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Abstract

We study the stability of finite volume schemes for symmetric hyperbolic systems in
two space dimensions, with the Lax-Friedrichs flux. We first show a sufficient condition for
the L2-stability of the scheme on a general triangulation. Then we show that this stability
condition can be improved when the triangulation is composed of equilateral triangles.

AMS subject classification: 65M12, 35L45.
Keywords: Hyperbolic systems, finite volume schemes, stability, Lax-Friedrichs flux.

1 Introduction, main results

We consider a linear symmetric hyperbolic system in two space dimensions:

{
∂tu + A1 ∂x1

u + A2 ∂x2
u = 0 , t ≥ 0 , x ∈ R2 ,

u|t=0
= u0 , x ∈ R2 ,

(1)

where A1, and A2 are square d × d matrices with real coefficients (d ≥ 1). We assume that A1,
and A2 are symmetric, so that the Cauchy problem (1) is well-posed for initial data u0 ∈ L2(R2),
see e.g. [5]. Moreover, the unique solution to (1) in C([0,+∞[;L2(R2)) satisfies

∀ t ≥ 0 , ‖u(t)‖L2(R2) = ‖u0‖L2(R2) . (2)

We introduce a finite volume approximation of (1), with a modified Lax-Friedrichs flux. (We
refer to [1, 2, 4] for a general presentation of finite volume schemes for hyperbolic conservation
laws.) Let T denote a triangulation of the plane R2, that is composed of polygons. For all
element K ∈ T , N (K) denotes the set of neighbors of K. If L ∈ N (K), then νK,L denotes
the outgoing normal vector of K on the edge K ∩ L. In all what follows, we denote m(K) the
area of the polygon K, m(∂K) its perimeter, and m(K ∩L) the length of the edge K ∩L when
L ∈ N (K). We assume that the triangulation T satisfies

sup
K∈T

m(∂K)

m(K)
< +∞ . (3)

For all vector ν = (ν1, ν2) ∈ R2, we define the matrix:

A(ν) := ν1 A1 + ν2 A2 .
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Let D be a positive number, and ∆t > 0 be a time step. Then the finite volume approximation
v of the solution u to the Cauchy problem (1) is defined as follows:

∀n ∈ N , ∀K ∈ T , ∀ (t, x) ∈ [n∆t, (n + 1)∆t[×K , v(t, x) = vn
K ,

where, for all K ∈ T :





vn+1
K := vn

K − ∆t

m(K)

∑

L∈N (K)

m(K ∩ L)

(
1

2
A(νK,L)(vn

K + vn
L) − D(vn

L − vn
K)

)
, n ∈ N ,

v0
K :=

1

m(K)

∫

K

u0(x) dx .

(4)

The aim of this work is to derive sufficient conditions on D, and ∆t that ensure the stability
of the scheme (4) in the space L2(R2). (In view of the conservation property (2), L2(R2) seems
to be the natural framework for this study.) On general triangulations, the way to prove stability
is the so-called energy method. This was already used in [6] in the case of the Godunov flux.
However, for triangulations that are invariant under sufficiently many translations, the optimal
stability criterion follows from Fourier analysis (as for finite difference schemes on cartesian
grids). In this case, stability of (4) reduces to the uniform power boundedness of an appropriate
symbol (that depends on D, ∆t, the triangulation, and on wave numbers ξ1, ξ2). The derivation,
and the analysis of this symbol is the major task of this work.

Let us now state our results. Our first result deals with the case of a general triangulation,
that is only assumed to satisfy (3):

Theorem 1. Assume that the triangulation T satisfies (3). Define

ρmax := sup
K∈T

sup
L∈N (K)

ρ
(
A(νK,L)

)
,

where ρ denotes the spectral radius of a square matrix (with real or complex coefficients). If ∆t,
and D satisfy the following inequalities:

∆t ρmax sup
K∈T

m(∂K)

m(K)
≤ 1 ,

1

2
ρmax ≤ D ≤ 1

∆t
inf

K∈T

m(K)

m(∂K)
− 1

2
ρmax , (5)

then the finite volume scheme (4) is stable in L2(R2). More precisely, the norm ‖v(t)‖L2(R2) is
a nonincreasing function of t, and

∀ t ≥ 0 , ‖v(t)‖L2(R2) ≤ ‖u0‖L2(R2) .

