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Abstract

A method to couple acoustic linear problems is presented in this paper. It allows one to
consider several acoustic subsystems, coupled through surfaces divided in elementary areas
called patches. These subsystems have to be studied independently with any available method,
in order to build a database of transfer functions called Patch Transfer Functions, which are
defined using mean values on patches, and rigid boundary conditions on the coupling area. A
final assembly, using continuity relations, leads to a very quick resolution of the problem. The
basic equations are developed, and the acoustic behavior of a cavity separated in two parts is
presented, in order to show the ability of the method to study a strong-coupling case. Optimal
meshing size of the coupling area is then discussed, some comparisons with experiments are

shown, and finally a complex automotive industrial case is presented.

1 Introduction

Numerical modeling of acoustic behavior of industrial structures is still an open question. In the
low and mid frequency domain, among many available methods, FEM [1] is a powerful approach
for finite domains, while BEM [2] is suitable for infinite domains. In some cases, only one of these
approaches is required to obtain the solution of a given problem, but sometimes, it is useful to
decompose the domain in subdomains, and for each one, a given approach is appropriate, BEM,
FEM or even analytical methods. Coupling these method directly [3] induces difficulties for large
problems, since symmetry and sparsity properties of original formulations are lost because of
the junction conditions. Many methods have been suggested to get rid of this problem, which are

often based on separate resolution of the problems in each sub domain, with iterations on coupling



Figure 1: Example of basic acoustic problem

conditions until reaching convergence [4] [5], but the required iterations result in large calculation
cost.

Using results of uncoupled structures to perform the response of the coupled one is a common
thing in structural and acoustic analyses, using model reductions and substructuring [6]-[8], or
impedance and mobility concepts [9], [10]. For structural-acoustic systems, weak coupling has been
studied using modal impedances [11], and for purely acoustics problems, a point to point coupling
between subdomains has been developed for structures like pipes or ducts [12]. The purpose of this
paper is to describe a method for the analysis of acoustic domains coupled through a surface, which
is a hole, divided in elements called patches. This approach is based on impedances evaluations
between patches, sources, microphones and absorbing materials. Some validations on an academic
case have been presented in reference [13]. These transfer functions called Patch Transfer Functions
(PTF), are close to the ones called Acoustic Transfer Vectors (ATV) [14], which are typically used
to reduce computational times for multi load cases studies. ATV approach has advantages in
particular situations compared with some other methods [15], and have been improved to study
industrial cases [16], [17], nevertheless they do not permit by themselves to couple two subdomains

through a surface.

2 Patch Transfer Functions

2.1 Basic equations

The basic acoustic system considered here is described on figure 1, corresponding to sound radiation
of a vibrating surface Sy (on which a harmonic normal velocity V), is prescribed) in an “internal”
volume €2;. This volume is closed by a surface S; = 5, US, US,, including a rigid area S,., some

absorbing materials (characterized with acoustic impedance Z,) placed on S,, and an opening on



an area S, to the “external” volume Q.. The acoustic pressure p(M)e/“t at point M, generated
by the vibrating body is governed by the following equations: the internal problem 1, the external

problem 2, coupled through continuity conditions 3.
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—Ap—k’p=0VYM e,
L=0VYMES, : (2)

n
r(%—f—jkp) —0asr— o
where the Sommerfeld conditions are taken into account, corresponding to free acoustic field

(but of course any other conditions are admissible),
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in which the 4 subscript corresponds to internal values while e is used for external ones, with
N; = —MNe.

The method which is described here can also be applied to the coupling of two finite prob-
lems described as problem 1 or two semi-infinite problems, or even multi coupling of internal
and external domains. The formulation of the proposed approach is presented on the previous

equations.

2.2 Domain decomposition

In order to solve the coupled problem, the acoustic problem has to be decomposed in two subdo-
mains, linked through the open area S, which is divided in IV, surface elements called patches.
This approach allows one to consider two uncoupled systems and to join them with few calcula-
tions. The optimal size of the mesh will be discussed in section 3.3. The basic idea is to estimate

transfer functions between patches like explained here.



