows. The vocabulary consists of

(1) An atomic proposition pa for each letter a ∈ A

(2) Connectives ∨, ∧ and ¬.

(3) Temporal operators ◦ (“next”), � (“eventually”) and U (“until”).

and the formulas are constructed according to the rules

(1) For every a ∈ A, pa is a formula,

(2) If ϕ and ψ are formulas, so are ϕ ∨ ψ, ϕ ∧ ψ, ¬ϕ, ◦ϕ, �ϕ, ϕ U ψ.

Semantics are defined by induction on the formation rules. Given a word
w ∈ A+, and n ∈ {1, 2, ..., |w|}, we define the expression “w satisfies ϕ at
the instant n” (denoted (w, n) |= ϕ) as follows

(1) (w, n) |= pa if the n-th letter of w is an a.

(2) (w, n) |= ϕ ∨ ψ (resp. ϕ ∧ ψ, ¬ϕ) if (w, n) |= ϕ or (w, n) |= ψ (resp. if
(w, n) |= ϕ and (w, n) |= ψ, if (w, n) does not satisfy ϕ).

(3) (w, n) |= ◦ϕ if (w, n+ 1) satisfies ϕ.

(4) (w, n) |= �ϕ if there exists m such that n ≤ m ≤ |w| and (w,m) |= ϕ.

(5) (w, n) |= ϕ U ψ if there exists m such that n ≤ m ≤ |w|, (w,m) |= ψ
and, for every k such that n ≤ k < m , (w, k) |= ϕ.

Note that, if w = w1w2 · · ·w|w|, (w, n) |= ϕ only depends on the word
w = wnwn+1 · · ·w|w|.

Example 2.1 Let w = abbababcba. Then (w, 4) |= pa since the fourth
letter of w is an a, (w, 4) |= ◦pb since the fifth letter of w is a b and (w, 4) |=
�(pc ∧ ◦pb) since cb is a factor of babcba.

If ϕ is a temporal formula, we say that w satisfies ϕ if (w, 1) |= ϕ.
We just have defined “future” temporal formulas but one can define

in the same way “past” temporal formulas by reversing time: it suffices
to replace “next” by “previous” (symbol ◦), “eventually” by “sometimes”
(symbol �) and “until” by “since” (symbol S). The corresponding semantics
are modified as follows.

(3′) (w, n) |= ◦ϕ if n > 1 and (w, n− 1) satisfies ϕ.

11

(4′) (w, n) |= �ϕ if there exists m ≤ n such that (w,m) |= ϕ.

(5′) (w, n) |= ϕ S ψ if there exists m ≤ n such that (w,m) |= ψ and for
every k such that m < k ≤ n, (w, k) |= ϕ.

The diagram below illustrates the symmetry between the operators “until”
and “since”.

ϕ
ϕ

ϕ

ψ ψ

ϕ
ϕ

ϕ

n . . . m |w| 1 m . . . n

Figure 4: A diagram for (w, n) |= ϕ U ψ and for (w, n) |= ϕ S ψ.

If ϕ is a past temporal formula, we say that w satisfies ϕ if (w, |w|) |= ϕ.
The language defined by a formula ϕ is the set L(ϕ) of all words of A+ that
satisfy ϕ.

3 PTL-definable languages.

In this section, we present a short proof of the following result

Theorem 3.1 A language of A+ is PTL-definable if and only if its syntactic
semigroup is aperiodic.

Proof. Since the reverse of an aperiodic semigroup is also aperiodic, it
suffices to prove the dual version of the theorem, obtained by using past
temporal logic. We first prove that every PTL-definable language is star-
free (by Schützenberger’s theorem, a language is star-free if and only if its
syntactic semigroup is aperiodic). This is done by induction on the formation
rules. Indeed

(1) L(pa) = A∗a (for every letter a) is star-free.

(2) L(◦ϕ) = L(ϕ)A. Thus if L(ϕ) is star-free, so is L(◦ϕ).

