INTRODUCTION

The predicted calculations of the mechanical systems or structures in the design phase or before the design phase present often differences between results of the mathematical models and tests. These differences come mainly from the complex phenomenon badly modeled (law of material behavior, friction, slipping and the junctions,....), the uncertainties on the geometric and mechanical characteristics (geometric parameters, characteristics of the material, boundary conditions,...) and the non-linearities which are not takes in account at the interfaces between sub-structures. The modal analysis is wide-spread at the analytical and the experimental levels in the study of the dynamic mechanical structure. However it remains often limited only to the linear cases. Therefore, the extension of modal synthesis methods to the non-linear structures is very useful in the improvement of the survey of the dynamic behavior of the non-linear structures through the consideration of the various sources of non-linearities. In addition the consideration of the influence of the modification parameters uncertainties permits to improve of advantage the prediction of the dynamic behavior of the linear and non-linear structures. On the one hand, one can propose to exploit the SFEM that consists in regrouping the classic analysis by Finite Elements and the statistical analysis.

The stochastic methods permit to analyze the variability of the dynamic response of systems from the uncertain parameters properties of the structure. Moreover, the stochastic analysis methods of the structures are generally classified in three categories: the Monte Carlo simulation methods that are often considered as of reference methods, the perturbation methods that are based on the expansion of Taylor series of the responses around the means of the uncertain variables [START_REF] Kleiber | The stochastic finite element method, basic perturbation technique and computer implementation[END_REF] and the spectral methods that use basis functions of the Hilbert space associated to the uncertain problems; these functions are often the orthogonal polynomials, and the polynomial chaos in particular [START_REF] Ghanem | Stochastic finite elements -A spectral approach[END_REF]. Recently, a modal perturbative approach [START_REF] Van Den Nieuwenhof | Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties[END_REF] using some exact methods [START_REF] Adelman | Sensitivity analysis of discrete structural systems[END_REF][START_REF] Nelson | Simplified calculation of eigenvector derivatives[END_REF], allows an efficacious calculation of the random eigenmodes and a fast synthesis of the uncertain frequency response in order to avoid the bad conditioning of matrices around the resonances. One can obtain the means values of the extreme statistics and the standard deviation that give a good evaluation of the solution variability envelope. With the aim of obtaining considerable reduction of the calculation costs and a good predictivity of non-linear model, one can propose a strategy permitting to couple the Stochastic Finite Elements Method (SFEM) and a robust dynamic condensation method vis-à-vis of the stochastic parametric modifications [START_REF] Masson | Parameterized reduced models for efficient optimization of structural dynamic behaviour[END_REF][START_REF] Guedri | Coupling Stochastic Finite Elements -Robust Condensation Methods In Optimization Of Structures[END_REF][START_REF] Guedri | Méthode de Synthèse Modale Robuste de Modèles Stochastiques[END_REF] in view to construct a robust reduced uncertain model. This Condensation method is based on the Karhunen-Loeve approach. This method permits to assign to zones or sub-structures specific uncertainties of weak, means or large level. Besides, the extension of this robust condensation method to the case of the complex structures of which the Finite Elements Model is of large size and presenting a localized non-linearities allows the obtaining of a robust and fast modal synthesis for this type of structure.

NON-LINEAR STOCHASTIC MODEL

The Karhunen-Loeve decomposition of the random field ( ) 
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The Stochastic mass Matrix is the assembly of the elementary matrices: 
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In the same way, the stochastic stiffness matrix is written as: 

D is the matrix of elastic coefficients. When one attribute to zones or sub-structures a level of uncertainty, the stochastic equilibrium equation of the damped non-linear structure submitted to a deterministic harmonic excitation, can be written in the following form:
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Or again :
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, the non-linear forces vector and

( ) e f ω , the Applied forces vector.

