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FORMALITY FOR LIE ALGEBROIDSDAMIEN CALAQUEIRMA, 7 rue René Des
artes, F-67084 Strasbourg, Fran
eE-mail address: 
alaque�math.u-strasbg.frAbstra
t. Using Dolgushev's generalization of Fedosov's method for defor-mation quantization, we give a positive answer to a question of P. Xu: 
an oneprove a formality theorem for Lie algebroids ? As a dire
t appli
ation of thisresult, we obtain that any triangular Lie bialgebroid is quantizable.Introdu
tionThe main goal of this paper is to formulate pre
isely a `Kontsevi
h-like' (see [K℄)formality theorem for Lie algebroids and then prove it. This problem has beenproposed by Ping Xu at the end of [X℄ (question 2). To do it, we use a slightlymodi�ed version of Dolgushev's equivariant globalisation of Kontsevi
h's formality[Do1℄ (in his paper Dolgushev generalises Fedosov's geometri
 
onstru
tion of star-produ
ts [Fv℄ to the 
ase of a general manifold).We would like to mention that most of the proofs given in this paper are similarto those of [Do1℄ and apologize for this repetition.The paper is organized as follows.Se
tion 1 is devoted to the presentation of our main results. We �rst re
all somebasi
 fa
ts about di�erential geometry for Lie algebroids (see [CW, M℄ for details).Then we prove a Ho
hs
hild-Kostant-Rosenberg theorem for Lie algebroids andstate our formality theorem. We �nally explain why this result implies that anytriangular Lie bialgebroid is quantizable (whi
h has been proved in the 
ase ofregular ones by Ping Xu [X℄, see also [NT℄).In se
tion 2, we 
onstru
t resolutions of the desired DGLA using a torsion freeLie algebroid 
onnexion. It is the more te
hni
al part of the paper.We end the proof of our main theorem in se
tion 3: after twisting a �berwizequasi-isomorphism (given by [K℄) we use the resolutions of the previous se
tion to
ontra
t it to the desired one. We also prove an equivariant version of our result.We re
all in an appendix some fa
ts about L∞-algebras, Hopf algebroids, andLie algebroid 
onne
tions.Throughout the paper the Einstein 
onvention for summation over repeated in-di
es is assumed.A
knowledgements. I am grateful to my advisor, B. Enriquez, who has a

eptedto lead my resear
h and read 
arefully this paper. I am also greatly indebted toG. Halbout for tea
hing me the ideas of [Do1, Fv, K℄. Dis
ussions on `thing-oids'with P. Xu in Normandie were very enlightening, I express to him my sin
ere thanks.I also thank V. Dolgushev for his warned 
omments.1



2 DAMIEN CALAQUE1. Main results1.1. Preliminaries: di�erential geometry for Lie algebroids.De�nition 1.1 ([M℄). A Lie algebroid is a ve
tor bundle E over a manifold Xequipped with a Lie bra
ket [, ]E on se
tions Γ(X, E) and a bundle map ρ : E → TX
alled the an
hor su
h that:(1) The indu
ed map ρ : Γ(X, E) → Γ(X, TX) is a Lie algebra morphism.(2) For any f ∈ C∞(X), v, w ∈ Γ(X, E),
[v, fw]E = f [v, w]E + (ρ(v) · f)w (Leibniz identity)Basi
 obje
ts in di�erential geometry are tensors. So it is natural to 
onsidertheir algebroids analogues whi
h we 
all E-tensors : for k, l ≥ 0, an E-(k, l)-tensoris a se
tion of the bundle (⊗kE) ⊗ (⊗lE∗). In a lo
al base (e1, . . . , er) of E withduale base (ξ1, . . . , ξr) of E∗, su
h an E-tensor T 
an be written

T (x) = T i1...ik

j1...jl
(x)ei1 ⊗ · · · ⊗ eik

⊗ ξj1 ⊗ · · · ⊗ ξjlIndi
es i1, . . . , ik and j1, . . . , jl are respe
tively 
alled 
ontravariant and 
ovariant.As in usual di�erential geometry, one 
an 
onsider the graded 
ommutative alge-bra of E-di�erential forms EΩ(X) := Γ(X,∧E∗), whi
h is endowed with a squarezero super-derivation dE : EΩ∗(M) → EΩ∗+1(M). In lo
al E-
oordinates, any
E-k-form ω 
an be written

