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FORMALITY FOR LIE ALGEBROIDS

DAMIEN CALAQUE

IRMA, 7 rue René Descartes, F-67084 Strasbourg, France
E-mail address: calaque@math.u-strasbg.fr

ABsTrACT. Using Dolgushev’s generalization of Fedosov’s method for defor-
mation quantization, we give a positive answer to a question of P. Xu: can one
prove a formality theorem for Lie algebroids ? As a direct application of this
result, we obtain that any triangular Lie bialgebroid is quantizable.

INTRODUCTION

The main goal of this paper is to formulate precisely a ‘Kontsevich-like’ (see [)
formality theorem for Lie algebroids and then prove it. This problem has been
proposed by Ping Xu at the end of [X] (question 2). To do it, we use a slightly
modified version of Dolgushev’s equivariant globalisation of Kontsevich’s formality
] (in his paper Dolgushev generalises Fedosov’s geometric construction of star-
products [FY]| to the case of a general manifold).

We would like to mention that most of the proofs given in this paper are similar
to those of [Dol]| and apologize for this repetition.

The paper is organized as follows.

Section 1 is devoted to the presentation of our main results. We first recall some
basic facts about differential geometry for Lie algebroids (see [CW, M| for details).
Then we prove a Hochschild-Kostant-Rosenberg theorem for Lie algebroids and
state our formality theorem. We finally explain why this result implies that any
triangular Lie bialgebroid is quantizable (which has been proved in the case of
regular ones by Ping Xu [[]], see also [NTJ)).

In section 2, we construct resolutions of the desired DGLA using a torsion free
Lie algebroid connexion. It is the more technical part of the paper.

We end the proof of our main theorem in section 3: after twisting a fiberwize
quasi-isomorphism (given by [K]]) we use the resolutions of the previous section to
contract it to the desired one. We also prove an equivariant, version of our result.

We recall in an appendix some facts about L.,-algebras, Hopf algebroids, and
Lie algebroid connections.

Throughout the paper the Einstein convention for summation over repeated in-
dices is assumed.

Acknowledgements. T am grateful to my advisor, B. Enriquez, who has accepted
to lead my research and read carefully this paper. I am also greatly indebted to
G. Halbout for teaching me the ideas of , , @] Discussions on ‘thing-oids’
with P. Xu in Normandie were very enlightening, I express to him my sincere thanks.
T also thank V. Dolgushev for his warned comments.
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2 DAMIEN CALAQUE

1. MAIN RESULTS

1.1. Preliminaries: differential geometry for Lie algebroids.

Definition 1.1 ([M]). A Lie algebroid is a vector bundle E over a manifold X
equipped with a Lie bracket [,] g on sections I'(X, F) and abundlemap p: E — TX
called the anchor such that:

(1) The induced map p: I'(X, E) — I'(X,TX) is a Lie algebra morphism.

(2) For any f € C*(X), v,w € I'(X, E),

[v, fw]g = flv,w]E + (p(v) - flw (Leibniz identity)

Basic objects in differential geometry are tensors. So it is natural to consider
their algebroids analogues which we call E-tensors: for k,l > 0, an E-(k,[)-tensor
is a section of the bundle (2*F) ® (®'E*). In a local base (ei,...,e,) of E with
duale base (£1,...,£") of E*, such an E-tensor T can be written

T() Tu Zk( )ez’1®"'®€ik®§jl®"'®§jl

Ji---Ji

Indices i1, ...,i, and j1,...,J; are respectively called contravariant and covariant.

As in usual differential geometry, one can consider the graded commutative alge-
bra of E-differential forms FQ(X) := I'(X, AE*), which is endowed with a square
zero super-derivation dg : Q*(M) — PQ*t1(M). In local E-coordinates, any
E-k-form w can be written

w(x) = Wiy (z)gh ARERIA glk

where w;, . ;, are coefficients of a covariant E-tensor antisymmetric in indices iy, . . ., 9%,
and

) . ) 0
dp =&'ple;) — %51 A §chj($)a—§k

where [e;, €515 = cfj(2)ex.
In the same way, one can define the differential graded Lie algebra (DGLA for
short) of E-polyvector fields

polyE @ poly @ X /\kJrlE

k>-1 k>—1

endowed with the zero differential and the Lie super-bracket of degree zero which

extend uniquely [,]g as follow: for u € TpolyE, v e TpolyE and w € Ty,

[u, v Aw]p = [u,v]p Aw+ (=1 A [u, w]z
As in the case of E-forms, any E-k-vector field v can be written locally
v(x) = v (2)es, A Aey,
with v® % coefficients of a contravariant E-tensor antisymmetric in indices 41, . . . , 9.