The equation ( 8) can be rewritten in the form:
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θθ θ ∆ is the random forces vector associated to the unknown modifications of the initial structure. The relation ( 9) then interpreted as the dynamic equilibrium equation of the non-linear initial model submitted to solicitations ()

∆
f ω,θ . In the practice, the resolution of the non-linear problem (9), using the Monte Carlo simulation (MC), is very expensive. The condensation of this model by standard reduction method proves to be insufficient in term of predictivity and robustness vis-à-vis of the parametric perturbations. One can propose then to develop a dynamic condensation method adapted to the stochastic models [START_REF] Guedri | Coupling Stochastic Finite Elements -Robust Condensation Methods In Optimization Of Structures[END_REF] according to iterative procedure. So, the dynamic response of the perturbed system (9) can be expressed by standard transformation basis 0 T obtained from the mean model, enriched by a static residual R such that:
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The reduction basis T is constructed by exploiting the condensation basis 0 T and the static displacements Rf ∆ associated to a set of static loads ∆ F which are representative of the perturbations
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On can propose to construct the reduction basis 0 T by the Karhunen-Loeve approach (KL) in the context of a dynamic sub-structuring. This basis presents the same advantages with that of a Ritz basis.

Equivalent linearization Concept

The basic idea of this method consists in replacing the differential equation of a non-linear system by an "equivalent" linear differential equation such as the difference between the two systems is minimal [START_REF] Iwan | A generalisation of the concept of equivalent linearization[END_REF]. One can adopt the concept of equivalent linearization that consists in expressing the cubic non-linear forces vector in stiffness and damping in the following form:
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where ( δ ij ,γ ij ) are the non-linear stiffness and damping coefficients.

One can replace the equation ( 12) by a combination of linear elements such as:
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Consequently, the equation ( 8) takes the following form:

( ) () () () () ( )    eq eq 0 Z ω +Z ω,+ j ωB ω,+ K ω,U ω,= fω e ∆ θ θ θ θ (14)
The obtained stationary solution is based on the projection of the non-linear response on the calculated modal basis by the modal perturbation method and an iterative calculation provided of a convergence criteria.

This criterion exploits the difference between the responses. k U and k+1 U obtained respectively at the iteration k and k+1.
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et ε r is the tolerance error fixed a priori (15)

ROBUST MODAL SYNTHESIS METHOD VIS-A-VIS OF THE STRUCTURAL MODIFICATIONS AND UNCERTAINTIES.

The stochastic model condensed by a reduction basis of the nominal model 0 T can be written, in frequency domain, in the following form:
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is the mean matrix of the condensed dynamic stiffness;
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f ω,= -Zω,Uω, ∆ is the condensed vector of the stochastic forces ;
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f ω , the condensed vector of the Applied forces.

One can propose to construct the reduction basis 0 T by exploiting the Karhunen-loeve (KL) in the context of the dynamic sub-structuring.

The optimal modes are extracted of the frequencies responses sampled of each sub-structure submitted to the junctions forces to interfaces. These modes ( 1k M , ... , , ... , φ φφ ) are determined by using the "Snapshots" method in the frequency domain, where one can suppose that ( ) ( )
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where: i,k α are the eigenvectors of the problem: ( ) () ()
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These forces being a priori unknown, the proposed method in [START_REF] Kim | Component Mode Synthesis Method Based On Optimal Modal Analysis[END_REF] uses the technique "Single Composite Input" to excite the sub-structure at the level of the j DOF of junctions.

Thus, at each frequency k ω , one can introduce an excitation force () ( )

T jj k F ω =F ω 0   
 in the form:

( ) One can dispose finally of condensed stochastic model to calculate the response of the stochastic structure while using the modal perturbation method to reduce the calculation times.
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CALCULATION OF THE RANDOM RESPONSES BY THE MODAL PERTURBATION METHOD

To solve the problem of bad predictability of the stochastic responses around the resonances, one can use the modal perturbation method.

The generalized problem 
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The first order decomposition of the random eigenmodes, can be written as : The calculation of the first order sensitivities of the eigen problem (sensitivities of the eigenfrequencies and the eigenmodes), can be effectuated by using the works proposed by Adelman and al [START_REF] Adelman | Sensitivity analysis of discrete structural systems[END_REF] that exploit the classic approaches of Fox and Kapoors and of Nelson [START_REF] Nelson | Simplified calculation of eigenvector derivatives[END_REF]. The eigenvalues sensitivity is given by: ξ λξ
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The eigenvectors sensitivity is given by : ∂ ∂ξ

j j r Y =V +cY ( 27 
)
Where V is the solution of the modified system obtained by applying a penalization method to the k th row and column of ( )
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The expression of c is given by the relation:
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The derivative of the mass and stiffness matrices are respectively expressed by:
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A similar procedure is applied when the condensed model is used.