ω(x) = ωi1...ik
(x)ξi1 ∧ · · · ∧ ξikwhere ωi1...ik

are 
oe�
ients of a 
ovariantE-tensor antisymmetri
 in indi
es i1, . . . , ik,and
dE = ξiρ(ei) −

1

2
ξi ∧ ξjck

ij(x)
∂

∂ξkwhere [ei, ej ]E = ck
ij(x)ek.In the same way, one 
an de�ne the di�erential graded Lie algebra (DGLA forshort) of E-polyve
tor �elds
TpolyE =

⊕

k≥−1

T k
polyE =

⊕

k≥−1

Γ(X,∧k+1E)endowed with the zero di�erential and the Lie super-bra
ket of degree zero whi
hextend uniquely [, ]E as follow: for u ∈ T k
polyE, v ∈ T l

polyE and w ∈ TpolyE,
[u, v ∧ w]E = [u, v]E ∧ w + (−1)k(l+1)v ∧ [u, w]EAs in the 
ase of E-forms, any E-k-ve
tor �eld v 
an be written lo
ally

v(x) = vi1...ik(x)ei1 ∧ · · · ∧ eikwith vi1...ik 
oe�
ients of a 
ontravariantE-tensor antisymmetri
 in indi
es i1, . . . , ik.The usual algebra of di�erential operators 
an be viewed as a kind of universalenveloping algebra of the Lie algebra of ve
tor �elds. Let us de�ne in a similar waythe algebra of E-di�erential operators as the quotient of the graded algebra freely



FORMALITY FOR LIE ALGEBROIDS 3generated1 by C∞(X) (of degree 0) and Γ(X, E) (of degree 1) by relations
f ⊗ g − fg f, g ∈ C∞(X)

f ⊗ v − fv f ∈ C∞(X), v ∈ Γ(X, E)

v ⊗ f − f ⊗ v − ρ(v) · f f ∈ C∞(X), v ∈ Γ(X, E)

v1 ⊗ v2 − v2 ⊗ v1 − [v1, v2]E vi ∈ Γ(X, E)

UE 
arries a natural Hopf algebroid stru
ture (see appendix B) with base algebra
C∞(X), sour
e and target maps s = t : C∞(X) → UE the natural in
lusion,
oprodu
t ∆ : UE → UE⊗̃UE (where ⊗̃ denotes ⊗C∞(X)) whi
h extends(1) ∆(f) = f⊗̃1 = 1⊗̃f, ∀f ∈ C∞(X)

∆(v) = v⊗̃1 + 1⊗̃v, ∀v ∈ Γ(X, E)and 
ounit ǫ : UE → C∞(X) whi
h extends
ǫ(f) = f, ∀f ∈ C∞(X) and ǫ(v) = 0, ∀v ∈ Γ(X, E)This allows us to de�ne a Lie super-bra
ket on the graded ve
tor spa
e

DpolyE =
⊕

k≥−1

Dk
polyE =

⊕

k≥−1

UE⊗̃k+1of E-polydi�erential operators in a way similar to appendix A.2: for homogeneouselements Pi ∈ Dki

poly(X) (i = 1, 2), [P1, P2] = P1 • P2 − (−1)k1k2P2 • P1, where
P1 • P2 =

k1∑

i=0

(−1)ik2 id⊗̃i⊗̃∆k2+1⊗̃id⊗̃k1−i(P1) · (1
⊗̃i⊗̃P2⊗̃1⊗̃k1−i)Remark that m0 = 1⊗̃1 ∈ DpolyE is su
h that [m0, m0] = 0, thus (∂ = [m0, ·], [, ])de�nes a DGLA stru
ture on DpolyE. By an easy 
al
ulation, one 
an observe that

∂ is simply the Ho
hs
hild 
oboundary operator (up to a sign) for the 
omplex
⊗̃

∗
UE.1.2. Formality for Lie algebroids. Let E → X be a Lie algebroid.First, in the spirit of the Ho
hs
hild-Kostant-Rosenberg theorem we are goingto prove that H∗(DpolyE, ∂) ∼= T ∗

polyE (whi
h was �rst proved in [V℄ for E = TX).Theorem 1.2. De�ne the map Uhkr : (TpolyE, 0) → (DpolyE, ∂) by
Uhkr(v0 ∧ · · · ∧ vn) =

1

(n + 1)!