Observe that the inequalities of (5) make sense because of (3). It is rather remarkable that
our condition on the time step ∆t is the same as the stability condition that was found in [6] for
the finite volume scheme with the Godunov flux. The result is surprising since it is known that
on cartesian grids, the stability conditions are different for the modified Lax-Friedrichs scheme
and for the Godunov scheme. This phenomenon tends to indicate that the energy method does
not yield optimal results when the triangulations have symmetries.

Indeed, the limitations (5) can be improved when the triangulation is composed of equilateral
triangles, and is oriented as in figure 1. Observe that the triangulation of figure 1 is the only
triangulation composed of equilateral triangles (up to rotations and translations). The length of
the edges of each equilateral triangle is denoted h. For the triangulation of figure 1, we observe
that (5) reads:

4
√

3
∆t

h
ρmax ≤ 1 ,

1

2
ρmax ≤ D ≤ h

4
√

3∆t
− 1

2
ρmax ,
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with

ρmax = max

(
ρ(A1), ρ

(1
2
A1 +

√
3

2
A2

)
, ρ
(1
2
A1 −

√
3

2
A2

)
)

.

We are going to prove the following result:

Theorem 2. Assume that the triangulation T is composed of equilateral triangles, whose edges
have length h, and is oriented as in figure 1. If ∆t, and D satisfy the following inequalities:

2
√

3
∆t

h
max(ρ(A1), ρ(A2)) ≤ 1 ,

√
3

∆t

h
max(ρ(A1)

2, ρ(A2)
2) ≤ D ≤ h

4
√

3∆t
, (6)

then the finite volume scheme (4) is stable in L2(R2). More precisely, the following estimate
holds:

∀ t ≥ 0 , ‖v(t)‖L2(R2) ≤ 2 ‖u0‖L2(R2) .

x1

x2

k = 0

k = 1

j = 0
j = 1

j = 2

Figure 1: Triangulation with equilateral triangles

The rest of this paper is devoted to the proof of Theorems 1, and 2. In section 2, we show
Theorem 1 by using the energy method. The analysis closely follows [6]. In section 3, we
show Theorem 2. The analysis is divided into several steps. First we compute explicitely the
translations that leave the triangulation invariant. We also introduce the decomposition of grid
functions into their “even”, and “odd” components. Then we show how the Fourier transform
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reduces the investigation of stability to the uniform power boundedness of a suitable symbol.
At last, we prove the uniform power boundedness of this symbol under the conditions (6).

In all this article, 〈x; y〉 denotes the standard hermitian product of two vectors x, y ∈ Cp,
while ‖ · ‖ denotes both the associated norm on Cp, and the induced norm on the set of square
p × p matrices (with complex coefficients). The notation is the same for any integer p. When
vectors have real components, this definition coincides with the standard scalar product, and
norm on Rp. Eventually, I denotes the identity matrix (independently of its dimension).

For all integer n, vn is the mesh function that equals vn
K on the polygon K.

2 Stability for a general triangulation

We consider the scheme (4) on a triangulation T that satisfies (3). We also assume that the
inequalities (5) are satisfied. To show that the function (t 7→ ‖v(t)‖L2(R2)) is nonincreasing, it
is sufficient to prove that the sequence (‖vn‖L2(R2))n∈N is nonincreasing, or equivalently

∀n ∈ N ,
∑

K∈T

m(K) ‖vn+1
K ‖2 ≤

∑

K∈T

m(K) ‖vn
K‖2 .

