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Abstract

A reversible automaton is a finite (possibly incomplete) automa-
ton in which each letter induces a partial one-to-one map from the
set of states into itself. We give four non-trivial characterizations of
the languages accepted by a reversible automaton equipped with a set
of initial and final states and we show that one can effectively decide
whether a given rational (or regular) language can be accepted by a
reversible automaton. The first characterization gives a description of
the subsets of the free group accepted by a reversible automaton that
is somewhat reminiscent of Kleene’s theorem. The second characteri-
zation is more combinatorial in nature. The decidability follows from
the third – algebraic – characterization. The last characterization re-
lates reversible automata to the profinite group topology of the free
monoid.

1 Introduction.

In this paper, we study a natural class of finite automata, the reversible
automata, in which every letter induces a partial one-to-one map from the
set of states into itself. More precisely, the aim of this paper is to describe
effectively the languages accepted by these reversible automata. Although
the statement of this problem requires only the very basic definitions of
automata theory and could have been asked already in the fifties, the answer
we propose is intimately related to the more advanced research on automata,
finite semigroups and combinatorial group theory. A preliminary version of
this paper has been presented in [22].

A (finite) automaton is a quintuple A = (Q,A,E, I, F ) where Q is a
(finite) set of states, A is a (finite) set of letters, called the alphabet, E ⊂
Q × A × Q is the set of edges, I ⊂ Q is the set of initial states and F ⊂ Q
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is the set of final states. An edge (q, a, q′) is also denoted q
a
→ q′. A path in

A is a finite sequence of consecutive edges :

p = q0
a0−→ q1

a1−→ q2 · · · qn−1
an−1

−→ qn

The label of the path p is the word a1a2 · · · an, its origin is q0 and its end
is qn. A word is accepted by A if it is the label of a path in A having its
origin in I and its end in F . The language (or set of words) accepted by A
is denoted |A|. An automaton is deterministic if it has a unique initial state
and does not contain any pair of edges of the form q

a
→ q1 and q

a
→ q2 with

q1 6= q2.

q1

q2

q

a

a

Figure 1.1: The forbidden configuration in a deterministic automaton.

In this case, every letter a induces a partial function from Q into itself,
given by q → q · a, where q · a is the unique state q′(if it exists) such that
q

a
→ q′ is an edge in A. If u = a1a2 · · · an is a word, and q is a state, we set

q · u = (· · · ((q · a1) · a2) · · · ) · an. This defines an action of A∗ on Q and a
monoid morphism ϕ : A∗ → T (Q), where T (Q) denotes the (finite) monoid
of partial functions on Q under composition. Thus ϕ(A∗) is a submonoid
M(A) of T (E), called the transition monoid of A. Every element m ∈ M(A)
is thus a partial function on Q. The action of m on a state q is also denoted
q · m.
Kleene’s well-known theorem states that for a given language the three fol-
lowing conditions are equivalent : to be rational (or regular), to be accepted
by a finite automaton or to be accepted by a finite deterministic automaton.
Since rational languages are closed under reversal, the rational languages
are also exactly the languages accepted by finite codeterministic automata.
An automaton A is codeterministic if the reverse automaton Ar obtained
by reversing the edges of A is deterministic. This is equivalent to saying
that A contains a unique final state and does not contain any pair of edges
of the form q1

a
→ q and q2

a
→ q with q1 6= q2.
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q1

q2

q

a

a

Figure 1.2: The forbidden configuration in a codeterministic automaton.

An automaton that contains neither the configuration given by Figure 1.1
nor the configuration given by figure 1.2 is said to be reversible (or injective
[11, 27]). Thus an automaton is reversible if and only if each letter a induces
a partial one-to-one map from the set of states into itself. The special case
of reversible automata having a unique initial state and a unique final state
has been considered in artificial intelligence in connection with the problem
of inductively inferring general rules from examples [1]. They also have
occurred in the study of the star-height problem [15] and are related to
certain classes of biprefix codes [11]. The corresponding class of languages
is not closed under union and the membership problem for this class is easy
to solve.

Here we consider the general class of reversible automata, with no re-
striction on the sets of initial and final states. Now, the corresponding class
of languages C is closed under (finite) union, but it is no longer trivial to
decide whether or not a given rational language belongs to C. For instance,
the minimal automaton of a language of C is not reversible in general. That
is, there exist languages that can be accepted by a reversible automaton but
whose minimal automaton is not reversible. We propose in this paper four
different characterizations of the class C.