2.2.1 Internal problem

For each patch P of the N, ones, the internal sub problem 4 has to be solved. The open area .S,
where external and internal acoustic fields must be coupled, and the absorbing area S, are here

replaced by rigid walls for all patches except patch P on which a unit normal velocity is applied:

—Ap—Fk*p=0 VM € Q,
g—fl:—jpw VM e Sp - (4)
% —0VMeS;\Sp
The objective of this step is to calculate the Patch Transfer Functions (PTF) between excited

patch P and rigid patch @, defined as the ratio between the mean pressure on patch ¢ and the

mean normal velocity on patch P (which has a unit value):

Z5% = <<p>>Q =g 5)

3

in which (e) denotes the mean value: (g)p, = SLpfsP g(M)dS, and V(M) is the normal
velocity. This condensation of values on surfaces ensures convergence of the acoustic formulation,
in particular on the excited patch: the consideration of coupling points instead of areas would
involve a non-defined pressure at excitation point. The modal analysis of the cavity is used into a
Green’s function approach to built the PTF values, like indicated on appendix A. The resolution
of the internal problem corresponds to the response of the whole rigid cavity to a unit velocity
imposed on patch P. Then, a full N, x N, matrix of PTF has to be built for each frequency point.
Assuming linearity of the phenomenon, these values will be used to calculate the response of the
coupled system. As far as the internal measurement points that will be used as final output points
are considered, they will be considered using patch-to-point transfer functions between excited

patch P and listening point L:

ZLp = V) =p(L) . (6)

Then, if N; listening points are defined inside, a N, x N; matrix is defined for each frequency
point.

Finally, one has also to compute the uncoupled pressure corresponding to the response of the
rigid cavity to the vibrating source surface Ss;. One can divide this source area in Ny surface

elements, in order to keep the same methodology: source PTF between patch R from the source



and rigid patch @, defined as the ratio between the mean pressure on patch @ and the mean

normal velocity on source patch R (which has a known value):

Zint _ <p>Q

o=y

(7)

The associated patch to point transfer function from excitation patch R to listening point L

is:

2.2.2 External problem

The methodology for the external problem is similar to the one presented above: one has to
compute the PTF corresponding to mean pressure on patch P resulting from unit normal velocity

excitation on patch Q:

Z8% = g _ o 9)

and the patch-to-point transfer function between excited patch P and listening external point

zemt _ p(L)
Le <Vn>P

=p(L) . (10)

In the present case, it is assumed that all sources are located in the cavity and not in the
exterior domain, thus terms Zg”}% and Zzﬁf do not exist. However the presented methodology can

obviously take into account external sources in the same way.

2.2.3 Introducing absorbing materials

With the proposed approach, it is quite simple to consider some absorbing materials: they should
be considered as particular acoustic subsystems. For example when locally reacting materials
are used, one has a known “auto-PTF” which is the acoustic impedance of the material, and a
null “cross-PTF”. The absorbing area is divided in patches, which are included in the previously
described methodology, with the following values of PTF between patches A of S, and any patch

P of the system:



Z4p = 6apZa (1)

in which d,p =1if A= P, and d4p = 0 otherwise.

Of course some PTF between absorbing patches and other patches or excitation and listening
points are needed to build the coupled pressure field. These transfer functions depend on the
geometry of the system, and they are evaluated in the same way as in parts 2.2.1 and 2.2.2. It
is clear that the methodology can be applied for other configurations, but it is supposed here
that according to the figure 1, all absorbing materials are located in the cavity. In this case, the
analysis which has been described in section 2.2.1 has to take into account not only the coupling
patches, but also the patches corresponding to absorbing materials locations, and the PTF defined

in equations 5, 6, 7 and 8 have to be evaluated for the whole set of patches.

2.2.4 Coupling conditions

Using the linearity properties of the system, the pressures p;,: and pe,: corresponding to the
internal and external ones on all patches of the coupled system verify the relations 12 and 13. The

mean pressure on patch () associated to internal field is:

pznt 0= Z Zznt + Z Zznt Vznt (12)

while the mean pressure on patch () associated to external field can be expressed as:

pext 0= Z Zeact Vezt (13)

In these relations, (V;,), are the known velocity source terms (supposed to be all located in
the cavity), while (pint) o and (pest) are the unknown mean pressures on patches (called coupling
pressures), (V,int) p and (V£#t) , are the unknown mean normal velocities on patch P, associated
to internal and external fields, called coupling velocities. The internal pressure field is the sum
of the contribution of the Vs sources and of the IV, patches, including N, coupling patches and
N, absorbing patches (N, = N, + N,). For a sake of simplicity, one will suppose that coupling
patches are numbered 1 to IV, while absorbing patches correspond to numbers N¢, + 1 to IN,,.