Let n ∈ N, and K ∈ T . Following the approach of [6], we decompose the vector vn+1
K as the

following convex combination:

vn+1
K =

∑

L∈N (K)

m(K ∩ L)

m(∂K)
vn+1
K,L , vn+1

K,L := vn
K +

m(∂K)∆t

2m(K)

(
2D I − A(νK,L)

)
(vn

L − vn
K) . (7)

The decomposition (7) can be obtained from (4) by using the well-known relation:

∑

L∈N (K)

m(K ∩ L)A(νK,L) = A


 ∑

L∈N (K)

m(K ∩ L) νK,L


 = 0 . (8)

Once the vector vn+1
K is written as the convex combination (7), we can use Cauchy-Schwarz’

inequality, and derive:

‖vn+1
K ‖2 ≤

∑

L∈N (K)

m(K ∩ L)

m(∂K)
‖vn+1

K,L‖2 . (9)

It is thus sufficient to estimate the norm of each vector vn+1
K,L , then (9) will yield an upper bound

for ‖vn+1
K ‖2.

Estimate of vn+1
K,L . Defining the real symmetric matrix

BK,L :=
m(∂K)∆t

2m(K)

[
2D I − A(νK,L)

]
, (10)

the vector vn+1
K,L reads

vn+1
K,L = vn

K + BK,L(vn
L − vn

K) .

We thus compute:

‖vn+1
K,L‖2 − ‖vn

K‖2 = ‖vn+1
K,L − vn

K‖2 + 2 〈vn
K ; vn+1

K,L − vn
K〉

= ‖BK,L(vn
L − vn

K)‖2 + 2 〈vn
K ;BK,L(vn

L − vn
K)〉

= 〈vn
L − vn

K ;B2
K,L(vn

L − vn
K)〉 − 2 〈vn

K ;BK,Lvn
K〉 + 2 〈vn

K ;BK,Lvn
L〉 .
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We now use the relation

2 〈vn
K ;BK,Lvn

L〉 = 〈vn
K ;BK,Lvn

K〉 + 〈vn
L;BK,Lvn

L〉 − 〈vn
L − vn

K ;BK,L(vn
L − vn

K)〉 ,

and obtain

‖vn+1
K,L‖2 − ‖vn

K‖2 = 〈vn
L − vn

K ; (B2
K,L − BK,L)(vn

L − vn
K)〉 + 〈vn

L;BK,Lvn
L〉 − 〈vn

K ;BK,Lvn
K〉 . (11)

Using the definition (10), and the assumption (5), we get

BK,L ≥ 0 , BK,L − I ≤ 0 ,

so the matrix B2
K,L − BK,L is a nonpositive symmetric matrix. Consequently, (11) yields the

following estimate of vn+1
K,L :

‖vn+1
K,L‖2 − ‖vn

K‖2 ≤ 〈vn
L;BK,Lvn

L〉 − 〈vn
K ;BK,Lvn

K〉 . (12)

End of the proof of Theorem 1. We use (12) in the inequality (9), and then multiply by
m(K):

m(K) ‖vn+1
K ‖2−m(K) ‖vn

K‖2 ≤
∑

L∈N (K)

m(K)m(K ∩ L)

m(∂K)

{
〈vn

L;BK,Lvn
L〉−〈vn

K ;BK,Lvn
K〉
}

. (13)

Using once again the relation (8), and the definition (10) of BK,L, we compute

∑

L∈N (K)

m(K)m(K ∩ L)

m(∂K)
〈vn

K ;BK,Lvn
K〉 =

∆t

2

〈
vn
K ;

∑

L∈N (K)

m(K ∩ L) (2D I − A(νK,L)) vn
K

〉

=
∆t

2
〈vn

K ; 2m(∂K)D vn
K〉

=
∆t

2

〈
vn
K ;