Our first characterization relates the class C to a class of subsets of the
free group. Indeed, one can use reversible automata in a natural way to
define subsets of the free group by considering an edge q

a
→ q′ read “back-

wards” as an edge q′
ā
→ q with label ā, the formal inverse of the letter a in

the free group. In this way, a reversible automaton accepts a subset |A| of
A∗ and a subset ||A|| of the free group such that |A| = ||A|| ∩ A∗. Now
the subsets of the free group accepted by a reversible automaton form the
smallest class of subsets (of the free group) containing the singletons and
closed under the three operations “union”, “product by an element of the
free group”, and “subgroup generated by”. These subsets are also the finite
unions of cosets of finitely generated subgroups of the free group.
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The other characterizations of C are based on a property of the syntactic
monoid. Recall that the syntactic monoid of a subset L of A∗ is the quotient
M(L) of A∗ by the congruence ∼L defined by

u ∼L v if and only if, for every x, y ∈ A∗, xuy ∈ L ⇔ xvy ∈ L
It is also the transition monoid of the minimal automaton of L. The natural
morphism η : A∗ → M(L) = A∗/∼L is called the syntactic morphism and
the subset P = Lη of M(L) is called the syntactic image of L. It is well-
known that a subset of A∗ is rational if and only if its syntactic monoid is
finite. Now, one can show that if L belongs to C, then the idempotents of
M(L) commute. This property is not sufficient, however, to ensure that L
belongs to C. There are three different ways to strengthen this condition to
obtain a characterization of C. The first solution is to require the additional
condition that in L, “plus is equivalent to star”, or more precisely, that, if
xu+y ⊂ L for some words x, u, y ∈ A∗, then xu∗y ⊂ L. This gives our first
characterization. However, this characterization is not fully satisfactory be-
cause it is not clear whether there is an algorithm to verify this additional
condition. We shall treat this problem in detail in section 6 and give a
polynomial algorithm for testing whether a language given by a finite de-
terministic automaton belongs to C. In particular the membership problem
for C is decidable for rational languages. In fact, one can also give a purely
algebraic (and effective) characterization of C : a language L belongs to C if
and only if the idempotents of M(L) commute and the syntactic image P
of L satisfies the following condition : for every s, t ∈ M(L), and for every
idempotent e of M(L),

set ∈ P implies st ∈ P. (∗)

Our last characterization relates C to the profinite group topology of the
free monoid [10, 20, 27]. This topology is defined by a distance in which,
roughly speaking, two words are close if they are not distinguishable by a
group of small cardinality. We show that a rational language L belongs
to C if and only if the idempotent of M(L) commute and L is closed in
this topology. In fact, it has recently been proved, as the conclusion of a
cascade of partial results, that a rational language L is closed if and only
if its syntactic image satisfies Condition (∗). This is a very nice example
of an algebraic characterization of a topological property. It also gives a
simple algorithm for computing the closure of a given rational language.
See [25, 26, 12] for more details.

The paper is organized as follows. Section 2 contains some basic facts
about reversible automata. The connections with the free group are pre-
sented in section 3. The algebraic characterizations are given in section 4
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and the topological aspects of the problem are discussed in section 5. Section
6 is devoted to algorithms and section 7 is a concluding section.

2 Reversible versus bideterministic automata.

A reversible automaton equipped with a unique initial state and a unique
final state is called bideterministic. Thus an automaton is bideterministic if
and only if it is both deterministic and codeterministic.

0 1

2

3 4

5 6

7
b

a a

b a
b

b

b
a

Figure 2.3: A bideterministic automaton.

It is not difficult to see that a trim bideterministic automaton is neces-
sarily minimal. The next proposition, discovered independently by various
authors, characterizes the languages accepted by bideterministic automata.

Proposition 2.1 A language L is accepted by a bideterministic automaton
if and only if the minimal automaton of L is reversible and has a unique
final state.

It is much more difficult to characterize the class C of all the languages
accepted by a reversible automaton.

Example 2.1 The automaton represented in the following diagram is re-
versible and accepts the language {a, ac, bc}. This automaton is not con-
nected.
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a

a

b

c

Figure 2.4: A reversible automaton accepting {a, ac, bc}.

The following construction shows that C is closed under union. Given two
reversible automata A1 = (Q1, A,E1, I1, F1) and A2 = (Q2, A,E2, I2, F2),
we form the disjoint union A of A1 and A2 as follows : A = (Q,A,E, I, F )
where Q (resp. E, I, F ) is the disjoint union of Q1 and Q2 (resp. E1 and E2,
I1 and I2, F1 and F2). Then A is a reversible automaton that accepts L(A1)∪
L(A2). It follows that a language is accepted by a reversible automaton if
and only if it is a finite union of languages accepted by bideterministic
automata.

Since the minimal automaton of a singleton {u} is always reversible, it
follows that C contains all the finite languages. Notice that the minimal
automaton of a language of C is not necessarily reversible. For instance, the
minimal automaton of L = {a, ac, bc} is not reversible.