(3) L(�ϕ) = L(ϕ)A∗. Thus if L(ϕ) is star-free, so is L(�ϕ).

We need a similar formula for S, but this is slightly more complicated.
Assume that L(ϕ) and L(ψ) are star-free. In particular, there is a semigroup
morphism η : A+ → S, where S is an aperiodic semigroup, and a subset P
of S such that L(ϕ) = Pη−1. Set, for every s ∈ S, s−1P = {t ∈ S | st ∈ P}.
Then we have the following lemma, in which \ denotes a set difference.

12

Lemma 3.2 The following equalities hold

L(ϕ S ψ) = {uv ∈ A+ | u ∈ L(ψ), v ∈ A∗ and for each

left factor v′ 6= 1 of v, uv′ ∈ L(ϕ)}

=
⋃

s∈S

(

sη−1 ∩ L(ψ)
)(

A∗ \
(

A+ \ (s−1P)η−1
)

A∗
)

.

Proof. The first equality is a direct consequence of the definition. Next,
if R ⊂ A+, (A+ \ R)A∗ is the set of all words v ∈ A∗ having a left factor
v′ 6= 1 in R. Therefore, taking complements, this is equivalent to saying
that A∗ \ (A+ \ R)A∗ is the set of all words v ∈ A∗ such that, for each left
factor v′ 6= 1 of v, v′ /∈ R.

Let w ∈ L(ϕ S ψ). Then, by the first equality, w = uv, where u ∈ L(ψ),
v ∈ A∗, and for each left factor v′ 6= 1 of v, uv′ ∈ L(ϕ). Putting s = uη, we
obtain u ∈ sη−1 ∩ L(ψ) and (uv′)η ∈ P , whence v′ ∈ (s−1P)η−1. Thus,

w ∈
(

sη−1 ∩ L(ψ)
)(

A∗ \
(

A+ \ (s−1P)η−1
)

A∗
)

by the remark above.
Conversely, assume that w = uv, where, for some s ∈ S, u ∈ sη−1∩L(ψ)

and v ∈ A∗ \
(

A+ \ (s−1P)η−1
)

A∗. Then u ∈ L(ψ), and for each left factor
v′ 6= 1 of v, v′ ∈ (s−1P)η−1. Thus (uv′)η = s(v′η) ∈ P , whence uv′ ∈ L(ϕ).
Therefore, by the first equality, w ∈ L(ϕ S ψ).

Now any language of the form Qη−1, where Q ⊂ S, is recognized by S,
and thus is star-free by Schützenberger’s theorem. Therefore, Lemma 3.2
shows that L(ϕ S ψ) is star-free and this concludes the first part of the
proof of Theorem 3.1.

We now show that every star-free language is PTL-definable. Let C

be the class of all transformation semigroups X such that every language
recognized by X is PTL-definable. By Schützenberger’s theorem, it suffices
to show that each aperiodic semigroup belongs to C. The class C is certainly
closed under division, because if X divides Y , every language recognized by
X is also recognized by Y . Next, the trivial semigroup {1} belongs to C,
since the languages of A+ recognized by {1} are A+ and the empty set.
Now, by Theorem 1.5, it remains to show that if Y = (Q,T) ∈ C, then
U2 ◦ Y ∈ C.

By the wreath-product principle, every language of A+ recognized by
U2 ◦ Y is a finite union of languages of the form U ∩ V σ−1 where σ : A+ →
B+ = (Q × A)+ is a certain sequential function, U ⊂ A+ is recognized by
Y and V ⊂ B+ is recognized by U2. First, the formulas L(¬ϕ) = A+ \L(ϕ)
and L(ϕ ∨ ψ) = L(ϕ) ∪ L(ψ) show that PTL-definable languages are closed
under boolean operations. Thus it suffices to show that every language of the
form U ∩ V σ−1 above is PTL-definable. Since Y ∈ C, U is PTL-definable

13

by definition. Furthermore, by Lemma 1.3, V is a boolean combination
of languages of the form B∗bC∗, where b ∈ B and C ⊂ B. Since σ−1

commutes with boolean operations, it remains to show that languages of
the form (B∗bC∗)σ−1 are PTL-definable. We claim that