The usual algebra of differential operators can be viewed as a kind of universal
enveloping algebra of the Lie algebra of vector fields. Let us define in a similar way
the algebra of E-differential operators as the quotient of the graded algebra freely
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generated' by C>°(X) (of degree 0) and I'(X, E) (of degree 1) by relations

f®g—fg f9€ C7(X)
fRv—fu feC®(X),vel'(X,E)
v@f—fQu—p)-f  feCTX),vel(X,E)
v1 ®u2 —v2 ®@v1 — [v1,v2]p v € DX, E)
UE carries a natural Hopf algebroid structure (see appendix B) with base algebra
C*(X), source and target maps s = t : C°(X) — UFE the natural inclusion,
coproduct A : UE — UERUE (where ® denotes ®ce(x)) which extends

(1) A(f)=f§1=1§f,Vf€Cw(X)
A(v) =vRl+ 18v,Vv € I'(X, E)
and counit € : UE — C°°(X) which extends
e(f) = f,Vf € C*(X) and €(v) = 0,Yv € T'(X, E)
This allows us to define a Lie super-bracket on the graded vector space
DyoiyE = @ Dt E= @ UES+!
E>—1 E>—1

of E-polydifferential operators in a way similar to appendix @: for homogeneous
elements Pz S Dki (X) (Z = 1,2), [Pl,PQ] = P1 L] P2 — (—1)k1k2P2 o Pl, where

poly
il S = . ~ ~
PleP= Z(*l)ik2id®1®Ak2+1®id®kl7Z(P1) . (1®i<§)P2®1®k17i)
i=0
Remark that mo = 1®1 € Dy, E is such that [mg, mo] = 0, thus (9 = [mo,],[,])

defines a DGLA structure on D,y F. By an easy calculation, one can observe that
0 is simply the Hochschild coboundary operator (up to a sign) for the complex
~ %

® UL.

1.2. Formality for Lie algebroids. Let E — X be a Lie algebroid.

First, in the spirit of the Hochschild-Kostant-Rosenberg theorem we are going
to prove that H*(Dpory £, 0) = T, E (which was first proved in [M] for £ = TX).
Theorem 1.2. Define the map Upgr : (TpoiyE,0) — (Dpory E, 0) by

1

Unkr(vo A+ Atn) = sy D2 o)ty ® - @1,

0ESnt1

ifn>0and v, € V(X,E), and Upi,(f) = f if f € C°(X).
It is a quasi-isomorphism of complexes (i.e., it is a morphism of complexes which
induces an isomorphism in cohomology).

Proof. First, one can immediately check that the image of Uy, is annihilated by
0, i.e. that it is a morphism of complexes.

Now remark that the complex Dp,E is filtered by the total degree of poly-
differential operators. Ty, E carries also a natural filtration (which is in fact a
gradation), namely by degree of polyvector fields. Then Uy, is compatible with
filtrations. Thus we have to prove that Gr(Upky) : Gr(LpoiyE) — Gr(DpoyE) is

LWe consider here a completed tensor product: infinite sums which are finite on any compact
are allowed.
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a quasi-isomorphism of complexes. In Gr(Dp,, E) all components are sections of

some vector bundle on X and 9 is C°°(X)-linear (the same is obviously true for

TpoiyE), therefore we have to show that Gr(Upkr) is a quasi-isomorphism fiberwise.
Fix x € X and consider the vector space V = FE,. One has

Gr(Dpoy E)x = P (V)"
n>0

but it is better to indentify S(V) with the cofree cocommutative coalgebra with
counit C := C(V) @& (R1)*. As above the differential can be expressed in terms of
the cocommutative coproduct A; namely

n—1

()" =1"@id®" =) (-1)id® - @A @ - @id + (-1)"1d*" @ 1*
i=1

Now let us recall a standard result in homological algebra:

Lemma 1.3. Let C be the cofree cocommutative coalebra with counit cogenerated
by a vector space V. Then the natural homomorphism of complexes (N\*V,0) —
(®*C,0) is a quasi-isomorphism.

Apply this lemma in the case when V = E, and remark that Gr(TpoyE)s =
(TpotyE)z = A*V. The theorem is proved. O

Now we claim that D, £ is formal:

Theorem 1.4 (Formality). There exists a quasi-isomorphism Ug of DGLA from
(TpolyE7 0’ [ﬂ]E) to (DpolyE; (9, [;])

When E = TX this is the formality theorem for manifolds presented in [,
section 4.6]. More generally, if the anchor of E is injective then £ C TX is an
integrable distribution (i.e., X is foliated) and thus one obtains a formality theorem
for leafwise polydifferential operators.

1.3. Quantization of triangular Lie bialgebroids. Let £ — X be a Lie alge-
broid with bracket [,]g and anchor p.
Let H=UE, R = C°(X), A defined by (fl), s =t : R — UE be the natural
embedding and € : UE — R extending
e(f)=f.Vf € R=C"(X)
e(v)=0,Yve H=UEFE

It is a Hopf algebroid (see appendix E) Moreover one can obviously extend the
anchor to a map p: UE — U(TX) C End(R). It defines an anchor for the Hopf
algebroid H.