1

2

3

4

a

b

c

c

Figure 2.5: The minimal automaton of {a, ac, bc}.

3 Reversible automata in the free group.

First recall the definition of the free group on a set A. Let Ã = A∪ {ā | a ∈
A}. The free group FG(A) is the quotient of Ã∗ by the congruence generated
by the relations aā = āa = 1 for every a ∈ A. We denote π : Ã∗ → FG(A)
the natural morphism. We need first to define the subset of the free group
accepted by an automaton. Let A = (Q,A,E, I, F ) be an automaton. We
form the automaton Ã = (Q, Ã, Ẽ, I, F ) by setting

Ẽ = E ∪ {(q′, ā, q) | (q, a, q′) ∈ E}
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Thus, intuitively, to each edge q
a
→ q′ is attached a “reverse” edge q′

ā
→ q

whose label is the formal inverse of a. Now the label of a path in Ã is a
word u in (Ã)∗ that defines the element uπ of the free group. By definition,
the subset of the free group accepted by A is the set

||A|| = |Ã|π

For instance, if A is the automaton of example 2.1, then ||A|| = {a} ∪
〈ab̄〉{ac, bc} where 〈X〉 denotes the subgroup of FG(A) generated by a set
X.

Since |A| = ||A||∩A∗ , it suffices to describe the subsets of the free group
accepted by a reversible automaton to obtain a first characterization of the
class C. We first recall a definition. The rational subsets of the free group
FG(A) form the smallest class R of subsets of FG(A) such that:

(a) every finite subset of FG(A) belongs to R,

(b) if S and T are in R, then so are ST and S ∪ T ,

(c) if S is in R, then so is S∗, the submonoid of R generated by S.

It is easy to show that if S is rational, then 〈S〉 is also rational. In fact, the
rational subgroups of the free group can be characterized as follows (see [5]
for a proof).

Proposition 3.1 A subgroup of FG(A) is rational if and only if it is finitely
generated.

We can now state our first characterization.

Theorem 3.2 A subset S of the free group FG(A) is accepted by a reversible
automaton if and only if S is a finite union of left cosets of finitely generated
subgroups of the free group.

Proof. Let A = (Q,A,E, I, F ) be a reversible automaton. For every p, q ∈
Q, set Ap,q = (Q,A,E, {p}, {q}). Then ||A|| = ∪p∈I,q∈F ||Ap,q|| and, if g is
any element of ||Ap,q||, it is easy to see that ||Ap,q|| = g||Aq,q||. Furthermore,
since ||Aq,q|| = |Ãq,q|π, each ||Aq,q|| is the image of a rational subset of Ã∗

and thus is a rational group. By proposition 3.1, it follows that ||Aq,q|| is
finitely generated, and thus ||A|| is a finite union of left cosets of finitely
generated subgroups of the free group.

Conversely, the class of subsets of the free group accepted by a reversible
automaton is closed under finite union: if Si is accepted by Ai for 1 ≤ i ≤
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n, then the disjoint union of the Ai’s accepts the set ∪1≤i≤nSi. Next, if
(Q,A,E, I, F ) is a reversible automaton, and if g ∈ FG(A), then

g||(Q,A,E, I, F )|| = ||(Q,A,E, I ′, F )||

where I ′ = I · g−1 is the set of states such that there exists a path with
label g from q to a state of I. Finally, it suffices to show that every finitely
generated subgroups of the free group is accepted by a reversible automaton.
Let H be a finitely generated subgroup of FG(A) and let {h1, . . . , hn} be a
set of generators of H. Fix some words ui ∈ Ã∗ such that uiπ = gi and set
U = {u1, . . . un}. Consider the “flower” automaton associated with the ui’s.
This is the automaton B = (Q,A,E, {1}, {1}), where Q = {1} ∪ {(x, y) ∈
Ã+ | xy ∈ U} and E = E1 ∪ E2 ∪ E3, where

E1 = {(1, a, (a, y)) | a ∈ A, ay ∈ U} ∪ {((ā, y), a, 1) | a ∈ A, āy ∈ U}

E2 = {((x, a), a, 1) | a ∈ A, xa ∈ U} ∪ {(1, a, (x, ā)) | a ∈ A, xā ∈ U}

E3 = {((x, ay), a, (xa, y)) | a ∈ A, xay ∈ U}

∪ {((xa, y), a, (x, ay)) | a ∈ A, xāy ∈ U}

Now the automaton B̃ (obtained from B by adding the reverse edges, as
explained above) accepts the language {u1, u2, . . . , un, ū1, ū2, . . . , ūn}

∗ and
thus ||B|| = |B̃|π = H. This automaton is not reversible in general but
can be converted into a reversible automaton accepting H by the following
process. Each step of the process consists in identifying the states q1 and
q2 appearing in one of the configurations given by figures 1.1 and 1.2. This
transforms B into an automaton B′ such that |B| 6= |B′| in general, but such
that ||B|| = ||B′||. The reason is that if q1

a
→ q and q2

a
→ q (or symmetrically,

q
a
→ q1 and q

a
→ q2) are two edges of B, then there is a path of label aā

(resp. āa) between q1 and q2 in B̃. Since the number of states decreases at
each step, one obtains a reversible automaton after a finite number of steps.
One can show that the result does not depend on the order in which the
identifications are made.

