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Abstract

This paper addresses the issue of the power-law degree distribution ob-
served in large networks and its usual justification by way of a dynamics
based on preferential attachment, applied here to an example of network
(about professional changes in the XIXth-century France). The compar-
ison of this dynamics with the one of other phenomena having the same
kind of distributions (family names and cities populations), puts into ev-
idence a phenomenon of measurable social distances which is hidden by
the preferential attachment and the degree distribution, and is much more
meaningfull in this particular case.

1 Introduction

At the end of the 20th century, an unexpected property has been discovered
to be shared by many networks, like the World-Wide Web ([BA99, KRRT99])
or the Internet topology [FFF99], seen as graphs: the degree distribution (the
distribution, for all nodes, of the number other nodes linked to them) is not a
symmetric distribution (like a Poisson distribution) but looks more like a power-
law distribution. In other words, rather than getting a significant average degree
for most of the nodes, one finds a large number of nodes having very small degree,
and some, although very few, with very high degree.

This property has since been observed on many other so-called ‘complex
networks’ (air-traffic networks, protein interactions, exchanges on peer-to-peer
networks, social networks etc. see, e.g., [New03, Wat03]). Barabasi and Albert
[BA99] and other authors [DM03, KRR+00] give a justification for it in terms
of a dynamics called ‘preferential attachment’ in which new links will go prefer-
entially towards the most ‘popular’ nodes of the network, i.e. the nodes whose
degree is higher.

Many stochastic models have been devised [Gab99, FKP02] in order to ex-
plain power-law distributions. All along the 20th century, such distributions,
studied even before by Pareto [Par96], have been shown to appear in many
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phenomena like the distribution of names or property ownership among a pop-
ulation, or the distribution of people among geographical areas ([Zip49]).

In a way, the recent discovery on networks just give another evidence for the
relevance of the notion of ‘social capital’, by showing that social relationships
are a resource with similar (unequal) properties than material resources’. Many
studies (since or even before the statement of the notion of social capital [Col88,
Bou80]) can be found, about the way this particular resource can be managed
in order to gain popularity, strategical assets, or just resources that are more
material [Boi74, Bur04].

In this paper, we compare the dynamics of different systems having the same
property of power-law distributions, tracking the similarities with the so-called
preferential attachment. This comparison leads us to ‘rip off’ from a network
of professional occupations, the part corresponding to the preferential attach-
ment, yielding an empirical measure of intrinsic distances (or rather proximities)
between the nodes of this network.

The paper is organized as follows. We will first study in Section 2, the
dynamics of the transmission of professional occupations among a population.
This dynamics is assessed with a database of wedding certificates that can be
seen as a network made of links between (fathers and sons) occupations. The
comparison is then done with the dynamics of the transmission of names among
a population (Section 3) and the migrations of people between cities (Section 4).
Trying to uniformize these three models, we get in Section 5 a network of social
proximities in which information can be read that was hidden in the initial data.

2 Occupations

The network considered here is a set of links of the form occupation of a man –
occupation of his father, coming from a database of more than 20,000 wedding
certificates (see appendix) from the XIXth-century France.

2.1 Looking for a dynamics

Figure 1 shows the distribution of the occupations in the whole population of
the database which can be approximated by a power law1.

We will now try and explain this property of the distribution by studying
the dynamics of the system. In other words, we will address the question of how
a man chooses its own occupation, knowing the occupation of his father and of
other people around him.

However, we will not consider people individually but within a given period
of time (actually the data is given within 1-year periods of time, and one can
also want to consider longer historical periods).

The dynamics will be decomposed as follows.

1. First of all, there is a non-negligeable probability that a man may ‘inherit’
the occupation of his father.

1Only the sons are considered here, to avoid counting a man once as a son and then
possibly several times as the father of several sons. Actually, a similar bias remains since
many men were to marry more than once due to a high mortality rate. Anyway, none of these
problems are likely to have a serious impact on the power-law distribution (which remains
similar whether fathers are added or not to the whole population).

2



Figure 1: Distribution of the occupations in the
database.
The Y-axis gives the probabilities, for an occupa-
tion, to have the frequency given on the X-axis.
Both scales are logarithmics.

2. Now if this is not the case, one may take as an initial guess that he
will choose an occupation with a probability following the distribution
of people among all existing occupations. This is the very principal of
preferential attachment.