In [X] Ping Xu observes that any Hopf algebroid deformation of UE endows E
with a Lie bialgebroid structure (by taking the semi-classical limit). Recall the

Definition 1.5 ([MX]). A Lie bialgebroid is a Lie algebroid E — X whose dual
bundle E* — X is also a Lie algebroid and such that the differential dg- on
I'(X,A*E) is a derivation of the super-bracket [,]g; namely

Vo,w € T'(X, E),dp~[v,w|g = [dp-v,w]g + [v,dp-w|E

A Lie bialgebroid E is called triangular if dg- = [A,]g for a given A € I'(X, A%E)
satisfying [A, A]lg = 0.
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Reciprocally we say that a Lie bialgebroid is quantizable if there exists a de-
formation of UF whose semi-classical limit is precisely the starting bialgebroid
structure.

Conjecture 1.6. Any Lie bialgebroid is quantizable.

Following [@], Xu shows in @] that to quantize a triangular Lie bialgebroid
it is sufficient to find a twistor (see appendix ) J € (UE ®g UE)[[A]] such that
J‘,;bjop = A mod A and consider (UE[[A]], Ry, Ay, s7,ts,€). We construct such a J
with the help of our formality theorem @

Theorem 1.7. Any triangular Lie bialgebroid is quantizable.
Proof. Let us define
-
J=mo+ Y. HUEE](A,...,A)
n>1
Now since U is a Loo-morphism a = (J —mg) € A(D} , F)[[h]] is a Maurer-Cartan

poly
element, da + 3|, a] = 0. It means that

0 = mo, ]~ mo,mo] + 5 (17,.J] ~ mo, 7] — [7,mo] + [mo, mo))
= o, 1+ 3 (1,7) 2o, 7)) = 5.

Then remark that J!%3J%2 — J1.2372:3 = L[] J].
Finally, since U is a quasi-isomorphism of complexes we have A = Alt(UU(A)) =
L= 4 O(h). 0

2. DOLGUSHEV-FEDOSOV RESOLUTIONS OF Tjiy 2 AND Dyory B

Let E — X be a Lie algebroid with bracket [, ]z and anchor p.

2.1. The Weyl bundle and related bundles. Consider the bundle of algebras
W = S(E*), whose sections are functions on E formal in the fibers. Any section
s € (X, W) can be written locally

oo
s = S(z, y) = Z Siy..a; (x)y“ e 'yil

=0

where y® are formal coordinates on the fibers of E and s;,. ;, are coefficients of a
covariant E-tensor symmetric in indices i1, ..., ;.

In the same way, one can define the bundle 7 = @k>71 Tk of formal fiberwise
polyvector fields on E; TF = W ® A*¥*1E. Any homogeneous section v € I'(X, T*)

is locally of the form

1

oo
o _ ) P
— JO---Jk 21 2
U—E vl* IR ()Yt -y — A N ——
1% OyJo Oyl
=0 Y Y
where v/} /" are coefficients of an E-tensor symmetric in covariant indices i1, . . ., %

and antisymmetric in contravariant indices jo,. .., jk.



6 DAMIEN CALAQUE

Finally, we denote by D = @@ k>—1 D* the bundle of formal fiberwise polydifferen-

tial operators on E; D¥ = W® S(E)®k*1. Any homogeneous section P € I'(X, DF)
is locally of the form

8\O¢O| Hlekl
a(j ak DR —_—
P= ZP Sy oy &9 gy

where a; are multi-indices and P;° ;** are coefficients of an E-tensor symmetric
in covariant indices i1, ..., 1.

For our purposes, we need to tensor these bundles with the exterior algebra
bundle AE*. Namely, we need to consider the space Q(X,B) of E-differential
forms on X with values in B (from now, B will denote either W, T or D). In
this setting, “Q(X, W) has a natural structure of super-commutative algebra, and
EQ(X,T) (resp. PQ(X, D)) is naturally endowed with the DGLA structure induced
fiber-by-fiber by the DGLA structure of Tpory (Ropmar) (£e8D- Doty (R 5y mar))- Let
us denote the differential and the Lie super-bracket in £Q(X,D) by 0 and [,]g
respectively, and the Lie super-bracket in “Q(X,7T) by [,]s.

In what follows we denote the same operations on these three different algebras
by the same letters when it does not lead to any confusion.

The differential § = &' 27 : PQ*(X, W) — FQ*T(X, W) (§* = 0) can obviously
extend to “Q(X,T) and PQ(X, D). Namely, § = [¢'5%, s on “Q(X,T) and § =
[t a?ﬁ' .-l on FQ(X, D). By definition, ¢ is a derivation of the Lie algebras #Q(X, T)
and FQ(X, D). Moreover, § and 0 super-commute since the multiplication operator

m is d-closed (dm = 0). Consequently, ¢ is compatible with DGLA structures on
FQ(X,T) and PQ(X, D).

Proposition 2.1. For all n > 0, H"(*Q(X,B),d) = 0, and H(PQ(X,B),d) =
FOB is the space of sections of B that are constant in the fibers.