∑

L∈N (K)

m(K ∩ L) (2D I + A(νK,L)) vn
K

〉

=
∆t

2

∑

L∈N (K)

m(K ∩ L) 〈vn
K ; (2D I − A(νL,K)) vn

K〉 ,

where, for the last equality, we have used νK,L = −νL,K . Using this computation in (13), we get

m(K) ‖vn+1
K ‖2 − m(K) ‖vn

K‖2

≤ ∆t

2

∑

L∈N (K)

m(K ∩ L)
{
〈vn

L; (2D I − A(νK,L))vn
L〉 − 〈vn

K ; (2D I − A(νL,K))vn
K〉
}

. (14)

Consequently, when we sum the inequalities (14) over the elements K of the triangulation, we
end up with ∑

K∈T

m(K) ‖vn+1
K ‖2 −

∑

K∈T

m(K) ‖vn
K‖2 ≤ 0 .

This shows that the function (t 7→ ‖v(t)‖L2(R2)) is nonincreasing on R+. To complete the proof
of Theorem 1, we observe that

‖v0
K‖2 =

1

m(K)2

∥∥∥∥
∫

K

u0(x) dx

∥∥∥∥
2

≤ 1

m(K)

∫

K

‖u0(x)‖2 dx ,

and summing over K ∈ T , we end up with

‖v0‖2
L2(R2) =

∑

K∈T

m(K) ‖v0
K‖2 ≤ ‖u0‖2

L2(R2) . (15)

The proof of Theorem 1 is thus complete.
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3 Stability for a regular triangulation

In this section, we always assume that the triangulation T is composed of equilateral triangles,
whose edges have length h, and is oriented as in figure 1. We also assume that the inequalities
(6) hold. Observe that the inequality (15) still holds.

3.1 A few properties of the triangulation

The first task is to number the triangles as shown in figure 1: for all (j, k) ∈ Z2, Tj,k denotes the
unique element of T that is included in the rectangle [jh

√
3/2, (j +1)h

√
3/2]× [(k − 1)h/2, (k +

1)h/2]. The center of the triangle Tj,k is easily computed, and we obtain:




Tj,k = T0,0 +

h

2
(j
√

3, k) , if j + k is even,

Tj,k = T−1,0 +
h

2
((j + 1)

√
3, k) , if j + k is odd.

The triangulation T is thus invariant under the translations

x ∈ R2 7−→ x + (0, h) , and x ∈ R2 7−→ x + (h
√

3, 0) .

We define:

Z2
e := {(j, k) ∈ Z2/j + k is even } , Z2

o := {(j, k) ∈ Z2/j + k is odd } .

Let w denote a mesh function, that is a function that is constant on each triangle Tj,k, and
equals wj,k on Tj,k. We adopt the following notation:

Ew (x) :=

{
wj,k , if x ∈ Tj,k, and (j, k) ∈ Z2

e,

0 , otherwise,

and

Ow (x) :=

{
wj,k , if x ∈ Tj,k, and (j, k) ∈ Z2

o,

0 , otherwise.

When w ∈ L1(R2), that is, when the sum
∑

(j,k) ‖wj,k‖ is finite, the Fourier transform of
Ew, and Ow are given by:

Êw (ξ) =
∑

(j,k)∈Z2
e

exp

(
−ijξ1

h
√

3

2
− ikξ2

h

2

)
wj,k

∫

T0,0

exp(−i〈x; ξ〉) dx ,

Ôw (ξ) =
∑

(j,k)∈Z2
o

exp

(
−i(j + 1)ξ1

h
√

3

2
− ikξ2

h

2

)
wj,k

∫

T
−1,0

exp(−i〈x; ξ〉) dx .

Both series are normally convergent for all ξ ∈ R2. For later use, we define the following function:

∀ ξ ∈ R2 , a(ξ) :=

∫

T0,0

exp(−i〈x; ξ〉) dx . (16)

Observe that T−1,0 is the symmetric of T0,0 with respect to the origin (see figure 1), so by a
change of variables we get

∀ ξ ∈ R2 ,

∫

T
−1,0

exp(−i〈x; ξ〉) dx = a(ξ) .
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This simplifies the expression of the Fourier transform of Ew, and Ow:

Êw (ξ) = a(ξ)
∑

(j,k)∈Z2
e

exp

(
−ijξ1

h
√

3

2
− ikξ2

h

2

)
wj,k ,

Ôw (ξ) = a(ξ)
∑

(j,k)∈Z2
o

exp

(
−i(j + 1)ξ1

h
√

3

2
− ikξ2

h

2

)
wj,k .