(B∗bC∗)σ−1 = (B∗C)σ−1 S (B∗b)σ−1 (1)

Indeed, let u = a1 · · · an be a word of A+ and let (a1 · · · an)σ = b1 · · · bn.
Then uσ ∈ B∗bC∗ if and only if there exists an i such that bi = b and, for
every j > i, bj ∈ C. This is equivalent to saying that (a1 · · · ai)σ ∈ B

∗b and
for every j > i, (a1 · · · aj)σ ∈ B

∗C, and this proves (1). Now

(B∗C)σ−1 =
⋃

b∈C

(B∗b)σ−1

and therefore it suffices to show that languages of the form (B∗b)σ−1 are
PTL-definable. We take again the notations used in the definition of σ (cf.
Proposition 1.8). Set b = (q, a) (recall that B = Q×A). Then we have

(a1 · · · an)σ = (q0, a1)(q0 · (a1ηπ), a2) · · · (q0 · (a1 · · · an−1)ηπ, an).

It follows that (a1 · · · an)σ ∈ B∗b if and only if q0 · (a1 · · · an−1)ηπ = q and
an = a. Therefore (B∗b)σ−1 = La, where L = {u ∈ A+ | q0 · (uηπ) = q}.
But L is recognized by Y and since Y ∈ C, is PTL-definable. Now, since
L(ϕ)a = L(◦ϕ ∧ pa), La = (B∗b)σ−1 is PTL-definable and this concludes
the proof.

4 Restricted temporal logic.

If we omit the “until” operator, we obtain a restricted temporal logic (RTL)
that was considered in [5, 6]. Here is a first description of the languages
definable in this logic. The subtle distinction between conditions (2) and
(3) will be used in the proof of the main theorem below.

Proposition 4.1 Let L be a language of A+. The following conditions are
equivalent:

(1) L is RTL-definable,

(2) L belongs to the smallest boolean algebra of languages containing the
languages aA∗ and closed under the operations L→ A∗L and L→ aL
for every a ∈ A,

(3) L belongs to the smallest boolean algebra of languages containing the
languages aA∗ and closed under the operations L→ A∗aL and L→ aL
for every a ∈ A.

14

Proof. Let C (respectively C ′) be the smallest boolean algebra of languages
closed under the operations L→ A∗L (respectively L→ A∗aL) and L→ aL
for every letter a ∈ A. In particular the languages ∅ and A+ belong to C and
C′ by definition. We first prove that C = C ′. The inclusion C ′ ⊂ C follows
directly from the formula A∗aL = A∗(aL). The opposite inclusion follows
from the formula

A∗L = L ∪
⋃

a∈A

A∗aL.

Thus (2) and (3) are equivalent.
(1) implies (2). We show by induction on the formation rules that L(ϕ) ∈

C for every RTL-formula ϕ. First, if ϕ = pa, then

L(pa) = aA∗ ∈ C.

If ϕ and ψ are formulas such that L(ϕ) and L(ψ) belong to C, then

L(ϕ ∨ ψ) = L(ϕ) ∪ L(ψ) ∈ C,

L(ϕ ∧ ψ) = L(ϕ) ∩ L(ψ) ∈ C,

L(¬ϕ) = A+ \ L(ϕ) ∈ C,

L(◦ϕ) = AL(ϕ) =
⋃

a∈A

aL(ϕ) ∈ C,

L(�ϕ) = A∗L(ϕ) ∈ C.

(2) implies (1). Let F be the set of RTL-definable languages. Then F
contains aA∗ = L(pa), for every a ∈ A. The formulas L(ϕ)∪L(ψ) = L(ϕ∨ψ)
and A+ \ L(ϕ) = L(¬ϕ) show that F is a boolean algebra and the formula
A∗L(ϕ) = L(�ϕ) shows that F is closed under the operation L → A∗L.
Finally, the formula aL(ϕ) = L(pa ∧ ◦ϕ) shows that F is closed under the
operation L → aL, for every letter a ∈ A. Therefore F contains C.