∑

σ∈Sn+1

ǫ(σ)vσ0
⊗ · · · ⊗ vσnif n ≥ 0 and vi ∈ Γ(X, E), and Uhkr(f) = f if f ∈ C∞(X).It is a quasi-isomorphism of 
omplexes (i.e., it is a morphism of 
omplexes whi
hindu
es an isomorphism in 
ohomology).Proof. First, one 
an immediately 
he
k that the image of Uhkr is annihilated by

∂, i.e. that it is a morphism of 
omplexes.Now remark that the 
omplex DpolyE is �ltered by the total degree of poly-di�erential operators. TpolyE 
arries also a natural �ltration (whi
h is in fa
t agradation), namely by degree of polyve
tor �elds. Then Uhkr is 
ompatible with�ltrations. Thus we have to prove that Gr(Uhkr) : Gr(TpolyE) → Gr(DpolyE) is1We 
onsider here a 
ompleted tensor produ
t: in�nite sums whi
h are �nite on any 
ompa
tare allowed.



4 DAMIEN CALAQUEa quasi-isomorphism of 
omplexes. In Gr(DpolyE) all 
omponents are se
tions ofsome ve
tor bundle on X and ∂ is C∞(X)-linear (the same is obviously true for
TpolyE), therefore we have to show that Gr(Uhkr) is a quasi-isomorphism �berwise.Fix x ∈ X and 
onsider the ve
tor spa
e V = Ex. One has

Gr(DpolyE)x =
⊕

n≥0

S(V )⊗nbut it is better to indentify S(V ) with the 
ofree 
o
ommutative 
oalgebra with
ounit C := C(V ) ⊕ (R1)∗. As above the di�erential 
an be expressed in terms ofthe 
o
ommutative 
oprodu
t ∆; namely
(−1)n−1∂ = 1∗ ⊗ id⊗n −

n−1∑

i=1

(−1)iid⊗ · · · ⊗ ∆i ⊗ · · · ⊗ id + (−1)n−1id⊗n ⊗ 1∗Now let us re
all a standard result in homologi
al algebra:Lemma 1.3. Let C be the 
ofree 
o
ommutative 
oalebra with 
ounit 
ogeneratedby a ve
tor spa
e V . Then the natural homomorphism of 
omplexes (∧∗V, 0) →
(⊗∗C, ∂) is a quasi-isomorphism.Apply this lemma in the 
ase when V = Ex and remark that Gr(TpolyE)x =
(TpolyE)x = ∧∗V . The theorem is proved. �Now we 
laim that DpolyE is formal:Theorem 1.4 (Formality). There exists a quasi-isomorphism UE of DGLA from
(TpolyE, 0, [, ]E) to (DpolyE, ∂, [, ]).When E = TX this is the formality theorem for manifolds presented in [K,se
tion 4.6℄. More generally, if the an
hor of E is inje
tive then E ⊂ TX is anintegrable distribution (i.e., X is foliated) and thus one obtains a formality theoremfor leafwise polydi�erential operators.1.3. Quantization of triangular Lie bialgebroids. Let E → X be a Lie alge-broid with bra
ket [, ]E and an
hor ρ.Let H = UE, R = C∞(X), ∆ de�ned by (1), s = t : R → UE be the naturalembedding and ε : UE → R extending