(17)

These expressions hold as long as the mesh function w belongs to L1(R2).
When the mesh function w belongs to L2(R2), the functions Ew, and Ow are orthogonal in

L2(R2), and Plancherel’s theorem yields

‖w‖2
L2(R2) = ‖Ew‖2

L2(R2) + ‖Ow‖2
L2(R2) =

1

(2π)2

(
‖Êw‖2

L2(R2) + ‖Ôw‖2
L2(R2)

)

=
1

(2π)2

∥∥∥∥∥

(
Êw

Ôw

)∥∥∥∥∥

2

L2(R2)

.

Consequently, in order to estimate a mesh function w in L2(R2), we only need to estimate the
Fourier transform of its “even”, and “odd” components.

3.2 The symbol of the finite volume scheme

For later use, we introduce the notations:

λ :=
∆t

h
, α :=

4√
3

λD . (18)

From now on, vn
j,k denotes the vector vn

K when K is the triangle Tj,k. With this convention, the
finite volume method (4) reads:





vn+1
j,k = vn

j,k −
4λ√

3

∑

Tl,m∈N (Tj,k)

(
1

2
A(νTj,k ,Tl,m

)(vn
j,k + vn

l,m) − D(vn
l,m − vn

j,k)

)
, n ∈ N ,

v0
j,k =

4

h2
√

3

∫

Tj,k

u0(x) dx .

For the triangulation of figure 1, the neighbors of a triangle Tj,k, and the outgoing normal vectors
are easily computed. For instance, if j +k is even, the neighbors of Tj,k are Tj+1,k, Tj,k+1, Tj,k−1,
and the corresponding outgoing normal vectors are (1, 0), (−1,

√
3)/2, and (−1,−

√
3)/2. There

are analogous formulae when (j, k) ∈ Z2
o. The scheme (4) thus reduces to:

vn+1
j,k = (1 − 3α)vn

j,k + α (vn
j+1,k + vn

j,k−1 + vn
j,k+1)

− 2λ√
3

A1

(
vn
j+1,k −

1

2
(vn

j,k−1 + vn
j,k+1)

)
− λA2(v

n
j,k+1 − vn

j,k−1) , if (j, k) ∈ Z2
e, (19)

vn+1
j,k = (1 − 3α)vn

j,k + α (vn
j−1,k + vn

j,k−1 + vn
j,k+1)

− 2λ√
3

A1

(
1

2
(vn

j,k−1 + vn
j,k+1) − vn

j−1,k

)
− λA2(v

n
j,k+1 − vn

j,k−1) , if (j, k) ∈ Z2
o. (20)
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Using (19), and (20), we are going to compute the symbol of the finite volume scheme. More
precisely, for almost every ξ ∈ R2, we want to compute a matrix G(ξ) that satisfies

(
Êvn+1(ξ)

Ôvn+1(ξ)

)
= G(ξ)

(
Êvn(ξ)

Ôvn(ξ)

)
.

Observe that, thanks to (15), we have v0 ∈ L2(R2), and a direct induction yields vn ∈ L2(R2)
for all n ∈ N. This makes the use of the Fourier transform legitimate.