Proof. Let us introduce the operator §* = y%i(e;) of contraction with the Euler
vector field O = y'e;. On sections of Q¥ (X, B) polynomial of degree [ in the
fibers, §0* + ¢*6 = (k + 1)id (one can compute it in coordinates or use the Cartan
formula for the Lie derivative by ©g). So we define the operator x to be k%rlé* on
E-k-differential forms with value in B and [-polynomial in the fibers for k& +1 > 0,
and 0 on sections of I constant in the fibers. Then one has

(2) u = 0ru + Kéu + Hu ue FQ(X,B)
where Hu = ujyi—gi—q € FOB is the harmonic part of u. O
2.2. Flattening the connection. Let V be a linear torsion free E-connection (it
always exists).

The connection defines a derivation of Q(X, W) (which we will identify by the

same symbol V). Denote by Fi—“j (z) Christoffel’s symbols of V; thus one can write
the induced derivation in local coordinates

V=dg+T
where dp is as in section [L.1 and I' = —¢'T¥, (2)y’ 52
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This derivation V obviously extends to derivations of the DGLA ¥Q(X,7) and
FQO(X,D). Namely
V=dg+[,]s: PO X, 7)) - FQ(X,T)
V=dp+[]e: PQ"(X,D) - EQ*t(X,D)
On one hand it is clear by definition that V is indeed a derivation of the Lie super-
algebra structures. On the other hand dg(m) = 0 and [I',m]g = 0 (this is just

Leibniz rule), and hence V super-commutes with 9.
Since the connection is torsion free (i.e., Fi—“j fl“fi = cfj), V and ¢ super-commute:

; . 1 0
V6 + 0V =& N (D) () — §ij($))a—yk =
The standard curvature E-(1,3)-tensor of the connection induces an operator R
on Q(X, W) which is given in local coordinates by

0

Lo 9 ) "
R=-5¢ Agﬂjok(x)yka—yl; For (X, W) — P (X, W)

where Réjk are the coeflicients of the curvature E-tensor (@) Then one has

V? =& ANE(TRTS,, + ple;) - Tiy, + 5Cij I

oyl
Obviously V2 acts as [R,]s and [R,-]g respectively on £Q(X,T) and Q(X, D).

Eventhough V is not square zero in general, we use it to deform the differential
0. Namely, using an element

(3) A=) kAl L yn Ly e EQNx,T% c Pal(x,D°)
p=2

oyI
we construct a new derivation
D=V -§+A: FQ*(X, W) — PQ*TH(X,W)
(4) D=V -6+[A,]s: PO (X, T) — POTY(X,T)
D=V -6+[4,]c: PO (X, D) - FQ*TI(X,D)

In some sens, V can be viewed as a connection on the "big" bundles B which we
flatten recursively by adding terms of higher polynomial degree in the fibers.

Proposition 2.2. There exists an element A as in (B) such that kKA = 0 and the
corresponding derivation D (ﬂ) is square zero, D? = 0.

In what follow, we write [4, ] for A-, [A,"]s, [4,]¢ when B is respectively W,
T, D.

Proof. Since k raises the polynomial degree in the fibers (i.e., in y), there is a unique
solution A in the form () to equation

(5) A=kKR+rK(VA+ %[A, A))

First observe that k2 = 0 implies that kA = 0.
Now let us show that A satisfies equation

1
(6) JA=R+VA+ 5[4 4]
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which obviously implies that D? = 0.
Using () together with kA = 0 = HA one finds that

(7) KOA= KR+ K(VA+ 2[4, 4)

Define C = —6A+ R+ VA + }[A, A]. Due to @ ~C = 0, and reformulating
Bianchi’s identities for R one can show that 6R = 0 = VR. These equalities,
together with (), imply that C = k(VC + [4, C]). Since the operator & raises the
polynomial degree in the fiber, this latter equation has a unique zero solution.

Thus A satisfies (E) and the proposition is proved. O

2.3. Acyclicity of the complexes. Resolutions.
Theorem 2.3. H*(¥Q(X,B),D) = H(*Q(X,B), D) = F°B.
Proof. Using arguments similar to those of the proof of proposition E, one can
show that H*(EQ(X,B), D) = H*(FQ(X, B), D) (see [Dol], theorem 3] for details).

Let us now prove that H°(FQ(X,B), D) = F°B. For any uo € F°B, there is a
unique solution v € FQO(X,B) = I'(X, B) of the equation
(8) u=1ug + k(Vu+ [4,u])
(still because  raises the polynomial degree in the fibers). It is obvious that
Hu = ug; let us prove that Du = 0. Let v = Du, then Dv =0 = Hv, and kv =0
after (§). Then use () to find

v=r(Vv+[4,v])

Again, this equation has a unique zero solution and consequently v = Du = 0.

We have defined a linear map 9 : F°B — Z°(FQ(X,B), D) = H°(¥Q(X, B), D)
that sends uo to the solution u = ¥(up) of (§) and such that H(9(ug)) = uo.
This map is obviously injective: the solution of (B) is zero if and only if ug = 0.

It is also surjective: if v € Z°(PQ(X,B), D) is such that Hv = 0 then by ()
v=r(Vv+[A4,v]) and so v = 0. O

In the case of the Weyl bundle B = W, one can easily show that
H: H*(FQX,W),D) = Z2°(PQ(X,W), D) — F'W = C>*(X)

is a morphism of commutative algebras.