ε(f) = f, ∀f ∈ R = C∞(X)
ε(v) = 0, ∀v ∈ H = UEIt is a Hopf algebroid (see appendix B). Moreover one 
an obviously extend thean
hor to a map ρ : UE → U(TX) ⊂ End(R). It de�nes an an
hor for the Hopfalgebroid H .In [X℄ Ping Xu observes that any Hopf algebroid deformation of UE endows Ewith a Lie bialgebroid stru
ture (by taking the semi-
lassi
al limit). Re
all theDe�nition 1.5 ([MX℄). A Lie bialgebroid is a Lie algebroid E → X whose dualbundle E∗ → X is also a Lie algebroid and su
h that the di�erential dE∗ on

Γ(X,∧∗E) is a derivation of the super-bra
ket [, ]E ; namely
∀v, w ∈ Γ(X, E), dE∗ [v, w]E = [dE∗v, w]E + [v, dE∗w]EA Lie bialgebroid E is 
alled triangular if dE∗ = [Λ, ·]E for a given Λ ∈ Γ(X,∧2E)satisfying [Λ, Λ]E = 0.



FORMALITY FOR LIE ALGEBROIDS 5Re
ipro
ally we say that a Lie bialgebroid is quantizable if there exists a de-formation of UE whose semi-
lassi
al limit is pre
isely the starting bialgebroidstru
ture.Conje
ture 1.6. Any Lie bialgebroid is quantizable.Following [Dr℄, Xu shows in [X℄ that to quantize a triangular Lie bialgebroidit is su�
ient to �nd a twistor (see appendix B) J ∈ (UE ⊗R UE)[[~]] su
h that
J−Jop

~
= Λ mod ~ and 
onsider (UE[[~]], RJ , ∆J , sJ , tJ , ε). We 
onstru
t su
h a Jwith the help of our formality theorem 1.4.Theorem 1.7. Any triangular Lie bialgebroid is quantizable.Proof. Let us de�ne

J = m0 +
∑

n≥1

~
n

n!
U

[n]
E (Λ, . . . , Λ)Now sin
e U is a L∞-morphism α = (J −m0) ∈ ~(D1

polyE)[[~]] is a Maurer-Cartanelement, ∂α + 1
2 [α, α] = 0. It means that

0 = [m0, J ] − [m0, m0] +
1

2
([J, J ] − [m0, J ] − [J, m0] + [m0, m0])

= [m0, J ] +
1

2
([J, J ] − 2[m0, J ]) =

1

2
[J, J ]Then remark that J12,3J1,2 − J1,23J2,3 = 1

2 [J, J ].Finally, sin
e U [1] is a quasi-isomorphism of 
omplexes we haveΛ = Alt(U [1](Λ)) =
J−Jop

~
+ O(~). �2. Dolgushev-Fedosov resolutions of TpolyE and DpolyELet E → X be a Lie algebroid with bra
ket [, ]E and an
hor ρ.2.1. The Weyl bundle and related bundles. Consider the bundle of algebras

W = Ŝ(E∗), whose se
tions are fun
tions on E formal in the �bers. Any se
tion
s ∈ Γ(X,W) 
an be written lo
ally

s = s(x, y) =

∞∑

l=0

si1...il
(x)yi1 · · · yilwhere yi are formal 
oordinates on the �bers of E and si1...il

are 
oe�
ients of a
ovariant E-tensor symmetri
 in indi
es i1, . . . , il.In the same way, one 
an de�ne the bundle T =
⊕

k≥−1 T
k of formal �berwisepolyve
tor �elds on E; T k = W ⊗∧k+1E. Any homogeneous se
tion v ∈ Γ(X, T k)is lo
ally of the form

v =

∞∑

l=0

vj0...jk

i1...il
(x)yi1 · · · yil

∂

∂yj0
∧ · · · ∧

∂

∂yjkwhere vj0...jk

i1...il
are 
oe�
ients of an E-tensor symmetri
 in 
ovariant indi
es i1, . . . , iland antisymmetri
 in 
ontravariant indi
es j0, . . . , jk.