The existence, and the exact expression of the amplification matrix G(ξ) will be derived from
the following result:

Lemma 1. Let n ∈ N. Then for almost every ξ = (ξ1, ξ2) ∈ R2, there exists a real number ϑ so
that

Êvn+1(ξ) = (1 − 3α)Êvn(ξ) + α exp(iϑ)

(
exp(iξ1

h
√

3

2
) + 2 cos(ξ2

h

2
)

)
Ôvn(ξ)

− 2λ exp(iϑ)

[
1√
3

(
exp(iξ1

h
√

3

2
) − cos(ξ2

h

2
)
)
A1 + i sin(ξ2

h

2
)A2

]
Ôvn(ξ) , (21)

and

Ôvn+1(ξ) = (1 − 3α)Ôvn(ξ) + α exp(−iϑ)

(
exp(−iξ1

h
√

3

2
) + 2 cos(ξ2

h

2
)

)
Êvn(ξ)

+ 2λ exp(−iϑ)

[
1√
3

(
exp(−iξ1

h
√

3

2
) − cos(ξ2

h

2
)
)
A1 − i sin(ξ2

h

2
)A2

]
Êvn(ξ) . (22)

Proof. We shall give a detailed proof of (21), and leave the proof of (22) to the interested reader.
We assume first of all that the mesh function vn belongs to L1(R2) ∩ L2(R2), and consequently
vn+1 ∈ L1(R2) ∩ L2(R2). We may thus use (17):

Êvn+1(ξ) = a(ξ)
∑

(j,k)∈Z2
e

exp

(
−ijξ1

h
√

3

2
− ikξ2

h

2

)
vn+1
j,k . (23)

Using (19) in (23), we first obtain:

Êvn+1(ξ) = (1−3α) Êvn(ξ)+α a(ξ)
∑

(j,k)∈Z2
e

exp

(
−ijξ1

h
√

3

2
− ikξ2

h

2

)
(vn

j+1,k+vn
j,k−1+vn

j,k+1)

− 2λ√
3

a(ξ)
∑

(j,k)∈Z2
e

exp

(
−ijξ1

h
√

3

2
− ikξ2

h

2

)
A1

(
vn
j+1,k −

1

2
(vn

j,k−1 + vn
j,k+1)

)

− λa(ξ)
∑

(j,k)∈Z2
e

exp

(
−ijξ1

h
√

3

2
− ikξ2

h

2

)
A2 (vn

j,k+1 − vn
j,k−1) . (24)

Observe now that for all ξ ∈ R2, there exists a real number ϕ that depends on ξ, such that

a(ξ) = exp(iϕ) a(ξ) . (25)
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The computation of ϕ seems delicate in the general case, see (16), but the point is that we shall
not need the exact expression. Using the relation (25), an intermediate calculation gives the
following equalities:

a(ξ)
∑

(j,k)∈Z2
e

exp

(
−ijξ1

h
√

3

2
− ikξ2

h

2

)
vn
j+1,k

= exp(iϕ) a(ξ)
∑

(j,k)∈Z2
e

exp

(
−ijξ1

h
√

3

2
− ikξ2

h

2

)
vn
j+1,k

= exp(iϕ + iξ1h
√

3) a(ξ)
∑

(j,k)∈Z2
e

exp

(
−i(j + 2)ξ1

h
√

3

2
− ikξ2

h

2

)
vn
j+1,k

= exp(iϕ + iξ1h
√

3) a(ξ)
∑

(`,k)∈Z2
o

exp

(
−i(` + 1)ξ1

h
√

3

2
− ikξ2

h

2

)
vn
`,k

= exp(iϕ + iξ1h
√

3) Ôvn(ξ) . (26)

Similarly, we can obtain the equalities

a(ξ)
∑

(j,k)∈Z2
e

exp

(
−ijξ1

h
√

3

2
− ikξ2

h

2

)
vn
j,k+1 = exp

(
iϕ + iξ1

h
√

3

2
+ iξ2

h

2

)
Ôvn(ξ) ,

a(ξ)
∑

(j,k)∈Z2
e

exp

(
−ijξ1

h
√

3

2
− ikξ2

h

2

)
vn
j,k−1 = exp

(
iϕ + iξ1

h
√

3

2
− iξ2

h

2

)
Ôvn(ξ) .

(27)

For all ξ ∈ R2, we define

ϑ := ϕ + ξ1
h
√

3

2
, (28)

with ϕ defined by (25). Then we use (26), and (27) in (24). With the notation (28), we obtain
exactly the relation (21).