Coupling values are determined using continuity relations 3, expressed on mean values of

pressure and velocities for each coupling patch:



<pint>Q = <pezt>Q vQ =1, ---aNcp ’ (14)
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in which 1,..., N, are the coupling patches. For the N, patches corresponding to absorbing

materials locations, the relation is:

(Pint) 4 = Za (V™) , Z Z4p(Vimy, YA=Ng+1,..,Np+No=N,. (16)

This leads to a N, x N, linear system, using (V,i"*) , as main unknowns. The N, first

equations are related to the coupling patches (from equations 14 and 15):

Mg

znt eact) Vznt Z Zznt V R \V/Q — 1’ ---aNcp , (17)
P:l

while the N, last ones correspond to the absorbing patches:

NP
oz - Z4p) (Vi) Z Z0 (VY YA=Ng+1,. N+ Ng=N,. (18)
P=1

The linear system which has to be solved (equations 17 and 18) is a full one, but its size is
small. Its inversion leads to the coupling velocities values, that can be used in a post-processing
phase in equations 12 and 13 to calculate averaged patch pressure on the coupling surface, and

pressure at internal and external listening points with equations 19 and 20:

znt Z ZLR + Z Zznt Vznt (19)

Necp

emt Z emt Vznt ) (20)

P=1
The expressions which are detailed here are valid for internal sources and internal absorbing
materials. If this is not the case, in particular if some absorbing materials are also located in the
external medium, one has two possibilities: the first issue is to change the definition of coupling

area, in order to have a larger “cavity” which includes all absorbing materials. In this situation,
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Figure 2: Rigid walled cavity

the above equations are still valid. The second approach needs a formulation of the problem with
absorbing materials in the external domain, which is very close to the previous one, except that

one can no longer use <V7§”t> as main unknowns in the final system: in this case the easiest way

P
to proceed is to numerically solve the 2N, x 2N, system which is directly obtained considering
the coupling conditions and absorbing relations, using both normal velocities and pressure as

unknowns.

3 Strong coupling application

In order to demonstrate the ability of the method to study cavities with strong coupling, the box
described on figure 2 is considered here. It is a rigid box of size 0.7 x 0.4 x 1.2 m?, filled with air
(p =123 kg.m™3; ¢ = 345 m.s~2; n; = 1072 ), including a point source placed at (0.2, 0.1, 0.1)
and a microphone at (0.1, 1, 0.5). Such a cavity can be studied using analytical eigen modes. For
the PTF method application, it has been decomposed in two sub domains named 1 (with a length

of 0.8 m) and 2 (with a length of 0.4 m), and the coupling surface has been divided in patches.

3.1 PTF calculation with modes of rectangular sub cavities

Eigen modes of each rigid cavity can be obtained analytically: if the size of the box is Ly x Ly x L.,

the eigenfrequency corresponding to order m x n x g of the box are:
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in which L, x L, x L is the size of the box, and ¢ the sound velocity. The corresponding eigen

mode is:

mnx nwy qmz
COS —— COS
L, L, L,

Gnmq(T,y,2) = cos (22)

Then, the PTF of each uncoupled box are evaluated according to appendix A.

3.2 Choice of the number of modes

To insure non singular matrix when using PTF approach from modal expansion for cavity response,
it has been seen that the number of modes to be taken into account is related to the number of
patches which have been chosen to divide the coupling area. In order to describe this rule, it is
useful to consider the figure 3, which is related to a mono dimensional visualization: four patches
are presented, corresponding to a given mesh of the line. To solve the problem, coupling velocities
on the four patches must be calculated, corresponding to four degrees of freedom for the problem
to solve. In order to be able to reach these four degrees of freedom, one has to consider at least
the first four modes (which are plotted on figure 3), otherwise some relationships between patches
velocities exist, and the matrix associated to the resolution of the problem will be singular.

More modes could be used, corresponding to an ability to reach higher frequencies, but in this
particular case, four modes should be the minimum. As a general rule for this mono dimensional
problem, the number of modes used to calculate PTF has to be greater or equal to the patch
number.