6 DAMIEN CALAQUEFinally, we denote byD =
⊕

k≥−1 D
k the bundle of formal �berwise polydi�eren-tial operators on E; Dk = W⊗S(E)⊗k+1. Any homogeneous se
tion P ∈ Γ(X,Dk)is lo
ally of the form

P =

∞∑

l=0

Pα0...αk

i1...il
(x)yi1 · · · yil

∂|α0|

∂yα0
⊗ · · · ⊗

∂|αk|

∂yαkwhere αs are multi-indi
es and Pα0...αk

i1...il
are 
oe�
ients of an E-tensor symmetri
in 
ovariant indi
es i1, . . . , il.For our purposes, we need to tensor these bundles with the exterior algebrabundle ∧E∗. Namely, we need to 
onsider the spa
e EΩ(X,B) of E-di�erentialforms on X with values in B (from now, B will denote either W , T or D). Inthis setting, EΩ(X,W) has a natural stru
ture of super-
ommutative algebra, and

EΩ(X, T ) (resp. EΩ(X,D)) is naturally endowed with the DGLA stru
ture indu
ed�ber-by-�ber by the DGLA stru
ture of Tpoly(Rd
formal) (resp. Dpoly(Rd

formal)). Letus denote the di�erential and the Lie super-bra
ket in EΩ(X,D) by ∂ and [, ]Grespe
tively, and the Lie super-bra
ket in EΩ(X, T ) by [, ]S .In what follows we denote the same operations on these three di�erent algebrasby the same letters when it does not lead to any 
onfusion.The di�erential δ = ξi ∂
∂yi : EΩ∗(X,W) → EΩ∗+1(X,W) (δ2 = 0) 
an obviouslyextend to EΩ(X, T ) and EΩ(X,D). Namely, δ = [ξi ∂

∂yi , ·]S on EΩ(X, T ) and δ =

[ξi ∂
∂yi , ·]G on EΩ(X,D). By de�nition, δ is a derivation of the Lie algebras EΩ(X, T )and EΩ(X,D). Moreover, δ and ∂ super-
ommute sin
e the multipli
ation operator

m is δ-
losed (δm = 0). Consequently, δ is 
ompatible with DGLA stru
tures on
EΩ(X, T ) and EΩ(X,D).Proposition 2.1. For all n > 0, Hn(EΩ(X,B), δ) = 0, and H0(EΩ(X,B), δ) =
F 0B is the spa
e of se
tions of B that are 
onstant in the �bers.Proof. Let us introdu
e the operator δ∗ = yiι(ei) of 
ontra
tion with the Eulerve
tor �eld ΘE = yiei. On se
tions of EΩk(X,B) polynomial of degree l in the�bers, δδ∗ + δ∗δ = (k + l)id (one 
an 
ompute it in 
oordinates or use the Cartanformula for the Lie derivative by ΘE). So we de�ne the operator κ to be 1

k+l
δ∗ on

E-k-di�erential forms with value in B and l-polynomial in the �bers for k + l > 0,and 0 on se
tions of B 
onstant in the �bers. Then one has(2) u = δκu + κδu + Hu u ∈ EΩ(X,B)where Hu = u|yi=ξi=0 ∈ F 0B is the harmoni
 part of u. �2.2. Flattening the 
onne
tion. Let ∇ be a linear torsion free E-
onne
tion (italways exists).The 
onne
tion de�nes a derivation of EΩ(X,W) (whi
h we will identify by thesame symbol ∇). Denote by Γk
ij(x) Christo�el's symbols of ∇; thus one 
an writethe indu
ed derivation in lo
al 
oordinates

∇ = dE + Γwhere dE is as in se
tion 1.1 and Γ = −ξiΓk
ij(x)yj ∂

∂yk .



FORMALITY FOR LIE ALGEBROIDS 7This derivation ∇ obviously extends to derivations of the DGLA EΩ(X, T ) and
EΩ(X,D). Namely

∇ = dE + [Γ, ·]S : EΩ∗(X, T ) → EΩ∗+1(X, T )

∇ = dE + [Γ, ·]G : EΩ∗(X,D) → EΩ∗+1(X,D)On one hand it is 
lear by de�nition that ∇ is indeed a derivation of the Lie super-algebra stru
tures. On the other hand dE(m) = 0 and [Γ, m]G = 0 (this is justLeibniz rule), and hen
e ∇ super-
ommutes with ∂.Sin
e the 
onne
tion is torsion free (i.e., Γk
ij−Γk

ji = ck
ij), ∇ and δ super-
ommute:

∇δ + δ∇ = ξi ∧ ξj(Γk
ij(x) −

1

2
ck
ij(x))

∂

∂yk
= 0The standard 
urvature E-(1, 3)-tensor of the 
onne
tion indu
es an operator Ron EΩ(X,W) whi
h is given in lo
al 
oordinates by

R = −
1

2
ξi ∧ ξjRl

ijk(x)yk ∂

∂yl
: EΩ∗(X,W) → EΩ∗+2(X,W)where Rl

ijk are the 
oe�
ients of the 
urvature E-tensor (12). Then one has
∇2 = ξi ∧ ξj(Γm

ikΓl
jm + ρ(ej) · Γ

l
ik +

1

2
cm
ij Γl

mk)yk ∂

∂yl
= RObviously ∇2 a
ts as [R, ·]S and [R, ·]G respe
tively on EΩ(X, T ) and EΩ(X,D).Eventhough ∇ is not square zero in general, we use it to deform the di�erential

δ. Namely, using an element(3) A =

∞∑

p=2

ξkAj
ki1...ip

yi1 · · · yip
∂

∂yj
∈ EΩ1(X, T 0) ⊂ EΩ1(X,D0)we 
onstru
t a new derivation

D = ∇− δ + A : EΩ∗(X,W) → EΩ∗+1(X,W)

D = ∇− δ + [A, ·]S : EΩ∗(X, T ) → EΩ∗+1(X, T )(4)
D = ∇− δ + [A, ·]G : EΩ∗(X,D) → EΩ∗+1(X,D)In some sens, ∇ 
an be viewed as a 
onne
tion on the "big" bundles B whi
h we�atten re
ursively by adding terms of higher polynomial degree in the �bers.Proposition 2.2. There exists an element A as in (3) su
h that κA = 0 and the
orresponding derivation D (4) is square zero, D2 = 0.In what follow, we write [A, ·] for A·, [A, ·]S , [A, ·]G when B is respe
tively W ,

T , D.Proof. Sin
e κ raises the polynomial degree in the �bers (i.e., in y), there is a uniquesolution A in the form (3) to equation(5) A = κR + κ(∇A +
1

2
[A, A])First observe that κ2 = 0 implies that κA = 0.Now let us show that A satis�es equation(6) δA = R + ∇A +

1

2
[A, A]



8 DAMIEN CALAQUEwhi
h obviously implies that D2 = 0.Using (2) together with κA = 0 = HA one �nds that(7) κδA = κR + κ(∇A +
1

2
[A, A])De�ne C = −δA + R + ∇A + 1

2 [A, A]. Due to (7) κC = 0, and reformulatingBian
hi's identities for R one 
an show that δR = 0 = ∇R. These equalities,together with (2), imply that C = κ(∇C + [A, C]). Sin
e the operator κ raises thepolynomial degree in the �ber, this latter equation has a unique zero solution.Thus A satis�es (6) and the proposition is proved. �2.3. A
y
li
ity of the 
omplexes. Resolutions.Theorem 2.3. H∗(EΩ(X,B), D) = H0(EΩ(X,B), D) ∼= F 0B.Proof. Using arguments similar to those of the proof of proposition 2.2, one 
anshow that H∗(EΩ(X,B), D) = H0(EΩ(X,B), D) (see [Do1, theorem 3℄ for details).Let us now prove that H0(EΩ(X,B), D) ∼= F 0B. For any u0 ∈ F 0B, there is aunique solution u ∈ EΩ0(X,B) = Γ(X,B) of the equation(8) u = u0 + κ(∇u + [A, u])(still be
ause κ raises the polynomial degree in the �bers). It is obvious that
Hu = u0; let us prove that Du = 0. Let v = Du, then Dv = 0 = Hv, and κv = 0after (8). Then use (2) to �nd

v = κ(∇v + [A, v])Again, this equation has a unique zero solution and 
onsequently v = Du = 0.We have de�ned a linear map ϑ : F 0B → Z0(EΩ(X,B), D) = H0(EΩ(X,B), D)that sends u0 to the solution u = ϑ(u0) of (8) and su
h that H(ϑ(u0)) = u0.This map is obviously inje
tive: the solution of (8) is zero if and only if u0 = 0.It is also surje
tive: if v ∈ Z0(EΩ(X,B), D) is su
h that Hv = 0 then by (2)
v = κ(∇v + [A, v]) and so v = 0. �In the 
ase of the Weyl bundle B = W , one 
an easily show that