In the same spirit we have F°7T = I'(X, AE) = Tpoy E. On the other hand the
differential D respects the DGLA structure on Q(X,7) and thus its homology
acquires a DGLA structure. In the following proposition we show that H respects
the DGLA structures.

Proposition 2.4. H*(PQ(X,7),D)) 2pcra Tpory FF

Proof. Let u,v € Z9(PQ(X,T), D). We are going to show that

(9) H([u,v]s) = [H(u), H(v)]e

Since H preserves the exterior product of polyvector fields it is sufficient to prove
it in the following two cases: first when ug = H(u) and vo = H(v) are vector fields,

next when up = H(u) a vector field and f = H(v) is a function.
First case. Let ug = ui(:z:)a%i and vy = v¥(x) ;’yi be vector fields. Note that

9
oy*

o, vol e = (uiplen)o* +w'vichy — vipler)u®)
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Then, by an easy calculation one obtains

I(uo) = uty(plei)u’ + Fi—“juj_')ag% mod [y/?
v o= J(vo) = v+y(p(e)v* JrFfjvJ)W mod |y|?
And thus
fuls = wi(plev + Toi) e — vi(pleut + Thu))2: mod [y
= (u'p(e)v® + cfuiv? — vzp(ei)uk)% mod |y
= V([uo,vo]p) mod |y

Second case. Let ug = u'(z) 821- be a vector field and f be a function. One has

[uo, f15 = p(uo)f = u'ple;) f
Since v = J(f) = f +y'p(e;) f mod |y|?> we obtain

fu,0]s = u'p(e;) f mod Jy|

Consequently (E) is satisfied and H is an isomorphism of graded Lie algebras. Since
the differentials are both zero it is a DGLA-isomorphism. O

As above D preserves the DGLA structure on £Q(X, D) and thus its homology
is also a DGLA. Using the PBW theorem for Lie algebroids (see [Rl, NWX]]) one
finds that FOD = T'(X,®*S(FE)) and Dy, E = & U(E) are isomorphic as (filtered)
vector spaces. Again we have:

Proposition 2.5. H*(FQ(X,D), D) ®pgra Dpory E

Proof. Let us first set 70 = 1 and 741 = yleimp — yiyjl"ﬁj(x)g—;l}. For any k €
N 73 is a well-defined element of I'(X, W) ®ce(x) UE. Then for any fiberwise

differential operator constant in the fibers u = wu® - (x)ajh ...ayiik we define
p(u) = % (H ®id)(u - 7) and compute
Lo
pu) = i 1tk () Z €y, *€i,,  mod Up—1(E)

€Sk

Thus p is filtered and its associated graded map coincides with the usual isomor-
phism T'(X, S¥(E))SU(E)/Uk-1(E) (see [NWX|, proof of theorem 3]). Conse-
quently p is an isomorphism which naturaly extends to an isomorphism from F°D
to DporyE. Moreover, po A = Ao pon I'(X, S(E)).

Next we also have HoA = AoH on Z°(EQ(X, D), D) and thus the composition
poM : Z9(EQ(X,D), D) — Dy, E is compatible with coproducts. In particular it
commutes with differentials: (o H)od = do (uoH).

Finally, due to the compatibility with coproducts and to the special form of
the brackets (see m and ) it is now sufficient to show that u o H restricts
to a morphism of associative algebras between Z°(PQ(X,D°), D) and U(E); we
have to prove that PiP, = po H(ﬁlf’g) where P; are generators of U(E) and
P; =9 o u~'(P;). There are four distinct cases:

First case. Py = u'(z)e; and P, = v’ (x)e; are vector fields. Then p=!(Py) = u’ 6(?;“

pw (P = vj% and thus H(P1P2) = uivjﬁ + ul(p(e;)vF + Ffjvj)%. And
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since p(u'v’ 6y?;yj) = su'v?(ese; + eje; — (I + % )ex) one computes
o 1. _ .
PP, = uevie;= i(uzvj (eiej +eje; + cfjek)) +u'ple)v'e;
o 2 ik ) ~ ~
— (2 2 3 —
=t o T plen)e) ) = e WP

Second and third cases. Py = u'(z)e; is a vector field and P, = f is a function. Since
p~t(Py) = f we have PLPy = u'(fei+p(ei) f) = p(u' (f o0 +p(ei) f)) = poH (P P)
and P2P1 = fuiei = ,u(ful el ) = uo H(PQPl)

oy*
Fourth case. Py = f and P, = g are functions. P1P, = fg = po H(P P»).
Consequently p o H is a DGLA-isomorphism. O

3. PROOF OF THEOREM m

3.1. Twisting a fiberwise quasi-isomorphism. In virtue of properties 1 and 2 in
theorem [A.d we have a fiberwise quasi-isomorphism U from (EQ(X,T),0,[,]s) to
(FQ(X,D),0,[,]c). Our purpose is to twist Ug in order to get a quasi-isomorphism
U from (EQ(Xv T)a D, [a ]S) to (EQ(Xv T)a 0+ D, [a ]G)