2.2 Formalization

As explained above, time will be considered discrete, ranging from 1 to a given
integer T . The set of existing occupations over the whole set of time periods will
also be denoted by integers from 1 to the cardinality n of the set of occupations.

Given a time period, the data can thus be seen as a so-called mobility matrix
(see below) M ∈ Nn×n in which a row (resp. a column) numbered i gives the
distribution of occupations of all the sons (resp. fathers) having fathers (resp.
sons) with occupation i. The integer Mi,j is thus the number of sons having
occupation j and whose father has occupation i.

Definition 1 (mobility matrix) Given a discrete property ranging from 1 to
an integer n, we will call mobility matrix of size n a matrix of dimension n×n
with non-negative integer values.

Note that the time period is not written in order to simplify the notations.
In all the notations defined below, a given time period is understood.

The total number of sons (which is equal to the total number of fathers due
to the nature of the data, see note 1, p. 2) will be denoted p (for ‘population’).

The distribution of occupations among the sons (resp. fathers) will be de-
noted as a Nn vector S (resp. F) for plain values (Si is the number of sons having
occupation i) and as a [0, 1]n normalized vector ψ (resp. φ) for probabilities (ψi

is the probability for a son to have occupation i).
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The number of sons having taken the occupations of their fathers can be read
on the diagonal of the matrix M, which will be denoted D ∈ Nn as a vector, Di

being the number of sons whose occupation is i as well as their fathers.
Conversely, the number of sons having occupation i unlike their fathers is

obtained by substracting Di (the i-th diagonal value of matrix M) to the sum
of values on the i-th column of M. They will be denoted with a vector A.

The following table sums up the notations used in the paper.

domain description
T N number of time periods
n N number of existing occupations
M Nn×n the data: occupations of sons and fathers
p N population: number of sons (or fathers)
S Nn occupations of sons
ψ [0, 1]n occupations of sons (normalized)
F Nn occupations of fathers
φ [0, 1]n occupations of fathers (normalized)
D Nn same occupation between father and son
A Nn different occupations between father and son
h [0, 1]n mean heredity coefficient (see below)

2.3 Heredity

We will now look at the first part of the dynamics sketched above.

Definition 2 (heredity coefficient) Given a discrete property ranging from
1 to an integer n, and a mobility matrix M of size n, the heredity coefficient of
the (non-zero positive) value i ≤ n is the ratio between the i-th diagonal value
and the sum of the i-th column:

her(i) =
Mi,i∑n

j=1Mj,i
.

The mean heredity coefficient is the ratio between the sum of diagonal values
and the sum of all values of the matrix.

In the case of our professional mobility matrices (one matrix for each time
period), the heredity coefficient of an occupation i in a given time period is
the amount of sons having kept the occupation of their fathers among all sons
having occupation i. The mean heredity coefficient is the amount of sons having
the same occupation as their fathers.

Figure 2 shows the distribution of heredity coefficients for occupations with
at least 10 fathers and 10 sons2 in a 20-year time period, and the mean heredity
coefficient for the whole time period. Two observations can be made:

• the distribution is symmetric with a significant average value ;

• this average value is quite high, which means that the first part of the
dynamics described above is important.

2keeping all occupations leads to artifacts in the distribution (like high peaks in values 0,
1
3
, 1

2
, 2

3
, 1...) whereas leaving them aside does not change the mean value.
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Figure 2: Distribution of heredity coefficients in
time period 1843–1862.
Here the mean heredity coefficient is 0.42

2.4 Preferential attachment?

We will now look at the second part of the dynamics and focus on the sons
that have chosen another occupation than the one of their fathers. To test the
‘guess’ made above, one may look at the extent in which vector A of a given
time period is correlated with vector S of the former time period. Figure 3
shows these measures of correlations.

The correlation coefficients obtained in the previous experiment are quite
good and thus partly validate the dynamics sketched above, even though they
could perhaps be stronger, and we will come to this later.

2.5 A nice formula

It can be noted that the distributions of occupations among fathers and among
sons are highly correlated, as can be seen on Figure 4.

One can thus try and express the dynamics only in terms of the occupations
of sons and fathers in one given time period.

The description given above of the distribution of heredity coefficients of the
occupations allows us to make a first approximation, assuming all occupations
have the same heredity coefficient h which is the mean heredity coefficient.