When vn belongs to L2(R2), we approximate vn by a sequence of mesh functions that belong
to L1(R2) ∩ L2(R2), and use the continuity of the Fourier transform in L2(R2).

The equalities (21), (22), can be written in a compact form, up to the introduction of a few
notations:

z := exp(iξ1
h
√

3

2
) + 2 cos(ξ2

h

2
) ,

S :=
1√
3

[
exp(iξ1

h
√

3

2
) − cos(ξ2

h

2
)
]
A1 + i sin(ξ2

h

2
)A2 , (29)

G(ξ) :=

(
(1 − 3α)I α exp(iϑ)zI

α exp(−iϑ)zI (1 − 3α)I

)
+

(
0 −2λ exp(iϑ)S

2λ exp(−iϑ)S∗ 0

)
.

The size of the matrix G(ξ) is 2d× 2d. With the notations (29), the relations (21), and (22) can
be rewritten as (

Êvn+1(ξ)

Ôvn+1(ξ)

)
= G(ξ)

(
Êvn(ξ)

Ôvn(ξ)

)
. (30)

The induction relation (30) immediately implies:

∀n ∈ N ,

(
Êvn(ξ)

Ôvn(ξ)

)
= G(ξ)n

(
Êv0(ξ)

Ôv0(ξ)

)
.
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Observing that Plancherel’s Theorem gives

2π ‖vn‖L2(R2) =

∥∥∥∥∥

(
Êvn

Ôvn

)∥∥∥∥∥
L2(R2)

=

∥∥∥∥∥G
n

(
Êv0

Ôv0

)∥∥∥∥∥
L2(R2)

, (31)

we conclude that the L2(R2) stability of the finite volume scheme (4) is equivalent to the uniform
power boundedness of the symbol G(ξ). In the next paragraph, we shall see that the conditions
(6) yield the uniform bound 2, which gives

2π ‖vn‖L2(R2) ≤ 2

∥∥∥∥∥

(
Êv0

Ôv0

)∥∥∥∥∥
L2(R2)

= 2 (2π) ‖v0‖L2(R2) ≤ 2 (2π) ‖u0‖L2(R2) ,

where we have used (15). It is therefore sufficient to derive the uniform bound 2 for ‖G(ξ)n‖ to
prove Theorem 2.

3.3 Uniform power boundedness of the symbol

The uniform bound for the powers of the symbol will follow from the general result:

Proposition 1. Let T be a square p × p matrix, with complex coefficients, that satisfies

∀X ∈ Cp , |〈TX;X〉| ≤ ‖X‖2 . (32)

Then the matrix T satisfies
∀n ∈ N , ‖T n‖ ≤ 2 .

The proof of Proposition 1 may be found in [3]. To end the proof of Theorem 2, we are going
to verify that for all ξ ∈ R2, the matrix G(ξ) satisfies the property (32). This verification relies
on a simple inequality:

Lemma 2. Let η1, η2, µ1, µ2 ∈ R, and assume that we have

12µ2
1 ≤ α , 4µ2

2 ≤ α ,

where α > 0 is defined by (18). Then the following inequality holds:

α

3

{
(cos η1 + 2 cos η2)

2 + sin2 η1

}
+ 8µ2

1

{
(cos η1 − cos η2)

2 + sin2 η1

}
+ 8µ2

2 sin2 η2 ≤ 3α .

Proof. Let us denote

I :=
α

3

{
(cos η1 + 2 cos η2)

2 + sin2 η1

}
+ 8µ2

1

{
(cos η1 − cos η2)

2 + sin2 η1

}
+ 8µ2

2 sin2 η2 .