The previous construction is illustrated in the following diagram, where
H = 〈ab̄a, abba〉. At each step, the hatchured states are identified.
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a

b

a
a

b b

a →
a

b b

a

a

b →

b b

aa

b

Figure 3.6: Construction of a reversible automaton accepting 〈ab̄a, abba〉.

Here is another version of Theorem 3.2, that is somewhat reminiscent of
Kleene’s theorem.

Theorem 3.3 The subsets of the free group accepted by a reversible au-
tomaton form the smallest class of subsets F such that

(1) ∅ ∈ F and for every g ∈ FG(A), {g} ∈ F ,

(2) if S1, S2 ∈ F , then S1 ∪ S2 ∈ F ,

(3) if S ∈ F and g ∈ FG(A) then gS ∈ F ,

(4) if S ∈ F , then 〈S〉 ∈ F .

Proof. Let S be the class of all subsets of the free group accepted by a
reversible automaton. By theorem 3.2, S is also the class of all subsets of
FG(A) that are finite unions of left cosets of finitely generated subgroups
of the free group. By proposition 3.1, every finitely generated subgroup
is rational and thus every element of S is rational. Now, S contains the
singletons and is closed under finite union and under the operation S → gS
for every element g ∈ FG(A). Finally, if S ∈ S, then S is rational and so
is 〈S〉. By proposition 3.1, 〈S〉 is finitely generated and thus belongs to S.
It follows that S satisfies properties (1)-(4) and thus F ⊂ S. Conversely,
since F is closed under finite union and contains the singletons, it contains
the finite sets and hence, by (4), the finitely generated subgroups of FG(A).
Finally it contains the cosets of finitely generated subgroups by (3) and the
class S by (2). Thus F = S.
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4 An algebraic characterization of C.

Let L be a rational language of A∗. We denote by M(L) the syntactic
monoid of L, by η : A∗ → M(L) the syntactic morphism and by P = Lη the
syntactic image of L. Recall that an element e of a monoid M is idempotent
if e = e2. The following proposition gives two important properties of the
languages of C.

Proposition 4.1 If L is accepted by a reversible automaton, then,

(a) the idempotents of M(L) commute,

(b) for every x, u, y ∈ A∗, xu+y ⊂ L implies xy ∈ L.

Proof. Let A = (Q,A,E, I, F ) be a reversible automaton accepting L. Let
M be the transition monoid of A. Let e be an idempotent of M . Then for
every q ∈ Q, (q · e) · e = q · e whenever q · e is defined. Since A is reversible,
e is an injective partial function and thus q · e = q or is undefined. In
other words, every idempotent is a subidentity on Q. It follows immediately
that the idempotents commute in M . Now, the syntactic monoid M(L)
divides M (see [9, 13, 21] for instance), and since the class of monoids
with commuting idempotents is closed under division, the idempotents also
commute in M(L).

Let x, u, y ∈ A∗ be words such that xu+y ⊂ L. Since M is finite, there
exists an integer n > 0 such that un is idempotent in M , that is, induces a
subidentity on Q. Now since xu+y ⊂ L, there exists an initial state q and a
final state q′ such that q · xuny = q′. Thus (q · x) · un is defined, and hence
is equal to (q · x). Therefore q · xy = q · xuny = q′ whence xy is accepted by
A and thus xy ∈ L.

Condition (b) of the previous proposition is equivalent to a more alge-
braic statement.

Proposition 4.2 For every rational language L, the following conditions
are equivalent:

(b) for every x, u, y ∈ A∗, xu+y ⊂ L implies xy ∈ L,

(c) for every s, t ∈ M(L), and for every idempotent e ∈ M(L), set ∈ P
implies st ∈ P .

Proof. Assume that (b) is satisfied and let s, e, t ∈ M(L) with e idempotent.
Assume that set ∈ P . Then, since η is surjective, there exist some words
x, u, y ∈ A∗ such that xη = s, uη = e and yη = t. Now, for every n > 0,
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(xuny)η = set ∈ P . Thus xu+y ∈ Pη−1 = L, and hence xy ∈ L by (b). It
follows that st = (xy)η ∈ Lη = P .