In the case of a bi dimensional coupling, which corresponds to the one proposed in this work,
the same argument is valid, and the mode order of each direction should be larger than the

corresponding number of patches to avoid numerical problems. This consideration is only related
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Figure 4: Influence of the number of modes on matrix conditioning.

to the singularity of the matrix, but not to the convergence of the method, that will be studied
in the next part. In order to illustrate this phenomenon, one can consider a 10 by 6 patches
division of the coupling area. Local mode of order (9,5,0) of cavity 2 (which is the smaller one),
corresponding to the limit described above since one has to take into account the Oth order modes,
has a resonant frequency of 3093.3 Hz. Using PTF approach with all modes up to 3093 Hz leads
to badly conditioned matrices: the mean conditioning number on the frequency range up to 1000
Hz is 8 x 10, while using 3094 Hz as the limit, it is reduced to 2 x 10* due to the fact that the
mode (9,5,0) is included in the analysis.

The figure 4 shows the results of the three calculations, including the reference one defined by
the analytical modal analysis of the whole cavity. One can clearly see the instability of the results
associated to ill conditioned matrix specially around 900 Hz.

However, one should note that this problem is related to the fact that the chosen coupling area
is a plane one: changing modal order of z-axis has no influence on the conditioning of the problem.
But for more complex cases, with curved coupling areas, each mode could be able to provide an

additional degree of freedom: the problem of ill-conditioning would be less severe.

3.3 Convergence of the method

The box described on figure 2 is used here to study the convergence of the method with an
increasing number of patches. The coupling area is divided in n, by n, patches like indicated on
table 1, corresponding to patches lengths I/, and l,. The convergence study is performed using
modes up to 20th order in the three directions, for each cavity. So, the first missing frequency for

the whole cavity is the (20,0,0) order, corresponding to 2875 Hz. The higher mode (19,19,19) has

10
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Figure 5: Convergence of pressure versus number of patches. Dotted line: reference calculation.
The vertical line indicates the \/2 limit.

a frequency of 9824 Hz.

The figure 5 shows the reference calculation, which is the analytical modal analysis of the
whole cavity, with no use of PTF approach (in dotted lines), and the results of the PTF method
using 1 x 1, 2 x 3,4 x 7 and 6 x 10 patches. On theses plots, the frequency corresponding to the
half-wavelength is indicated. From these results, it appears that there is a practical criterion for
the PTF approach: the size of the patches should be smaller than the half-wavelength in order to
obtain good results.

The figure 6 shows more precisely the convergence properties, by giving for two specific fre-

quencies (500 and 1000 Hz), the pressure error at listening points, which is defined as:

€FRF=|10log FRF,.;—10log FRFprF| » (23)

11
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Figure 6: Pressure error at listening point versus number of patches along y axis.

in which the FRF are the transfer functions between excitation and listening point. The

convergence is reached for 2 x 3 patches at 500 Hz and for 3 x 5 patches at 1000 Hz.

3.4 Conclusions on strong-coupling case

The validation of the method has been done on a strong-coupling case, and convergence rules have
been derived. One can note that some comparisons with experiments, including use of absorbing

materials, have been presented in [13].

4 Numerical and experimental validations on a complex struc-

ture

4.1 Description of the structure

In order to validate the methodology for automotive application, a complex structure has been
designed and built by Rieter. It is presented on figure 7: this box has its lateral sides made of
wood, on the upper part of it, the hood of a car has been placed, and on the bottom an under-
shield closes the cavity. On this part, a hole allows the sound to be radiated outside of the box.
Some absorbing materials are used and placed in the cavity.

A loudspeaker is located inside the box, while some microphones are placed both inside and
outside of it. The box is placed at 20 cm height, in order to have reflections on the ground: the
objective was to be relatively close to the real Pass-By Noise problem.

For the application of the PTF method, the coupling patches have been defined in a very

12
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Figure 7: Description of the “Ground-Up Box” structure.
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Figure 8: Image source theory illustration and Rayleigh simplified approach.

specific way, in order to use a simplified approach for the external domain, which is described in

the next section.

4.2 Simplified Rayleigh approach

The complexity of the structure, associated to the need of mid frequency results (up to 2.5 kHz)
can involve a prohibitive calculation cost for the external medium, even if the full coupled problem
is not considered. In order to reduce calculation time, a simplified approach, based on Rayleigh
integral has been used for the external problem. The choice of the patches definition and the use
of a reflecting ground have been done in order to be as close as possible to Rayleigh’s hypothesis:
the Rayleigh integral allows one to know the pressure field radiated by a plane surface vibrating
on a baffle. Calculations of PTF are then performed considering that the current patch (on which
a unit velocity is imposed) vibrates on a given rigid plane: pressures can be evaluated only in a
half-space, and other points are supposed to be silent. This is illustrated on figure 8: the pressure
p radiated by a patch to a microphone location is the sum of the pressures p’ and p”, which can
be approximated by p° and p°° using infinite planes if the coupling patches are vertical. Another
simplified approach could have been to consider a single layer potential methodology, or of course

any BEM based method.