5.

NUMERICAL SIMULATION

The clamped-clamped structure is constituted of two sub-structures assembly of plates (figure 1). The FEM includes 3132 DOF distributed in 792 internal DOF of SS 1 , 1944 internal DOF of SS 2 and 198 junctions DOF for each sub-structure. The geometric and mechanical characteristics are: h=1×10 -3 m; E 0 = 2,1×10 11 N/m 2 ; ρ 0 = 7800 kg/m 3 . Along of the two sub-structure interface, one can consider a line of 33 localized stiffness non-linearities at the junctions DOF, of values: k = 10 3 N/m ; γ = 10 22 N/m 3 .

Figure 1: FEM of PLATES

The dynamic analysis is realized in the frequency band [0 -220 Hz] containing the first 26 modes. By the Karhunen-loeve method, one can consider 300 samples with 220 modes for SS 1 and 260 modes for SS 2 in the useful frequency band. The initial model is then reduced to a condensed model of 480 DOF. One can examine firstly the effect of the different localized non-linearities at the junctions of the structure. In the second step, one can examine the behavior of the structure submitted to high uncertain parametric modifications. The table 1 illustrates the errors on the frequencies and the eigenvectors where one can compare the first 28 eigenmodes calculated from the condensed model to those of the reference model (without modification). One can note that the condensation method of KL type permits to obtain the first 28 eigenmodes of the model without modification with a good precision. The figure 2 One can present on figure 4 the distance in form between the first eigenvectors of the initial model and the perturbed model.

The enrichment of the transformation basis (KLE) can be effectuated by using 120 static residues (40 residues for SS 1 and 80 residues for SS 2 ).

The uncertain eigenvectors calculated from the perturbed reduced models are reconstituted by using the respective reduction basis then compared to the uncertain eigenvectors obtained from the reference model. One can illustrate the distance in form between these vectors for the KL and KLE method.

The table 3 and the figure 5 present respectively the relative errors on the eigenfrequencies and the distance in form between the reconstituted uncertain eigenvectors obtained using the KL and KLE methods and the exact uncertain eigenvectors. The figure 6 shows that one can obtain a good correspondence between the curves of the mean and the extreme statistics of the non-linear uncertain response calculated by the modal perturbation method (MP) for 1000 samples, of the reference modified model and the condensed modified model.

To highlight the effect of the reduction of the non-linear model, one can specify the CPU time of the reference non-linear modified model (CPU_REF = 140 H) and the CPU time of the condensed non-linear model (CPU_KLE = 35 H). 

CONCLUSIONS

In this article one can propose a new modal synthesis method of the linear and non-linear structures. This method that consists in coupling the Stochastic Finite Element method and a robust model condensation method vis-à-vis of the structural modifications and uncertainties. This condensation method is based on the Karhunen-loeve approach.

The analysis of the simulation results shows that this method constitutes an interesting alternative to the classic reduction methods that are maladjusted to the condensation of the Stochastic Finite Element Models and to the non-linear structures.

Otherwise, the comparison of the calculation costs permitted to highlight the performances of the double condensation by the enriched Karhune-Loeve method followed of the modal perturbation method.

The presented method permits, by the reduction of the model size, the reduction of the calculation time and its predictivity, to response to needs of reanalysis met in the optimization iterative procedures or in the dynamic analysis of the non-linear problems of complex structures.
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  θ of the non-linear model, one can use the truncated random eigenmodes ( N' N ): j ω, are expressed by :

  represents the non-linear response of the reference and condensed model (without modification) at the position « N o ». A very good coincidence between the two responses is illustrated by the curve of difference in displacement term on the same figure. The effect of localized non-linearities is visualized on the figure2, as well as on the Nyquist diagram (figure3).
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 2 Figure 2: Non-linear frequency responses at the position « NO », reference and condensed model (without modification)
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 3 Figure 3: Nyquist Diagram
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 4 Figure 4: Distance in form between the exact perturbed structure and the initial structure.
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 5 Figure 5: Distance in form between the exact perturbed structure and the condensed perturbed structure by the classic KL method (at left) and by the enriched KLE method.
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 6 Figure 6: Mean and Extreme Statistics of the non-linear random response at the position « N O ». MP for 1000 samples, Reference and condensed model (with modification)
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 7 Figure 7: Nyquist Diagram