Given an occupation i ≤ n and a time period, the following equality holds
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period correlation
1813-1822 0.761
1823-1832 0.886
1833-1842 0.858
1843-1852 0.857
1853-1862 0.82
1863-1872 0.858
1873-1882 0.798
1883-1892 0.839
1893-1902 0.811

Figure 3: Correlations between sons on all 10-year
time periods.
The value given for each period is the av-
erage correlation between the two vectors of
sons’occupations in the current time period and
in the previous one

period correlation
1801-1837 0.8
1838-1861 0.77
1862-1883 0.74
1884-1902 0.75

Figure 4: Correlations between fathers and sons in four time periods
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by definition:

Si = Mi,i +
∑

1 ≤ j ≤ n
j 6= i

Mj,i

= her(i)× Fi +
∑

1 ≤ j ≤ n
j 6= i

Mj,i

which can be approximated by:

Si ≈ hFi +
∑

1 ≤ j ≤ n
j 6= i

Fj ×
Mj,i

Fj
.

By using the vector notation, this approximation can be rewritten as follows
(product of matrices by vectors is denoted here with ×, and product by scalar
with a dot (·)):

S ≈ F × (h · I +m), (1)

where I is the identity matrix and m the following:

m =


0 M1,2

F1
· · · M1,n

F1
M2,1
F2

0 · · · M2,n

F2
...

...
...

Mn,1
Fn

Mn,2
Fn

· · · 0

 (2)

(the 0’s are only on the diagonal.)
Now, taking into account the second part of the dynamics, we can make the

following approximation for a given occupation i in a given time period:

Si ≈ hFi + ψi ×
∑

1 ≤ j ≤ n
j 6= i

Fj ,

which can again be simplified by considering as highly correlated the vectors ψ
and φ (thus probabilities of having occupation i, for a son ψi and for a father
φi):

Si ≈ hFi + φi ×
∑

1 ≤ j ≤ n
j 6= i

Fj .

This latter approximation gives the same general formula (1) as before, but
with the following matrix:

m =


0 φ2 · · · φn

φ1 0 · · · φn

...
...

...
φ1 φ2 · · · 0

 (3)
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We will look, with this formula, at two other systems in which power-law
distributions can be found.

3 Family names

The distribution of family names among a given population can usually be
approximated by a power law, as can be seen on Figure 5.

In many cultures, family names are transmitted in the following way :

• men and unmaried women get most of the time the name of their fathers ;

• a married woman takes the name of her husband.

This leads to the following dynamics, for each generation:

• more than half of the people keep the name of their fathers ;

• the rest of the people get a name with a probability following the distri-
bution of names among the whole population.

Here equation 1 can still approximate the dynamics of the system, with a
new meaning for F and S (names of fathers and children rather than occupations
of fathers and sons).

4 Cities

The distribution of the dimensions of cities (or geographic areas) in terms of
their population can also be approximated by a power law, as can be seen in
Figure 6.

Studies on migrations have shown that the intensity of migration between
one city and another depends on both the population of the two cities and
on the distance between them. This idea was formalized with the following
so-called gravitational law [You28, Car58, Zip49, Leb00] (stated here with the
same notations as in the case of occupations in order to stress the similarities
between the two cases).

Property 1 (gravitational law) Let 1, . . . , n be a set of cities, F∈Nn be the
vector of their populations in the beginning of a given time period, and let d(i, j)
denote an (Euclidean) distance between i and j. Then there is a factor k ∈ R
(depending on the time period and on the distance used) such that the number
of people leaving a city i ≤ n for another city j ≤ n, j 6= i, can be approximated
by:

µ(i, j) = k · Fi · Fj

d(i, j)
.

The dynamics here is a bit more complex than in the case of family names.
In each period of time, we have the following two cases.

• In each city, there is a certain (important) proportion of people remaining
in the same city as in the former period.
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Figure 5: Distribution of Florentine names in
1427, 1810 and 2001.
The distribution charts are read the same way as
in Figure 1.
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Figure 6: Population of Tuscan districts in 1810,
1951 and 2001.
Here, the charts give the size of the first, then
second, then . . . districts (that are actual towns
in the 20th century).
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• People moving from a city to another one ‘choose’ the new one with a
probability given by the so-called gravitational law stated above, depend-
ing on the distance and on the distribution of people among all cities.