Conversely, assume that (c) holds, and let x, u, y be words such that
xu+y ⊂ L. Then there exists n > 0 such that un = e is an idempotent.
Setting xη = s and yη = t, we obtain set ∈ Lη = P , and hence st ∈ P by
(c). Therefore xy ∈ L, since (xy)η = st ∈ P .

We now turn to the converse of proposition 4.1, for which we need a
more detailed study of monoids with commuting idempotents. Recall that
an element x of a monoid M is regular if there exists an element y such that
xyx = x and yxy = y. We start with an important combinatorial lemma,
due to Ash [2].

Proposition 4.3 Let M be a monoid with commuting idempotents, and let
η : A∗ → M be a monoid morphism. Then there exists an integer N > 0 such
that every word w ∈ A∗ admits a factorization of the form w = u0v1u1...vkuk

with u1, . . . , uk−1 ∈ A+, u0, uk ∈ A∗, v1, . . . , vk ∈ A+ and

(1) v1η, . . . , vkη are regular elements of M ,

(2) if bi−1 denotes the last letter of ui−1 and ai the first letter of ui, (bivi)η
and (viai)η are not regular,

(3) |u0...uk| ≤ N .

Recall the definition of Green’s relations R and L. Let u and v be two
elements of a monoid M . Then u R v (resp. u L v) if and only if there
exist two elements x, y ∈ M such that ux = v and vy = x (resp. xu = v
and yv = x). An R-class (resp. L-class) is regular if it contains a regular
element. One can show [21] that an element m of a monoid M is regular if
and only if its R-class (resp. L-class) is regular, or equivalently, contains an
idempotent. The next proposition summarizes the properties of R-classes
that are used in this paper.

Proposition 4.4 Let M be a monoid with commuting idempotents. Then

(1) every regular R-class R contains a unique idempotent e,

(2) for every x ∈ R, ex = x,

(3) for every u, v, s ∈ M , u R v R us and us = vs implies u = v.

Proof. Since R is regular, it contains an idempotent e. Let x ∈ R. Then
e R x and thus e = xy and x = ez for some y, z ∈ M . Now ex = eez =
ez = x, which proves (2). In particular, if f is another idempotent of R, one
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has ef = f and fe = e. Since the idempotents commute by assumption, it
follows ef = fe = e = f , proving (1).

We need a little bit more of semigroup theory to prove (3). Since u R us
and u R v, there exist t, a ∈ M such that u = ust and v = ua. Let G be the
minimal ideal of the semigroup S = {x ∈ M | ux = u}. It is a well-known
fact of semigroup theory that the minimal ideal of a semigroup in which the
idempotents commute is actually a group whose identity is an idempotent
f . Therefore uf = u = ust = ustf and ufastf = uastf = vstf = ustf = u.
It follows stf, fastf ∈ G and since G is a group, fa ∈ G, that is ufa = u.
But ufa = ua = v and thus u = v.

Theorem 4.5 A rational language L is accepted by a reversible automaton
if and only if it satisfies conditions (a) and (b) or, equivalently, conditions
(a) and (c).

Proof. By propositions 4.1 and 4.2, it suffices to show that if L satisfies (a)
and (c), then L ∈ C. Let r be the maximum size of an R-class of M(L),
and let N be the integer given by proposition 4.3. Let F be the set of all
the reversible automata of the form B = (Q,A,E, I, F ) where Q contains
at most r(N + 1) states and the language accepted by B is contained in L.
F is a finite set, since there are only a finite number of automata with at
most r(N + 1) states. Let A be the disjoint union of all the automata of
F . Then A is a reversible automaton such that L(A) ⊂ L. To prove that
L(A) is actually equal to L, it suffices to exhibit, for every word w ∈ L, a
reversible automaton B of F such that w ∈ L(B).

Let m = wη and denote by P (m) the smallest subset of M(L) containing
m and satisfying condition (c): for every s, e, t ∈ M(L), with e idempotent,
set ∈ P (m) implies st ∈ P (m). Now, since m ∈ P , P (m) is contained in P
and the language L(m) = P (m)η−1 is contained in L.

We first assume that m is a regular element of M(L). Then, by propo-
sition 4.4, the R-class R of m contains a unique idempotent e and we can
state

Lemma 4.6 The language L(m) is accepted by the reversible automaton
B = (R,A,E, {e}, {m}), where E = {(x, a, x·aη) | x ∈ R, a ∈ A and x(aη) ∈
R}.

Proof. Proposition 4.4 shows that B is reversible. Next, L(B) = Sη−1

where S = { s ∈ M(L) | es = m } and L(m) = P (m)η−1. Therefore, it
suffices to show that S = P (m). First m ∈ S by proposition 4.4, and if
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sft ∈ S for some s, t ∈ M(L) and some idempotent f , then es R esf R
(es)f = (esf)f . It follows that es = esf by proposition 4.4, whence est =
esft = m and st ∈ S. Thus S satisfies condition (c) and P (m) is contained
in S. Conversely, let s ∈ S. Then es = m, and hence 1es = m ∈ P (m).
Therefore, by condition (c), s = 1.s ∈ P (m) and thus S = P (m) as required.