Let us recall that the differential D can be written locally in the form
D=dg+[B,"]s: EQ*(X,T) - EQ*HL(X,T)
D=dg+[B,]c: FQ*(X,D) — EQ**+(X,D)

where B = —¢° 62i — §iF§j($)yj% + szz éiAi'cjl...jp (z)ylt - yPr B(Zk
Let V be a E-coordinates disk, then we prove

Proposition 3.1. Uy defines a quasi-isomorphism of DGLA from (EQ(V,T),dg,[,]s)
to (PQ(V,D),0 +dg.[,]c)-

Proof. Let us note respectively T and D for #Q(V,T) and #Q(V, D). Since dg
commutes with the fiberwise DGLA structures of T and D, and also with the
fiberwise Lo.-morphism Uk, then Uk defines a Lo,-morphism from (T, dg,[,]s) to
(D,0+dg, [,]c)-

Now observe that (T,0,dg) and (D, d,dg) are double complexes; Ut = Appr 18
an inclusion of double complexes. Thus we have a long exact sequence in cohomol-
ogy

-+ — H*(T,dg) — H*(D,0 + dg) — H*(D/T,0 + dg) — - -
Since the inclusion Apg,- : (T,0) — (D, ) is a quasi-isomorphism of complexes one
has H*(D/T,0) = 0. Then the (second) spectral sequence of the double complex
(D/T, d,dg) goes to zero and thus H*(D/T,0 + dg) = 0.
Consequently Ak, induces an isomorphism H*(T, dg)=>H*(D, 0+dg). It means
that Uk is a quasi-isomorphism of DGLA from (T, dg,[,]s) to (D,0+dg,[,]c¢). O

On V the element B € PQ(V, 7% c EQ(V,D) is well-defined, and since D
is square zero it is a Maurer-Cartan element. It means that (PQ(V,7),D,[,]s)
(resp. (FQ(V,D),0 + D,[,]g)) can be obtained using a twisting of the DGLA
(PQV,T),dg,],)s) (resp. (PQ(V,D),0 + dg,[,]c)) by B (a general description
of twisting procedures for DGLA and their L.,-morphisms is presented in [Do2,
section 2.3]).

Due to properties 3 and 5 in theorem [A., U maps B €#Q(V,7°) to B €¥Q(V, D?).
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Then we can define a quasi-isomorphism U of DGLA from (¥Q(V,T),D,[,]s) to
(FQ(V,T),0 + D,|,]g) using a twisting of Ux by B. Namely,

(10) U(Y) = exp((—=B)A)Uk (exp(BA)Y)

Next proposition tells us that U does not depend on the choice of local coordinates
and thus is defined globaly.

Proposition 3.2. U extends to a quasi-isomorphism of DGLA from (*Q(X,T), D, [,]s)
to (FQ(X,D),0+ D,[,]q).

Proof. See [Dol], proposition 3] (it makes use of property 4 in theorem [A.d). O

3.2. End of the proof: contraction of U. On one hand we know from proposi-
tion 2.4 that there exists a quasi-isomorphism of DGLA Uz from (TpoiyE,0, [, 1E)
to (PQ(X,T),D,[,]s). On the other hand we have also a quasi-isomorphism of
DGLA U from (PQ(X,T),D,|,]s) to (PQ(X,D),0+ D,[,]¢) (section B.1). Let us
define U = U o Ur and claim

Proposition 3.3. One can modify U to construct a quasi-isomorphism of DGLA
U from Tpoiy E to PQ(X, D) whose structure maps take values in Z°(EQ(X, D), D).

Proof. See [Dol], proposition 3]. O

Consequently, composing U with the DGLA-isomorphism of proposition E we
obtain a quasi-isomorphism of DGLA Ug from (Tpay E,0,[,]8) to (DpayE, 0, [,]).
Thus we have proved theorem B Q.E.D.

3.3. Equivariant formality theorem. By a good action of a group G on a Lie
algebroid E — X we mean a smooth action, linear in the fibers and compatible
with anchor map and bracket: for all ¢ € G, u,v € E, g-p(u) = p(g - u) and
g-[u,vlg =[g-u,g-v]g. Such an action extends naturally to Ty E and Dpey B
with the property that all structures are G-invariant. In this context the quasi-
isomorphism of complexes defined in theorem E is G-equivariant. In particular it
restricts to a quasi-isomorphism of complexes Upr : (Tpoiy, E) — (Dpory E)€. The
following theorem is a G-equivariant version of theorem [1.4}.

Theorem 3.4. Consider a Lie algebroid E — X equipped with a good action of a
group G. If there exists a G-invariant torsion free E-connexion V, then one can
construct a G-equivariant quasi-isomorphism of DGLA from TporyE to Dpory E.

Proof. First one can canonically extend the action of G to the spaces “Q(M, W),
EQ(M,T) and £Q(M, D) in such a way that all algebraic structures we have defined
are G-invariant.