13
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Figure 9: Comparisons between calculation techniques

4.3 Validation of the simplified approach

This simplified approach has been used for the analysis of the “Ground-Up Box”, and the corre-
sponding coupling patches are vertical, so the cavity includes the air which is located between
the ground and the box, like indicated on figure 7. In order to measure the differences between
the proposed simplified approach, three numerical tests have been performed. The two first ones
are related to a choice of patches going from the box to the ground. The first one, called “PTF
Ground Sysnoise”, uses Sysnoise BEM to calculate the PTF, while the second one, called “PTF
Ground baffled” uses the Rayleigh simplified approach, as described on figure 8. The third one is
related to the standard mesh of the hole as coupling area: in this case it is impossible to apply the
Rayleigh integral, because of the location of the ground. So a BEM approach has been used for
this case. The results are presented in term of pressure over pressure FRF, between a microphone
located outside the box, and another one located in the box.

It can be observed on this figure that the two PTF Ground calculations give very similar
results, which are also quite close to the ones obtained using the hole as coupling area: in this
case the simplified approach gives very satisfactory results, since the associated calculation time
is very small compared to the one required for the BEM analysis.

These results have also been compared to experiments, like shown on figure 10. The two plots
correspond to relative pressures at two listening points, one located close to the box, and the

other one in the far field (several meters from the box). It can be observed that the differences

14
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Figure 10: Comparisons between meshing methodologies and experiments.

between the two meshing methodologies is small compared to the difference between experiments
and calculations. So the simplified Rayleigh approach can give very satisfactory results, providing

that the meshing stage is done in order to be as close as possible to the Rayleigh hypotheses.

5 Automotive application

5.1 Description of the structure

In this section the ability of the method to be used on complex industrial cases is shown. The
objective is to calculate the noise radiated through openings of engine cavity of an Alfa 156 car.
The engine cavity has been modeled using acoustic FE, taking into account engine and all internal
components of the engine cavity. The effects of the ground, supposed perfectly rigid, are taken
into account using the image sources theory. The opening areas between the internal problem and
the external ones are the holes located on the front of the car, and the surface defined by vertical
areas going from the car body to the ground, like shown on figure 11. This particular definition of
coupling areas corresponds to the simplified Rayleigh approach which has been described above.

Some absorbing materials are located in the engine cavity, they are considered as particular
subsystems, like described in section 2.2.3. The coupling and absorbing areas are divided in
patches, shown on figure 12, using the half-wavelength criterion to go up to 2500 Hz.

The Patch Transfer Functions of the internal cavity are evaluated using Green’s function with
modal analysis done with Nastran FE code, according to the appendix A, while the PTF of the

external domain are calculated with the Rayleigh simplified approach.

15



Figure 11: Front part of Alfa 156 and coupling areas for PTF application.

Figure 12: Patches definition on a) coupling areas and b) absorbing areas.

16
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Figure 13: Comparisons between calculations and experiments, in terms of FRF, inside the cavity
and at a pass-by microphone.

5.2 Results
5.2.1 Pressure transfer functions

Some measurements have been carried out on the real vehicle by CRF, in a semi-anechoic chamber.
The excitation in this case is a point source, corresponding to a loudspeaker in the engine cavity.
Absorbing materials have been used to cover the external part of the engine cavity in order to
reduce the sound to be radiated by transparency. Some microphones are located both inside the
engine cavity and in the external domain, in particular at Pass-By locations (7.5 meters on the
side of the car).

The first comparisons with measurements, shown on figure 13, are related to transfer functions
between inside and outside the cavity: a reference microphone has been chosen, and the plotted
values are the relative pressures between interesting microphones and the reference one. It can be
observed on this figure that the comparisons between calculated and measured pressures are quite

reasonable, regarding the complexity of the structure.