We now turn to the general case. Let w = u0v1u1 · · · vkuk be a fac-
torization of w given by proposition 4.3. For 1 ≤ i ≤ k, let viη = mi,
and let ei be the (unique) idempotent of the R-class of mi. The previous
proposition shows that the language L(mi) is accepted by the automaton
Bi = (Ri, A, ·, ei,mi).

We consider also the minimal automaton B of the word u = u0u1 · · · uk

defined as follows. The set of states is the set of left factors of u and, for
each letter a ∈ A and for each left factor x of u, x · a = xa if xa is a left
factor of u and is undefined otherwise. We now “sew” the automata B and
Bi’s together, according to the following diagram.

e1

B1

v1η e1

B2

v2η . . . ek

Bk

vkη
u0 u1 uk

Figure 4.7: Sewing B and the Bi’s together

Now, proposition 4.3 implies that the resulting automaton is reversible
(the details are omitted), accepts the language

K = u0L(m1)u1 · · · uk−1L(mk)uk

and contains at most r(N + 1) states. We claim that K is contained
in L(m) (and thus in L). Indeed put, for 0 ≤ i ≤ k, si = uiη, so
that m = s0m1s1 · · ·mksk. Since K ⊂ Kηη−1, it suffices to show that
Kη = s0P (m1)s1 · · ·P (mk)sk is contained in P (m). Let T be the set of
all (t1, . . . , tk) of P (m1) × · · · × P (mk) such that s0t1s1 · · · sktk ∈ P (m).
Then T contains (m1, · · · ,mk). Furthermore, if (t1, · · · , tk) ∈ T and if
ti = xifiyi for some idempotent fi, then (s0t1 · · · si−1xi)fi(yisi...sktk) ∈
P (m), and hence, by condition (c), s0t1 · · · si−1xiyisi...sktk ∈ P (m), so that
(t1, . . . , ti−1, xiyi, ti+1, . . . , tk) ∈ T . Therefore T is equal to P (m1) × · · · ×
P (mk) and this concludes the proof.
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5 A topological characterization.

In this section, we give a topological description of the class C. Let us first
define the profinite group topology. One can show that two distinct words u
and v of A∗ can always be separated by a finite group in the following sense:
there exists a finite group G and a monoid morphism ϕ : A∗ → G such that
ϕ(u) 6= ϕ(v). Set, for every u, v ∈ FG(A),

r(u, v) = min { Card(G) | G is a finite group that separates u and v }

and
d(u, v) = e−r(u,v)

with the usual conventions min ∅ = ∞ and e−∞ = 0. Then d is a distance
(in fact an ultrametric distance) which defines a topology on A∗, called
the profinite group topology of the free monoid. This topology, introduced
by Reutenauer [27, 28], is an analogue for the free monoid to the profinite
topology of the free group introduced by M. Hall [10]. It is the coarsest
topology such that every monoid morphism from A∗ into a discrete finite
group is continuous. The free monoid A∗, equipped with this topology, is a
topological monoid. The interested reader is referred to [20, 27] for a more
detailed study of this topology. An example of a converging sequence is
given by the following proposition, proved in [27].

Proposition 5.1 For every word w ∈ A∗, lim
n→∞

wn! = 1.

The next proposition relates reversible automata to this topology.

Proposition 5.2 [27] Every language accepted by a reversible automaton is
closed in the profinite group topology.

The converse is not true in general. For instance, the language a∗b∗ is
closed but is not accepted by any reversible automaton. However, we have

Theorem 5.3 A rational language L is accepted by a reversible automaton
if and only if the idempotents commute in M(L) and L is closed in the
profinite group topology.

Proof. If L is accepted by a reversible automaton, then L is closed by
proposition 5.2 and the idempotents of M(L) commute by proposition 4.1.
Conversely, if L is closed, then L satisfies (b). Indeed, let x, u, y be words
such that xu+y ⊂ L. Then, in particular, for every n > 0, xun!y ∈ L.
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Since L is closed, and since the multiplication is continuous, it follows by
Proposition 5.1 that xy = lim

n→∞
xun!y ∈ L. Thus L satisfies (a) and (b) and

the result follows from theorem 4.5.

In fact, one can characterize the closed languages in the same way.

Theorem 5.4 A rational language of A∗ is closed if and only if it satisfies
condition (c) (or (b)).