Table 1 :

 1 Precision of the eigenfrequencies ( f

						ε ) and the eigenvectors ( U ε ). Initial model (without modification)
		Deterministic		KL				Deterministic		KL
		eigenfrequency (Hz)	ε	f %	ε	U %		eigenfrequency (Hz)	ε	f %	ε	U %
		3132 DOF		480 DOF			3132 DOF		480 DOF
	1	6.65	7 e-008	2 e-005	15	127.18	1 e-006	1 e-003
	2	12.96	6 e-007	1 e-004	16	141.57	4 e-007	1 e-003
	3	24.79	1 e-006	4 e-004	17	144.39	6 e-007	1 e-003
	4	33.32	2 e-006	7 e-004	18	153.53	1 e-006	2 e-003
	5	35.11	1 e-006	6 e-004	19	158.44	8 e-007	2 e-003
	6	47.42	7 e-007	5 e-004	20	161.41	4 e-007	2 e-003
	7	57.04	6 e-006	2 e-003	21	169.60	3 e-007	2 e-003
	8	61.66	3 e-008	1 e-004	22	180.86	5 e-006	7 e-003
	9	70.49	1 e-006	1 e-003	23	186.63	1 e-006	4 e-003
	10	79.36	1 e-007	3 e-004	24	199.56	1 e-005	1 e-002
	11	88.46	4 e-008	2 e-004	25	205.84	2 e-006	6 e-003
	12	93.28	6 e-006	3 e-003	26	219.05	6 e-006	1 e-002
	13	102.41	1 e-006	1e-003	27	222.98	1 e-006	7 e-003
	14	116.05	1 e-006	1 e-003	28	230.88	2 e-005	2 e-002

Table 2 :

 2 Uncertain Parametric Modifications

			Sub-structure 1			Sub-structure 2	
		Young's Modulus Thickness	Density	Young's Modulus Thickness	Density
	Modifications per zones	X 100	X 5	X 20	X 100	X 5	X 20
	uncertainties	10 %	10 %	10 %	10 %	10 %	10 %

Table 3 :

 3 Precision of eigenfrequencies ( f

									ε ) and eigenvectors ( U ε ). Modified model with uncertainties		
		Random eigenfrequency		KL					KLE			Random eigenfrequency		KL				KLE
		(Hz) (first moment)	ε	f %	ε	U %	ε	f %	ε	U %		(Hz) (first moment)	ε	f %	ε	U %	ε	f %	ε	U %
		3132 DOF		480 DOF			600 DOF		3132 DOF		480 DOF		600 DOF
	1	1.82	0.44	0.28	0.02	0.00	15	143.84	6.49	135.55	0.04	0.47
	2	5.12	7.74	5.04	0.02	0.05	16	145.59	8.20	118.49	0.01	0.23
	3	16.87	6.085	8.67	0.02	0.07	17	149.06	11.02	122.14	0.00	0.94
	4	25.85	12.34	15.53	0.00	0.04	18	173.16	5.76	71.02	0.09	0.65
	5	46.98	14.29	15.46	0.07	0.07	19	186.79	6.41	62.47	0.05	0.54
	6	52.31	14.45	41.69	0.07	0.05	20	206.41	0.50	21.94	0.00	0.65
	7	60.07	6.47	40.81	0.00	0.03	21	218.08	1.00	33.27	0.04	0.43
	8	73.01	3.06	36.58	0.02	0.09	22	222.60	1.90	138.79	0.03	1.37
	9	95.48	5.11	13.60	0.08	0.54	23	222.88	6.00	141.13	0.10	2.43
	10	99.44	4.93	39.55	0.02	0.62	24	225.60	7.87	36.09	0.13	3.34
	11	105.46	24.84	103.92	0.03	0.30	25	231.06	12.43	84.57	0.08	3.50
	12	115.74	14.67	106.35	0.09	0.45	26	250.91	14.50	129.63	0.24	5.54
	13	124.02	16.10	117.41	0.07	0.41	27	255.99	19.11	156.85	0.03	4.06
	14	127.94	15.62	135.93	0.02	0.14	28	266.17	22.76	96.51	0.11	3.43