First we are going to prove that the resolutions constructed in section @ are
G-equivariant. The differential ¢, the homotopy operator x and the projection H
are obviously G-invariant. The G-invariance of the connection V implies the G-
invariance of the induced derivation (also called V) and of the curvature tensor R.
Thus equation (f) has a G-invariant solution A () and then the differential D () of
proposition E is G-invariant. In the same way, ¥ is G-invariant since it is defined
by G-equivariant equation (E) Thus the DGLA-isomorphisms of propositions
and @ are G-equivariant.

Second, since G acts on the fibers by linear transformations and due to property
2 in theorem the fiberwise quasi-isomorphism Uy is G-equivariant.
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Third we have to prove that the quasi-isomorphim U constructed with the help
of the twisting procedure ([L0) is G-equivariant. Let V be a coordinate disk and B
be the twisting element of section . Since Uk is G-equivariant one has

gURT(B,. B, wa) = URT 9B, gB.gvr, . gon)

where g € G acts on B as on a tensor element. Now a sufficient condition for U to
be G-equivariant is

gU[[?er](By...,B7’U1a...7'Un):Ul[gl+m](g'Ba"-ag'Bagvl""’gvn)

where g- acts by ususal transformations of Christoffel’s symbols in B. Then remark
that g - B — gB is a fiberwise polyvector field linear in the fibers on V; thus using
property 4 of theorem @ we obtain the desired result.

Finally, it is not difficult to see that the contraction procedure of section B.g
involves only G-equivariant cohomological equations (see [[Dol] for details). O

Examples 3.5. (i) Consider the case of a Lie algebra g (i.e., a Lie algebroid
over a point) with the adjoint action of its Lie group G (which is a good action).
Then the Lie algebroid connection given by half the Lie bracket on g is a torsion
free G-invariant connection and we obtain a G-equivariant quasi-isomorphism of
DGLA from A*g to ®*Ug. In particular for any subgroup H C G one obtains a
quasi-isomorphism of DGLA from (A*g) to (@*Ug)*.

(ii) If a group G acts smoothly on a manifold X, then it induces a good action
on TX. In this particular case our theorem is equivalent to theorem 5 of [@]

(iii) Now if F — X is a Lie algebroid with injective anchor (i.e., E is the Lie
algebroid of a foliation), then any smooth action of a group G on X that respects
the foliation (i.e., that sends a leaf to a leaf) gives rise to a good action on E. In
this context we obtain a leafwise version of the previous example.

APPENDIX A. FORMALITY, Lo, AND ALL THAT

A.1. Quasi-isomorphisms of differential graded Lie algebras. Let (g,d,[,])
be a differential graded Lie algebra (DGLA). We assume that the differential is of
degree one and the Lie super-bracket is of degree zero. One can associate to g a
cocommutative coalgebra C,(g[1]) cofreely generated by the vector space g with a
shifted parity, equipped with a coderivation @) having two non-vanishing structure
maps QI = d: g — g[1] and Q¥ =[] : A%2g — g. The fact that (g,d,[,]) is a
DGLA is equivalent to the nilpotency of Q (i.e., @Q* = 0).

Definition A.1. A L.,-morphism between two DGLA (g1,d1, [,]1) and (g2, ds, [, ]2)
is a morphism of cocommutative coalgebras L : Ci(g1) — C.(g2) compatible with
the DGLA structures in the following sens: Q20 L = Lo Q1, where Q); is the square
zero coderivation corresponding to (d;, [,]:)-

Definition A.2. A quasi-isomorphism of DGLA from (g1,d1,[,]1) to (g2,da2,[,]2)
is a Loo-morphism U from g; to g2 whose first structure map uhl g1 — g2 induces
an isomorphism in cohomology H*(g1,d1) = H*(gz, d2).

A DGLA is formal if it is quasi-isomorphic to the graded Lie algebra (with zero
differential) of its cohomology.
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A.2. Kontsevich formality theorem. Let D, (X) be the vector space of poly-
differential operators on a smooth manifold X. It is a graded vector space

DPOIZI(X) = @ Dl;oly(X)

E>—1

where DF, (X) denotes the subspace of operators of rank k + 1. We define on
D,o1y(X) a Lie super-bracket (the Gerstenhaber bracket) given on homogeneous
elements by P; € DI (X) (i = 1,2) by [P, P2]g = Py e Py — (—1)"%2P, ¢ P,
where
k1
Pro Py(fo, s fratks) = D (=)™ Pi(fo,. o, fimt, Pa(fine s fivka)se s Frio)
=0
Associativity condition for the multiplication operator mo € D}, (X) can be writ-
ten in terms of the Gerstenhaber bracket as [mg, mo]g = 0. Thus (9 = [mo, |a, [, ]a)
defines a DGLA structure on D, (X).
Let now Tpo1y(X) be the DGLA of polyvector fields on X:

TPOly(X) = @ T;?oly(X) = @ F(X’ /\k+1TX)

k>—1 E>—1

endowed with the standard Schouten-Nijenhuis bracket and zero differential.
Hochschild-Kostant-Rosenberg theorem says that the antisymmetrisation map

Ankr  Tpoty(X) — Dpory(X) induces an isomorphism H*(Dpory(X), 0) = T;Oly(X),

and Kontsevich has proved in [K]| that D, (X) is formal. We will use a version of

this result when X = R?ormaﬁ

Theorem A.3 (Kontsevich,[K]]). There exists a quasi-isomorphism of DGLA Ug
from Tpoty(R?) to Dyory (RY) which has the following properties:

(1) Uk can be defined for R‘wamal (the formal completion of R¢ at the origin)
as well.