Then under the assumptions of Lemma 2, we have

I =
α

3

{
1 + 4 cos η1 cos η2 + 4 cos2 η2

}
+ 8µ2

1

{
1 − 2 cos η1 cos η2 + cos2 η2

}
+ 8µ2

2 sin2 η2

=
α

3
+ 8µ2

1 +

(
4α

3
− 16µ2

1

)
cos η1 cos η2 +

(
4α

3
+ 8µ2

1

)
cos2 η1 + 8µ2

2 sin2 η2

≤ α

3
+ 8µ2

1 +

(
2α

3
− 8µ2

1

)
(cos2 η1 + cos2 η2) +

(
4α

3
+ 8µ2

1

)
cos2 η1 + 8µ2

2 sin2 η2

=
α

3
+ 8µ2

1 sin2 η1 +
2α

3
cos2 η1 + 2α cos2 η1 + 8µ2

2 sin2 η2 ≤ α

3
+

2α

3
+ 2α = 3α ,

which proves the Lemma.

10



We note that the inequalities (6) can be rewritten in terms of the numbers λ, and α:

4λ2 ρ(A1)
2 ≤ α , 4λ2 ρ(A2)

2 ≤ α , 3α ≤ 1 . (33)

Let X ∈ C2d be a unit vector. We split the vector X in

X =

(
Xe

Xo

)
, Xe, Xo ∈ Cd , ‖Xe‖2 + ‖Xo‖2 = 1 .

Using the definition (29), G(ξ) is decomposed as the sum of a hermitian matrix and a skew-
hermitian matrix. We compute

〈G(ξ)X;X〉 = 1 − 3α + 2α Re (z exp(iϑ)〈Xo;Xe〉) − 4iλ Im (exp(iϑ)〈SXo;Xe〉) ,

which yields

|〈G(ξ)X;X〉|2 =

[
1 − 3α + 3α

2

3
Re (z exp(iϑ)〈Xo;Xe〉)

]2

+ 16λ2
[
Im (exp(iϑ)〈SXo;Xe〉)

]2
.

Observing that 1 − 3α ≥ 0 because of (33), Cauchy-Schwarz’ inequality gives

|〈G(ξ)X;X〉|2 ≤ 1 − 3α +
4α

3

[
Re (z exp(iϑ)〈Xo;Xe〉)

]2
+ 16λ2 ‖Xe‖2 ‖Xo‖2 ‖S‖2

≤ 1 − 3α +
4α

3
|z|2 ‖Xe‖2 ‖Xo‖2 + 16λ2‖Xe‖2 ‖Xo‖2 ‖S‖2

≤ 1 − 3α +
α

3
|z|2 + 4λ2 ‖S‖2 .

Eventually, we use the definition (29) of z, and S. We have

|z|2 =

(
cos(ξ1

h
√

3

2
) + 2 cos(ξ2

h

2
)

)2

+ sin2(ξ1
h
√

3

2
) ,

and

4λ2 ‖S‖2 ≤ 4

(
λ√
3

∣∣∣∣∣exp(iξ1
h
√

3

2
) − cos(ξ2

h

2
)

∣∣∣∣∣ ‖A1‖ + λ| sin(ξ2
h

2
)| ‖A2‖

)2

≤ 8µ2
1

∣∣∣∣∣exp(iξ1
h
√

3

2
) − cos(ξ2

h

2
)

∣∣∣∣∣

2

+ 8µ2
2 sin2(ξ2

h

2
) ,

where we have set

µ2
1 :=

λ2 ‖A1‖2

3
=

λ2 ρ(A1)
2

3
, µ2

2 := λ2 ‖A2‖2 = λ2 ρ(A2)
2 .

Using (33), we have 12µ2
1 ≤ α, and 4µ2

2 ≤ α. Therefore, we can apply Lemma 2 with η1 =
ξ1h

√
3/2, and η2 = ξ2h/2; we obtain

α

3
|z|2 + 4λ2 ‖S‖2 ≤ 3α .

This shows that the symbol G(ξ) satisfies the property (32). Thanks to Proposition 1, the norm
‖G(ξ)n‖ is bounded by 2 for all n, and for all ξ. Using this bound in (31), and then applying
Plancherel’s Theorem, we can complete the proof of Theorem 2.
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