We can now state our main result.

Theorem 4.2 Let L be a language of A+. The following conditions are
equivalent:

(1) L is RTL-definable,

(2) the syntactic semigroup of L is locally L-trivial.

Proof. As for Theorem 3.1, we prove the dual version of the theorem, which
states that L is definable in past restricted temporal logic if and only if its
syntactic semigroup is R-trivial. Consider the smallest boolean algebra B
containing the languages A∗a and closed under the operations L → LaA∗

and L→ La for every a ∈ A. By Proposition 4.1 and duality, it suffices now

15

to prove the following statement: “A language belongs to B if and only if
its syntactic semigroup belongs to LR”.

First, S(A∗a) = B(1, 2) ∈ LR. Now, by Proposition 1.7, S(LaA∗)
divides U1◦S(L), and S(La) divides B(1, 2)◦S(L). It follows by Proposition
1.10, that if S(L) ∈ LR, then S(LaA∗) ∈ LR and S(La) ∈ LR. Therefore,
if L ∈ B, then S(L) ∈ LR.

In the other direction, the proof mimics the proof of Theorem 3.1. Let
C be the class of all transformation semigroups X such that every language
recognized by X belongs to B. The class C contains the trivial semigroup
and is closed under division. Therefore, to show that C contains LR, it
suffices, by Proposition 1.10, to verify that if Y ∈ C, then U1 ◦ Y ∈ C and
2 ◦ Y ∈ C.

By the wreath-product principle, every language of A+ recognized by
U1◦Y (respectively 2◦Y) is a finite union of languages of the form U∩V σ−1

where σ : A+ → B+ = (Q × A)+ is a certain sequential function, U ⊂ A+

is recognized by Y and V ⊂ B+ is recognized by U1 (respectively 2). Since
Y ∈ C, U belongs to B by definition. Furthermore, by Lemma 1.3, V is
a boolean combination of languages of the form B∗bB∗, (respectively B∗b)
where b ∈ B. Since σ−1 commutes with boolean operations, it remains to
show that the languages of the form (B∗bB∗)σ−1 (respectively (B∗b)σ−1)
belong to B. We take again the notations used in the definition of σ (cf.
Proposition 1.8). Set b = (q, a) (recall that B = Q×A). Then we have

(a1 · · · an)σ = (q0, a1)(q0 · (a1ηπ), a2) · · · (q0 · (a1 · · · an−1)ηπ, an).

First assume q 6= q0. Then (a1...an)σ ∈ B∗bB∗ if and only if there exists an
index i such that q0·(a1 · · · ai−1)ηπ = q and ai = a. Therefore (B∗bB∗)σ−1 =
LaA∗, where

L = {u ∈ A+ | q0 · (uηπ) = q}.

If q = q0, then (B∗bB∗)σ−1 = LaA∗ ∪ aA∗. But L is recognized by Y and
since Y ∈ C, L belongs to B. Furthermore, aA∗ also belongs to B, since

{a} = A∗a \
(

(A∗a)aA∗ ∪ (A∗a)bA∗ ∪ (A∗b)aA∗ ∪ (A∗b)bA∗
)

,

and
aA∗ = {a} ∪ {a}aA∗ ∪ {a}bA∗

It follows that (B∗bB∗)σ−1 belongs to B. Similarly, (a1 · · · an)σ ∈ B∗b if
and only if q0 · (a1 · · · an−1)ηπ = q and an = a. Therefore (B∗b)σ−1 = La or
La ∪ {a} (if q = q0) and (B∗b)σ−1 also belongs to B.

Corollary 4.3 Given a rational language L, one can effectively decide whether
it is RTL-definable.

16

Proof. The language L can be given either by a rational expression or
by a finite automaton. In both cases, there are well-known algorithms to
compute its minimal automaton A(L), and then its syntactic semigroup
S(L), which is also the transformation semigroup of A(L). Then it suffices,
by Proposition 1.9 to verify that S(L) satisfies the identity xωv(xωuxωv)ω =
(xωuxωv)ω.