The history of this result is quite interesting. It was first conjectured
by the author in [20, 25], and was shown to be equivalent with the Rhodes
“Type II” conjecture in semigroup theory (the author [25, 23] in one direc-
tion, and Margolis and the author [19] in the other direction). It was also
shown to be a consequence of another conjecture on the profinite topology
of the free group, proposed by Reutenauer and the author [26] :

Let H1, . . . , Hn be finitely generated subgroups of FG(A). Then
H1H2 · · ·Hn is closed in the profinite topology.

Then Ash proved the Rhodes conjecture [3, 4], giving as a byproduct the
first (rather indirect) proof of theorem 5.4. Next, Margolis [16] showed that
the two topological conjectures where actually equivalent, giving thus the
first proof of the topological conjecture for the free group. Finally, Ribes
and Zalesskii [29] gave a direct proof of the topological conjecture for the
free group, giving in turn another proof of theorem 5.4.

6 Algorithms

In this section, we give a polynomial time algorithm for testing, given an n-
state deterministic automaton A, whether |A| belongs to C or not. First we
may assume that A is a complete, minimal, deterministic automaton, since
completion and minimalization can be achieved in polynomial time and do
not increase the number of states by more than one.

Before giving the details of our algorithm, let us fix some convenient
notation. Given a finite (complete) deterministic automaton A = (Q,A, ·)
and a positive integer k, we denote by Ak = (Qk, A, ·) the direct product
of k copies of A, where the action of A on Qk is given by (q1, . . . , qk) · a =
(q1 · a, . . . , qk · a). We also denote by Gk(A) the transitive closure of the
directed graph defined by Ak. This construction is illustrated in the figure
below.
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Figure 6.8: An automata A, the automaton A2 and the graph G2(A).

Given a deterministic automaton A = (Q,A, ·), the set of all paths in A
defines an infinite labelled graph G(A), with Q as set of vertices, and the
triples of the form (q, w, q.w) (where w ∈ A+) as edges. A labelled subgraph
of G(A) is said to be a configuration present in A.

We first give a polynomial algorithm for testing whether the idempotents
of M(|A|) commute.

Theorem 6.1 Let A be the minimal automaton of a language L. The idem-
potents of the syntactic monoid of L commute if and only if there exist no
configuration of A of the form

q4 q3 q0 q1 q2
u v u v

u v u v

with q2 6= q4.

Proof. Let M = M(L) and let η : A∗ → M be the natural morphism.
First assume that the idempotents of M commute. If A contains the above
configuration, we have for every n > 0,

q0 · u
nvn = q2 and q0 · v

nun = q4

In particular, since M is a finite monoid, one can choose n such that unη and
vnη are idempotent. Since idempotents commute in M , we obtain q2 = q4.

Conversely, assume that A does not contain the above configuration, and
let e, f be two idempotents of M . Choose u, v ∈ A∗ such that uη = e and
vη = f . We claim that for any state q0 ∈ Q, q0 · uv = q0 · vu. Indeed, set
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q1 = q0 · u, q2 = q1 · v, q3 = q0 · v and q4 = q3 · u. Then since uη and vη are
idempotent, one has q1 · u = q0 · u

2 = q0 · u = q1 and, similarly, q2 · v = q2,
q3 · v = q3 and q4 · u = q4. Thus we have a forbidden configuration unless
q2 = q4, that is q0 · uv = q0 · vu.

Corollary 6.2 There is a polynomial time algorithm for testing whether the
idempotents of the syntactic monoid of |A| commute.

Proof. It suffices to compute G4(A) and to check whether it contains edges
of the form

(

(q0, q1, q3, q4), (q1, q1, q4, q4)
)

and
(

(q0, q1, q2, q3), (q3, q2, q2, q3)
)

with q2 6= q4.

We now turn to the second condition which characterizes the class C, the
condition (*).

Theorem 6.3 Let A = (Q,A,E, {i}, F ) be the minimal automaton of a
language L. Then L satisfies the condition (*) if and only if there exist no
configuration of A of the form

q2 p q q1
y u u

u

with q1 ∈ F and q2 /∈ F .

Proof. Suppose that L satisfies (*), and consider a configuration in A of
the form above. Since A is minimal, every state of A is accessible and in
particular, there exists a word x ∈ A∗ such that i · x = p. It follows, for
every n > 0, i · xuny = p · uny = q · y = q1 ∈ F . Therefore xy ∈ L, that is
i · xy = p · y = q2 ∈ F .

Conversely, suppose that A has no configuration of the form above. As-
sume that for some x, y, u ∈ A∗, xu+y ⊂ L. Let n be an integer such that
unη is idempotent. Set v = un, p = i · x, q = p · v and q1 = q · y. Then
q · v = p · v2 = p · v = q. Furthermore q1 = i · xvy ∈ F since xvy ∈ L.
Thus p · y ∈ F , otherwise A would contain a forbidden configuration.