H : H∗(EΩ(X,W), D) = Z0(EΩ(X,W), D) → F 0W = C∞(X)is a morphism of 
ommutative algebras.In the same spirit we have F 0T = Γ(X,∧E) = TpolyE. On the other hand thedi�erential D respe
ts the DGLA stru
ture on EΩ(X, T ) and thus its homologya
quires a DGLA stru
ture. In the following proposition we show that H respe
tsthe DGLA stru
tures.Proposition 2.4. H∗(EΩ(X, T ), D)) ∼=DGLA TpolyEProof. Let u, v ∈ Z0(EΩ(X, T ), D). We are going to show that(9) H([u, v]S) = [H(u),H(v)]ESin
e H preserves the exterior produ
t of polyve
tor �elds it is su�
ient to proveit in the following two 
ases: �rst when u0 = H(u) and v0 = H(v) are ve
tor �elds,next when u0 = H(u) a ve
tor �eld and f = H(v) is a fun
tion.First 
ase. Let u0 = ui(x) ∂
∂yi and v0 = vi(x) ∂

∂yi be ve
tor �elds. Note that
[u0, v0]E = (uiρ(ei)v

k + uivjck
ij − viρ(ei)u

k)
∂

∂yk



FORMALITY FOR LIE ALGEBROIDS 9Then, by an easy 
al
ulation one obtains
u = ϑ(u0) = u + yi(ρ(ei)u

k + Γk
iju

j) ∂
∂yk mod |y|2

v = ϑ(v0) = v + yi(ρ(ei)v
k + Γk

ijv
j) ∂

∂yk mod |y|2And thus
[u, v]S = ui(ρ(ei)v

k + Γk
ijv

j) ∂
∂yk − vi(ρ(ei)u

k + Γk
iju

j) ∂
∂yk mod |y|

= (uiρ(ei)v
k + ck

iju
ivj − viρ(ei)u

k) ∂
∂yk mod |y|

= ϑ([u0, v0]E) mod |y|Se
ond 
ase. Let u0 = ui(x) ∂
∂yi be a ve
tor �eld and f be a fun
tion. One has

[u0, f ]E = ρ(u0)f = uiρ(ei)fSin
e v = ϑ(f) = f + yiρ(ei)f mod |y|2 we obtain
[u, v]S = uiρ(ei)f mod |y|Consequently (9) is satis�ed and H is an isomorphism of graded Lie algebras. Sin
ethe di�erentials are both zero it is a DGLA-isomorphism. �As above D preserves the DGLA stru
ture on EΩ(X,D) and thus its homologyis also a DGLA. Using the PBW theorem for Lie algebroids (see [R, NWX℄) one�nds that F 0D = Γ(X,⊗∗S(E)) and DpolyE = ⊗̃

∗
U(E) are isomorphi
 as (�ltered)ve
tor spa
es. Again we have:Proposition 2.5. H∗(EΩ(X,D), D) ∼=DGLA DpolyEProof. Let us �rst set τ0 = 1 and τk+1 = yieiτk − yiyjΓl

ij(x)∂τk

∂yl . For any k ∈

N τk is a well-de�ned element of Γ(X,W) ⊗C∞(X) UE. Then for any �berwisedi�erential operator 
onstant in the �bers u = ui1...ik(x) ∂
∂yi1

· · · ∂
∂yik

we de�ne
µ(u) := 1

k! (H⊗ id)(u · τk) and 
ompute
µ(u) =

1

k!
ui1...ik(x)