Say that two PTL-formulas ϕ and ψ are equivalent if L(ϕ) = L(ψ), that
is, if they agree when interpreted on finite words.

Corollary 4.4 Given a PTL-formula, one can effectively decide whether it
is equivalent to some RTL-formula.

We conclude this section by three examples.

Example 4.1 Let A = {a, b} and let L = (ab)+. Then the minimal au-
tomaton of L is represented in the diagram below.

1 2

a

b

Figure 5: The minimal automaton of (ab)+.

The syntactic semigroup of L is the semigroup S with zero presented by the
relations

a2 = b2 = 0, aba = a, bab = b.

Thus S = {a, b, ab, ba, 0}. There are three idempotents ab, ba, and 0. The
corresponding “local” semigroups are

abSab = {ab, 0}, baSba = {ba, 0} and 0S0 = {0},

all of which are L-trivial. Therefore L is expressible in restricted temporal
logic. Indeed, we have L = L(ϕ), where

ϕ = pa ∧ �(pb ∧ ¬ ◦ pa ∧ ¬ ◦ pb) ∧ ¬ � (pa ∧ ◦pa) ∧ ¬ � (pb ∧ ◦pb).

Example 4.2 Let A = {a, b, c} and let L = A∗a{a, c}∗. Then the minimal
automaton of L is represented in the diagram below.

1 2b, c a, c

a

b

Figure 6: The minimal automaton of A∗a{a, c}∗.

17

The syntactic semigroup of L is U2, which is locally L-trivial. Therefore L
is expressible in restricted temporal logic. Indeed, we have L = L(ϕ), where

ϕ = �(pa ∧ ◦¬ � pb).

Example 4.3 Let A = {a, b, c} and let L = a∗b{a, b, c}∗. Then the minimal
automaton of L is represented in the diagram below.

1 2a a, b, c
b

Figure 7: The minimal automaton of a∗b{a, b, c}∗

The syntactic semigroup of L is the monoid S presented by the relations

a = 1, bb = bc = b, cb = cc = c.

This is the reverse of U2, and it is aperiodic, but not locally L-trivial. There-
fore, any formula ψ such that L = L(ψ) uses the “until” operator. In fact,
L = L(ϕ), where ϕ = pa U pb.

5 Automata, varieties and forbidden configurations.

In the two previous sections, we have seen how to characterize the formal
languages associated with a formula of propositional temporal logic (section
3) and of restricted temporal logic (section 4). Both characterizations are
in terms of the syntactic semigroup of the formal language. We shall see
here how this characterization can be expressed in terms of automata. In
the case of restricted temporal logic, this has the advantage of providing
a polynomial algorithm to check whether the language defined by a given
deterministic automaton is RTL-definable. This is of interest since, on the
contrary, the corresponding problem for PTL logic is the complement of
an NP-hard problem [19] and is PSPACE-complete [1]. Thus, unless P =
NP , checking whether the language defined by a given automaton is PTL-
definable cannot be solved in polynomial time.

We begin with the characterization of automata associated withR-trivial
semigroups. We shall then treat the case of locally R-trivial semigroups.
This corresponds, as we have seen, to formulas of past temporal logic. We
shall finally come to L-trivial and locally L-trivial semigroups, which cor-
respond to RTL-formulas. We shall see how these characterizations lead to
polynomial algorithms.

Before to give the details of our algorithms, let us fix some convenient
notations. Given a finite (complete) deterministic automaton A = (Q,A, ·)

18

and a positive integer k, we denote by Ak = (Qk, A, ·) the direct product of
k copies of A, where the action of A on Qk is given by

(q1, . . . , qk) · a = (q1 · a, . . . , qk · a)

We also denote by Gk(A) the transitive closure of the directed graph defined
by Ak. For instance, if A is the automaton represented below

1 2 b

a, b

a

Figure 8:

then A2 is the automaton

1, 2 2, 1

1, 1 2, 2

b

b

a

a

a, b

a
b b

Figure 9: The automaton A2.

and G2(A) is the graph

1, 2 2, 1

1, 1 2, 2

Figure 10: The graph G2(A).