Corollary 6.4 There is a polynomial time algorithm for testing whether the
language accepted by an n-state minimal automaton is closed.
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Corollary 6.5 There is a polynomial time algorithm for testing whether
the language accepted by an n-state minimal automaton can be accepted by
a reversible automaton.

7 Conclusion.

Let us summarize the four characterizations of the languages accepted by a
reversible automaton into a single statement.

Theorem 7.1 Let L be a rational language. Let M (resp. P ) be its syn-
tactic monoid (resp. image). The following conditions are equivalent:

(1) L is accepted by a reversible automaton,

(2) L = K ∩A∗ where K is a subset of the free group FG(A) consisting of
a finite union of left cosets of finitely generated subgroups of FG(A),

(3) the idempotents of M commute and, for every x, u, y ∈ A∗, xu+y ∈ L
implies xy ∈ L,

(4) the idempotents of M commute and, for every s, t, e ∈ M such that e
is idempotent, set ∈ P implies st ∈ P ,

(5) the idempotents of M commute and L is closed in the profinite group
topology of A∗.

We have also given a polynomial time algorithm for testing whether
the language accepted by a given n-state deterministic automaton can be
accepted by a reversible automaton. This algorithm does not give, however,
any bound on the number of states of the smallest reversible automaton
accepting the language. More precisely, given a language L ∈ C, denote
by m(L) the number of states of its minimal automaton and by c(L) the
number of states of a smallest reversible automaton accepting L. It may
happen that c(L) < m(L), because one can have several initial states in a
reversible automaton. It would be interesting to estimate the functions

r(n) = min{c(L) | m(L) = n} and R(n) = max{c(L) | m(L) = n}

Here is a first estimation.

Proposition 7.2 r(n) = O
(

ln n
ln lnn

)2

Proof. We exhibit, for every n > 2, a language Ln such that c(Ln) ≤ n2

and m(Ln) = n!. This leads to the result by a simple application of Stirling’s
formula. Our construction is adapted from a construction of Birget [6].
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Let A = {a, b} and Qn = {0, 1, . . . , n − 1}. Let a act on Qn as the
cyclic permutation (0, 1, . . . , n−1) and b as the transposition (0, 1). Finally,
let E be the set of edges defined by this action : E = {(q, a, q · a) | q ∈
Qn}∪{(q, b, q · b) | q ∈ Qn}. Thus every word u of A∗ defines a permutation
on Qn (also denoted u). Conversely, since the symmetric group Sn on Qn is
generated by a and b, every permutation on Qn is represented by some word
in A∗. Set, for 0 ≤ k ≤ n − 1, An,k = (Qn, A,E, k, k) and let Ln,k = |An,k|.
Thus Ln,k is the set of all words that represent a permutation on Qn having
k as a fixpoint. Clearly, every An,k is an n-state reversible automaton. It
follows that the language Ln = ∪0≤k≤n−1Ln,k is accepted by an n2-state
reversible automaton (the disjoint union of the An,k’s).

It is easy to construct an automaton with n! states accepting Ln: let Sn

be the set of states, let a and b act on Sn by right multiplication and take
the identity as initial state and the set of all permutations having at least
one fixpoint as set of final states. The resulting automaton accepts Ln.

We now show that the minimal automaton of Ln has precisely n! states.
Let A = (Q,A,E, q0, F ) be this minimal automaton. To avoid any confu-
sion, we shall denote q ·A u the action of a word u on a state q of A. We
claim that if two words u and v define distinct permutations on Qn, then
q0 ·A u 6= q0 ·A v. Since a and b generate Sn, this will imply that A contains
at least n! states. Assume, by contradiction, that q0 ·u = q0 · v. Since u and
v are distinct permutations, there exists a state q ∈ Qn such that q ·u 6= q ·v.
Let w be a word representing the permutation defined as follows

s · w = (s + q · v − q · u)v−1 for every s ∈ Qn

where arithmetic operations are calculated modulo n and v−1 is the inverse
permutation of v. We have by definition

q · uw = (q · u + q · v − q · u)v−1 = (q · v)v−1 = q

and thus uw ∈ Lq and uw ∈ L. On the other hand, we have for every s ∈ Q,

s · vw = (s · v + q · v − q · u)v−1 6= s

for otherwise, s · v + q · v − q · u = s · v and q · v = q · u. Therefore
the permutation represented by vw has no fixpoint and thus vw /∈ L. It
follows that q0 ·A u 6= q0 ·A v, proving the claim and the proposition.

In the opposite direction, the construction of a reversible automaton
given in this article, although effective, would give an enormous upper bound
for R(n), and we don’t have so far any reasonable bound to propose.
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