(2) Uk is GL4(R)-equivariant.

(3) For anyn > 2, vy,...,0, € T;?oly

(Rl]i‘ormal)7 UI{?] (Ula e "Un) =0.
(4) For any n>2, v € gly(R) C T (RY ymar)s X25- -+ Xn € Tpoty(Rormar)s

UI[?]('U,XQ, ceesXn) = 0.
(5) UL = Apgy.

APPENDIX B. HOPF ALGEBROIDS

Definition B.1 ([X], see also [[]). A Hopf algebroid is an associative algebra with
unit H together with a base algebra R, an algebra homomorphism s : R — H
and an algebra antihomomorphism ¢ : R — H whose respective images commute
together (the source and target maps, which give H an R-bimodule structure), and
R-bimodule maps A : H — H ®p H (the coproduct) and € : H — R (the counit)
such that

(1) A(1)=1®r1land (A®grid)c A= (id®r A)o A

(2) Ya € R,Vh € HA(h)(t(a) ®rl —1®pg s(a)) =0

(3) Yhy,ha € H, A(h1hg) = A(h1)A(h2)

(4) E(lH) =1g and (E QR ldH) oA = (ldH ®R E) oA =idy
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Given a Hopf algebroid H over a base R, an anchor is a representation p : H —
End(R) which is also a R-bimodule map and satisfies
s(p(x1) - a)xg = xs(a) z € Hya€ R
z1t(p(x2) -a) =xt(a) z€ H,a€R
p(x)-1p =e(x) reH
A twistor ([N]) in a Hopf algebroid H over a base R is an invertible element
J € H ®p H that satisfies
J12’3J1’2 — J1’23J2’3
11 . .
) c oid)(J) = (i re)]) = 1n
Let H be a Hopf algebroid over a base R (resp. with anchor p), and let J =
> %i ®r y; be a twistor. Then one can define a new product on R given by
ax;b=3(p(z;)a)(p(y:)b), a new coproduct A; = J~'AJ, and new source and
target maps given by sj(a) = >, s(p(z;)a)y; and tj(a) = t(p(y;)a)z;. Denote
Ry = (R, *,).
Theorem B.2 (, theorem 4.14). Let (H, R, A, s,t,e) be a Hopf algebroid (resp.

with anchor p). If J is a twistor, then (H, Ry, Ay, sj,t,¢€) is again a Hopf algebroid
(resp. with the same anchor p).

APPENDIX C. LIE ALGEBROID CONNECTIONS
Let (E,[,]r,p) be a Lie algebroid over a smooth manifold X.
Definition C.1. A linear E-connection isamap V : I'(X, E)xI'(X, F) — I'(X, E)
such that

(1) V is C*°(X)-linear with respect to the first argument.
(2) V is R-linear with respect to the second argument.
(3) for all f € C°(X) and u,v € T'(X, E), Vyfv = fV,0+ (p(u) - fv.

In a local base (eq,...,e,) of E, V is completely determined by its Christoffel’s
symbols T'}; which are given by: V., e; = I'}ep.
Remark. As with usual connections, one can define the covariant derivative on
E-tensor in a unique way such that V, is a derivation with respect to the tensor
product of E-tensors, commutes with the contraction of E-tensors, acts as p(u) on
functions, and is R-linear.

Definition C.2. (i) The torsion T of V is the E-(1,2)-tensor defined by
T(u,v) = Vyv — Vyu — [u,v]g
(ii) The curvature R of V is the E-(1,3)-tensor defined by
R(u,v)w = ([Vu, Vo] = Vi)W

Coefficients of these tensors can be expressed in a local base (e1,...,ep):
Tik, = rj _ Fki _ cf,
(12) Rl] _1']\l F%_F%Fl + ( ')-Fl _ ( 4),1’\1 _ mrl
ijk — Limt jk ikt jm T P& gk — P\€j ik — Cij Lt mk

Proposition C.3. There exists a torsion free linear E-connection.

Proof. Let (Uy)q be a covering of X by trivializing opens for E. On each U, one
has a basis (e;); of sections and then can define Vg?)ej = 1lei ;). Let f, be such
that ) fo =1 and define V = fo V(@) ¥ is a torsion free linear E-connection. [
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Proposition C.4 (Bianchi’s identities). For all u,v,w € I'(X, E)
ViR, w) + R(T (u,v),w) + c.p.(u,v,w) =0
R(u,v)w — T(T(u,v),w) — V,T(v,w) + c.p.(u,v,w) =0
Proof. See for example [E]. O
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