Given a deterministic automaton A = (Q,A, ·), the set of all paths in A
defines an infinite labelled graph G(A), with Q as set of vertices, and the

19

triples of the form (q, w, q.w) (where w ∈ A+) as edges. A labelled subgraph
of G(A) is said to be a configuration present in A. Two words x, y ∈ A∗

which have the same action on Q are said to be equivalent in A (notation
x ≡ y). The following result is already in [15], p. 118.

Theorem 5.1 The semigroup of a deterministic automaton A is R-trivial
if and only if there exist no configurations of A of the form

p q

x

y

Figure 11: Forbidden configuration for R-trivial automata.

with p 6= q.

Proof. Suppose first that S(A) is R-trivial and consider a configuration as
above. Let ω be the exponent of S(A). Then we have, for every x, y ∈ A+

(xy)ω ≡ (xy)ωx

and therefore
p = p · (xy)ω = p = p · (xy)ωx = q

whence p = q. Conversely, if A = (Q,A, ·) contains no forbidden configu-
ration, let us verify that, for every u, v ∈ A+, (uv)ω ≡ (uv)ωu. Let r ∈ Q
and let p = r · (uv)ω. Since (uv)ω is idempotent, we have p · (uv)ω = p. Set
x = u, y = (vu)ω−1v and q = p ·x. Then q ·y = p ·xy = p · (uv)ω = p. There-
fore A contains the configuration of Figure 11 and thus p = q. Therefore
p = r · (uv)ω = r · (uv)ωu and thus (uv)ω ≡ (uv)ωu.

The transposition of the previous characterization to the case of locally
R-trivial semigroups follows a general scheme. Let V be a variety of semi-
groups and assume that the deterministic automata whose semigroups be-
long to V can be described by a set C of forbidden configurations. Then the
deterministic automata whose semigroups belong to the variety LV of all
semigroups which are locally in V can be described by the set C ′ of forbidden
configurations obtained as follows. For each configuration C ∈ C, we add to
each vertex a loop labeled by a new symbol, the same for all vertices. Then
the semigroup of a deterministic automaton A belongs to LV if and only if
that A contains no configuration of C ′.

In particular, we have the following result.

Theorem 5.2 The semigroup of a deterministic automaton A is locally R-
trivial if and only if there exist no configurations of A of the form

20

q q′

u

v

x x

Figure 12: Forbidden configuration for locally R-trivial automata.

with q 6= q′.

Proof. By Proposition 1.9, a semigroup is locally R-trivial if and only if it
satisfies the identity

(uxωvxω)ωuxω = (uxωvxω)ω (2)

Suppose that S(A) is locally R-trivial and that A contains a configuration
of the form represented in 12. Then by (2),

q = q · (uxωvxω)ω = q · (uxωvxω)ωuxω = q′

Conversely, suppose that A satisfies the condition of the theorem, and let
u, v, x be arbitrary words of A+. Set u′ = uxω, v′ = vxω and x′ = xω. Let
q be a state, and set q1 = q · (uxωvxω)ω and q2 = q1 · ux

ω. Then a short
computation shows that A contains the following configuration:

q1 q2

u′

v′

x′ x′

Figure 13: A configuration contained in A.

and thus q1 = q2. It follows that q · (uxωvxω)ω = q · (uxωvxω)ωuxω for
any state q, and thus S satisfies the identity (2). Thus S(A) is locally
R-trivial.

The previous result yields to a polynomial time algorithm to check
whether the semigroup of an n-state deterministic automaton A is locally
R-trivial or not. Indeed, one first observe that given two states q and q ′,
there is a word w ∈ A+ such that q · w = q and q′ · w = q′ if and only if
(

(q, q′), (q, q′)
)

is an edge in the directed graph G2(A). Therefore, one can
check whether A contains a configuration of the form 12 with q 6= q ′ by
computing G1 and G2 and by verifying there are no pairs {q, q ′} of states
such that

(a) (q, q′) and (q′, q) are edges in G1(A), and

(b)
(

(q, q′), (q, q′)
)

is an edge of G2(A).