5.2.2 Engine excitation

Some measurement with the real engine excitation have been also carried out by CRF, in a semi-
anechoic chamber in rolling conditions (3rd gear, 3600 RpM). In this case, the noise sources which
have been masked are the rolling noise (using slick tires) and the exhaust noise (using large silent
muffler). Sources are defined using the so-called Monopole Substitution Technique [19], from
measurement and FE model of the engine. 14 equivalent sources are located on the engine. The

methodology used for the PTF approach is the same as above, and only a part of the PTF has
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Figure 14: Comparison between experiments (dashed line) and simulations (continuous line) of
radiated noise at a pass-by microphone location.

been calculated again, since many similarities exist between the two configurations. The only
PTF that will differ from the previously evaluated ones are the sources to patches ones, and the
uncoupled pressures. All other PTF keep the same values: in particular, the database of PTF for
the external domain remains exactly the same.

The radiated pressure at a pass-by microphone location is shown on figure 14: experiments
and numerical results are well correlated up to 2.5 kHz. The observed discrepancies are mainly

due to the transparency of fenders of the car, which are not yet considered in the PTF approach.

6 Conclusion

The Patch Transfer Function approach allows one to solve a substructured acoustic problem, by
considering uncoupled subsystems, which are analyzed separately with rigid boundary conditions.
The coupling area has to be discretized in surface elements with a half-wavelength criterion, on

which continuity relationships are verified on a mean sense. A database of PTF is built, defined

18



as acoustic impedance transfer functions between patches, excitation areas and listening points.
A final assembly results in estimation of radiated pressure, with a very low calculation cost:
the higher required cost corresponds to the PTF database building. A major advantage of the
considered approach, compared to full coupled ones, is that effects of design or materials changes
can be estimated very quickly: some changes in the shapes of a cavity require only the re-analysis
of the modified cavity, which results in calculation time savings. Moreover, effects of changes of
absorbing materials characteristics can be estimated with a very low calculation time, since these
characteristics are introduced only at the final assembly stage, which consists in the inversion of

a small linear system.
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A Modal approach for internal problem

A.1 Modal composition for internal solution

The internal problem described in section 2.2.1 can be solved using the modal basis of the rigid
cavity. Denoting ¢; the pressure eigen modes and k; the corresponding wave numbers, this modal

basis verifies the relations:
—A¢;(M) — k2¢i(M) =0 Vi, VM € Q;

(24)
L9 (M) =0 Vi, VM€ S;

jpw On
The normalization of theses modes is such as fQ P dndQ = Appdimyn. The solution of problem 4

can be found using the Green’s function G(M, @) of the internal rigid problem:

—AnG(M,Q) - K*G(M,Q) =6(M - Q) VM € Q;

(25)
s (M,Q) =0 VM € S;
This Green’s function can be determined using the modal basis:
G(M,Q) =D 9:(Q)9:(M) . (26)

Using this decomposition in equation 25, pre-multiplied by ¢, and integrated on §2;, one obtain
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| @ (a0 ()8~ )2 = 6,(Q) (21)

which leads to the expression of g,:

0@ = 15 P - (29)

Finally the Green’s function can be expressed with the modes of the rigid cavity:

< ¢i(M)¢i(Q) ‘

G(M,Q) = i A; (wzQ —w?) (29)
Applying Green’s theorem to problem 4 with no internal source leads to:
Op oG .
p(M) = G(M, Q)5 -(Q) —p(@)5-(M,Q) | dS =~ |  G(M,Q)jwpdV ,  (30)
S; n 8n Sp
and the solution of problem 4 is:
2
p(M) = Y b S (60 SO0 (31)

A.2 PTF modal expressions

Using the previous expressions, one can deduce values of PTF defined in section 2.2.1. The source

PTF 5 between patch R from the source and rigid patch @, is:

2
A; w? — w;

2 ) .
Z8t = ijpc SPM ) (32)
i
The patch-to-point transfer functions 6 between excited patch P and listening point L is:

2 ) )

2 _
w? — w;

The source PTF 7 between patch R from the source and rigid patch @), is:

A (V) w?—w

gQR:ijﬁ Sk (di)r (Pi)g . (34)
: R

The patch to point transfer function 8 from excitation patch R to listening point L is:
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_ . p® Sk {9i)gp9i(L)
R =Yy T %

A.3 Air damping introduction

The modal composition presented above without losses induces problems at resonant frequen-

cies. This is avoided using modal damping of fluid 7;, which induces a change in expression of

2 2

denominators of equations 29 to 35: the term w? — w? has to be replaced by w? — jnw;w — w?.
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