According to the gravitational law, the number of people coming to a given
city i among n cities during a given time period can be approximated by the
following value:

in(i) = k ·
∑

1 ≤ j ≤ n
j 6= i

FjFi

d(i, j)

=
k

p
·

∑
1 ≤ j ≤ n
j 6= i

Fj ·
φi

d(i, j)
,

where d is a distance function and k ∈ R a constant depending on the time
period and on the distance function.

Equation 1 can still sketch the process (with, again, a new meaning for F
and S as the distribution of people in a city at the beginning and at the end of
a time period), but with the following matrix:

m = k′ ·


0 φ2

d(1,2) · · · φn

d(1,n)
φ1

d(2,1) 0 · · · φn

d(2,n)

...
...

...
φ1

d(n,1)
φ2

d(n,2) · · · 0

 , (4)

k′ ∈ R depending on the time period and on the distance d used.

5 A network of social proximities

5.1 Distances between occupations?

Back to the professional occupations, the idea of the distances is obviously rel-
evant. Of course, the probability that a man will choose a given occupation
depends not only on the amount of people having this occupation. It depends
also strongly on the proximity of this occupation to his social status and envi-
ronment.

Comparison of matrices (2) and (4) yields a way to ‘extract’ from the data
of professional mobilities (a kind of) distances between occupations that can be
computed as follows, given a time period:

dist(i, j) =
φjFi

Mi,j
,

provided Mi,j 6= 0.
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5.2 Proximities rather than distances

Note that another way to understand the definition of dist() is to compare
matrices (3) and (2): dist(i, j) is indeed a measure of the accuracy of the ap-
proximation made using preferential attachment. A value much greater than
1 means that the effective value found in the data matrix is much less than
the one expected with the approximation, whereas a value much smaller than
1 (always nonnegative however), means on the contrary that the effective value
is much greater than expected.

Actually, this latter case is the most relevant one since our matrices are
sparse (the data as well as the approximation matrices) and very low values are
common (especially 0 in the data). The greater a value is, the more statistically
significant it is. It is thus more relevant to talk about proximities rather than
distances and invert the formula by defining the following function:

prox(i, j) =
Mi,j

φjFi
,

whose higher values will stress professional mobilities that are more often ob-
served than was expected.

Note that using this new definition solves two formal incongruities of the
definition of dist(): first, dist() is not a distance. Second, this enables us to use
0 for Mi,j . A proximity value of 0 between i and j just means that no son with
occupation j has been found whose father has occupation i.

5.3 An example

When calculating the proximities matrix for a given time period (namely 1843–
1852), we get the (far) highest values for ‘self-loops’ of the network, i.e. diagonal
values3, which is a confirmation of the importance of the heredity part in the
dynamics.

Putting aside diagonal values, we also get high values for some links whose
‘destinations’ are occupations typical of the beginning of a career (and thus much
more common among sons than among fathers). This is of course the limitation
of the approximation made by using φ rather than ψ (see Section 2.5). Although
highly correlated, these two distributions (occupations of fathers and of sons)
much differ in some points like the ones described here. As an example, in the
considered time period, servants are only 7 among fathers while 108 among sons.

However, looking closer to the links having servant as their destination, we
can see an interesting phenomenon. The greatest proximity value is for the
link coming from day labourer, which is an occupation with quite the same
probability among fathers and sons. The proximity value of this link is almost
twice as high as the next link in the list (in proximity inverse order), coming
from ploughman. Moreover, the link day labourer – servant is the far most
common link among those coming from day labourer.

One could thus make the following conjecture: this link is a kind of ‘hered-
itary’ link, in the sense that day labourer might be the usual evolution of a
servant when he gets to the age of his father.

3Of course diagonal values are not supposed to be considered here, but applying the formal
definition to them can help studying its relevance.
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This ‘naive’ remark coming only from the observation of the data meets
issues addressed in existing studies about servants [Sar01, Sal04, Sal05].

6 Conclusion

The example given in the last section illustrates the kind of usage that can be
done of the function of proximity, whose aim is to put into evidence attractions
between nodes of a network that are hidden by high numbers.

This technique can be used on many valued networks: the WWW to find out
proximities between websites taking into account their popularities (the number
of links from a website s to another one t can be quite low, but be considered
high if t is almost unknown of the rest of the web), e-mail exchanges between
individuals, data exchange on peer-to-peer networks etc.
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