21

Since G1 (resp. G2) has n (n2) vertices, this gives a polynomial algorithm.
This is in fact a general property of varieties defined by forbidden con-

figurations. Let indeed V be a variety of semigroups and assume that the
deterministic automata whose semigroups belong to V can be described by
a finite set C of forbidden configurations. Then there is a polynomial algo-
rithm to check whether a given n-state deterministic automaton A belongs
to V. For this we have to check whether or not some configuration C of C is
present in A. The number of possible assignements of states to the vertices
of C is polynomial in n. And for each assignement, the existence of a given
set of k edges with the same label is solved by reduction to an accessibility
problem in the graph Gk(A). The overall algorithm is polynomial.

In particular, we have the following result.

Corollary 5.3 There is a polynomial time algorithm for testing whether
the reverse of the language accepted by an n-state deterministic automaton
is RTL-definable.

We illustrate this method on the following example.

Example 5.1 Let A be the automaton given in Figure 6 and already con-
sidered in Example 4.2.
To check whether S(A) is locally R-trivial, we construct the graph G2(A).
It is represented in Figure 14.

1, 2 2, 1

1, 1 2, 2

Figure 14: The graph G2(A).

Now this graph contains a cycle of length 1 around (1, 2) and 1 and 2 are
in the same strongly connected component of G1(A). This indicates the
presence of a forbidden configuration. It is indeed obtained for instance
with the labels given in Figure 15

22

1 2

a

b

c c

Figure 15: A forbidden configuration.

It follows that A is not R-trivial and L(A) is not expressible in reverse
restricted temporal logic.

We now consider the case of L-trivial semigroups.

Proposition 5.4 The semigroup of a deterministic automaton A is L-trivial
if and only if the configuration

p q r

y

x

y

x

y x

Figure 16: Forbidden configuration for L-trivial automata.

with p 6= r is not present in A.

Proof. Let us first suppose that S(A) is L-trivial. We consider a configu-
ration as above. Since (yx)ω ≡ x(yx)ω, we have

r = q · x(yx)ω = q · (yx)ω = p

whence p = r. Conversely, suppose that the above configuration is not
present inA. Let x, y ∈ A+ and let q ∈ Q be arbitrary. Let r = q·x(yx)ω and
p = q · (yx)ω. Then p = r by the hypothesis and therefore x(yx)ω ≡ (yx)ω.
Thus S(A) is L-trivial.

Note that the characterization of Proposition 5.4, contrary to that of
Theorem 5.1 requires the hypothesis that the automaton is complete. There
is in fact no possibility of characterization by forbidden configurations of L-
trivial semigroups given by a deterministic automaton if it is not complete.
Indeed the automaton of figure 17 (i) is a subgraph of the labeled graph
of the automaton of figure 17 (ii). The semigroup of the first one is not
L-trivial whereas the second one is.

23

1 2

b

a

1 2

b

a

a b

(i) (ii)

Figure 17: Two automata.

We finally give the announced characterization of locally L-trivial semi-
groups. It is a corollary of Proposition 5.4.

Proposition 5.5 The semigroup of a deterministic automaton A is locally
L-trivial if and only if the configuration

p q r

y

x

y

x

y x
t

t t t

t

Figure 18: Forbidden configuration for locally L-trivial automata.

with p 6= r is not present in A.

Together with Theorem 4.2, we obtain.

Corollary 5.6 There is a polynomial time algorithm for testing whether the
language accepted by an n-state deterministic automaton is RTL-definable.

This does not give, however, a polynomial algorithm to check whether a
given PTL-formula is equivalent with a RTL formula. We presently do not
know any reasonable bound on the complexity of this problem.

6 Conclusion.

We have given an effective characterization of the languages definable in
linear propositional temporal logic and in restricted temporal logic. It would
be interesting to obtain similar characterizations when the temporal logic
is interpreted on infinite words. This will be the subject of a future paper.
Another interesting question is to consider the temporal logic whose only
operator is “eventually”. Sistla and Zuck [18] have given a description of
the set of infinite words definable in this logic, but this description doesn’t
seem to be effective.

24

Acknowledgements.

We would like to thank H. Straubing for some useful comments on an earlier
version of this work.

References

[1] Sang Cho and Dung T. Huynh, Finite-automaton aperiodicity is
PSPACE-complete, Theoretical Computer Science 88 (1991), 99–116.

[2] R.S. Cohen and J.A. Brzozowski, On star-free events, Proc. Hawaii

Internat. Conf. Syst. Sci., Honolulu, (1968), 1–4.

[3] Eilenberg, S., Automata, Languages and Machines, Academic Press,
New York, Vol A, (1974); Vol B, (1976).

[4] E.H. Emerson, J.Y. Halpern, “Sometimes” and “not never” revisited:
On Branching vs. Linear Time, J. Assoc. Comput. Math. 33, (1986)
151–178.

[5] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the temporal analysis of
fairness, Proc. 12th ACM Symp. on Principles of Programming Lan-

guages, Las Vegas, (1980), 163–173

[6] J.A. Kamp, Tense logic and the theory of linear order, Ph. D. Thesis,
University of California, Los Angeles, (1968).

[7] O. Katai, Completeness and the expressive power of nexttime temporal
logical system by semantic tableau method, INRIA report 109, (1981).

[8] G. Lallement, Semigroups and combinatorial applications, Wiley, New-
York, (1979).

[9] A.R. Meyer, A note on star-free events, J.ACM 16, (1969), 220–225.

[10] R. McNaughton and S. Papert, Counter-free automata, MIT Press,
Cambridge, Mass, (1971).

[11] M. Parigot, Automates, réseaux, formules. Actes des Journées “Infor-
matique et Mathématiques”, Luminy (1984), 74–89

[12] R. Peikert, ω-regular languages and propositional temporal logic,
preprint.

[13] D. Perrin and J.E. Pin, First order logic and star-free sets, J. Comput.

System Sci. 32, 1986, 393–406.

[14] D. Perrin, Finite automata, in Handbook of Theoret. Comput. Sci.,
Vol. B, J. van Leuwen ed., North Holland, (1990) 2–57.

25

[15] J.E. Pin, Varieties of formal languages, North Oxford Academic, Lon-
don and Plenum, New-York, 1986

[16] A. Pnueli, The temporal logic of programs, Proc. 18th FOCS, Provi-
dence, RI, (1977), 46–57.

[17] M.P. Schützenberger, On finite monoids having only trivial subgroups,
Inform. and Control 48, (1965), 190–194.

[18] A.P. Sistla and L.D. Zuck, On the eventually operator in temporal logic,
in Proceedings Second IEEE Symposium on Logic in Computer Science

(1987) 153–166.

[19] J. Stern, Complexity of some problems from the theory of automata,
Information and Control 66 (1985) 163–176.

[20] P.Stiffler, Extension of the Fondamental Theorem of Finite Semigroups,
Advances in Mathematics 11, (1973), 159–209.

[21] H. Straubing, Varieties of recognizable sets whose syntactic monoids
contain solvable groups, Ph. D. Thesis, University of California, Berke-
ley, CA, (1978).

[22] H. Straubing, Finite semigroup varieties of the form V ∗ D, J. Pure

Applied Algebra 36 (1985) 53–94.

[23] J. van Leeuwen, Graph algorithms, Chap. 10 in Handbook of Theo-
retical Computer Science, Edited by J. van Leeuwen, Elsevier Science
Publishers B.V., (1990) Vol. A, 525–631.

[24] M.Y. Vardi and P. Wolper, Applications of temporal logic: an
automata-theoretic perspective, preprint, (1985).

26