∑

σ∈Sk

eiσ1
· · · eiσk

mod Uk−1(E)Thus µ is �ltered and its asso
iated graded map 
oin
ides with the usual isomor-phism Γ(X, Sk(E))→̃Uk(E)/Uk−1(E) (see [NWX, proof of theorem 3℄). Conse-quently µ is an isomorphism whi
h naturaly extends to an isomorphism from F 0Dto DpolyE. Moreover, µ ◦ ∆ = ∆ ◦ µ on Γ(X, S(E)).Next we also haveH◦∆ = ∆◦H on Z0(EΩ(X,D0), D) and thus the 
omposition
µ ◦H : Z0(EΩ(X,D), D) → DpolyE is 
ompatible with 
oprodu
ts. In parti
ular it
ommutes with di�erentials: (µ ◦ H) ◦ ∂ = ∂ ◦ (µ ◦ H).Finally, due to the 
ompatibility with 
oprodu
ts and to the spe
ial form ofthe bra
kets (see 1.1 and A.2) it is now su�
ient to show that µ ◦ H restri
tsto a morphism of asso
iative algebras between Z0(EΩ(X,D0), D) and U(E); wehave to prove that P1P2 = µ ◦ H(P̃1P̃2) where Pi are generators of U(E) and
P̃i = ϑ ◦ µ−1(Pi). There are four distin
t 
ases:First 
ase. P1 = ui(x)ei and P2 = vj(x)ej are ve
tor �elds. Then µ−1(P1) = ui ∂

∂yi ,
µ−1(P2) = vj ∂

∂yj and thus H(P̃1P̃2) = uivj ∂2

∂yi∂yj + ui(ρ(ei)v
k + Γk

ijv
j) ∂

∂yk . And



10 DAMIEN CALAQUEsin
e µ(uivj ∂2

∂yi∂yj ) = 1
2uivj(eiej + ejei − (Γk

ij + Γk
ji)ek) one 
omputes

P1P2 = uieiv
jej =

1

2
(uivj(eiej + ejei + ck

ijek)) + uiρ(ei)v
jej

= µ(uivj ∂2

∂yi∂yj
+ ui(vjΓk

ij + ρ(ei)v
k)

∂

∂yk
) = µ ◦ H(P̃1P̃2)Se
ond and third 
ases. P1 = ui(x)ei is a ve
tor �eld and P2 = f is a fun
tion. Sin
e

µ−1(P1) = f we have P1P2 = ui(fei+ρ(ei)f) = µ(ui(f ∂
∂yi +ρ(ei)f)) = µ◦H(P̃1P̃2)and P2P1 = fuiei = µ(fui ∂

∂yi ) = µ ◦ H(P̃2P̃1).Fourth 
ase. P1 = f and P2 = g are fun
tions. P1P2 = fg = µ ◦ H(P̃1P̃2).Consequently µ ◦ H is a DGLA-isomorphism. �3. Proof of theorem 1.43.1. Twisting a �berwise quasi-isomorphism. In virtue of properties 1 and 2 intheorem A.3 we have a �berwise quasi-isomorphism UK from (EΩ(X, T ), 0, [, ]S) to
(EΩ(X,D), ∂, [, ]G). Our purpose is to twist UK in order to get a quasi-isomorphism
Ũ from (EΩ(X, T ), D, [, ]S) to (EΩ(X, T ), ∂ + D, [, ]G).Let us re
all that the di�erential D 
an be written lo
ally in the form

D = dE + [B, ·]S : EΩ∗(X, T ) → EΩ∗+1(X, T )

D = dE + [B, ·]G : EΩ∗(X,D) → EΩ∗+1(X,D)where B = −ξi ∂
∂yi − ξiΓk

ij(x)yj ∂
∂yk +

∑
p≥2 ξiAk

ij1...jp
(x)yj1 · · · yjp ∂

∂ykLet V be a E-
oordinates disk, then we proveProposition 3.1. UK de�nes a quasi-isomorphism of DGLA from (EΩ(V, T ), dE , [, ]S)to (EΩ(V,D), ∂ + dE , [, ]G).Proof. Let us note respe
tively T and D for EΩ(V, T ) and EΩ(V,D). Sin
e dE
ommutes with the �berwise DGLA stru
tures of T and D, and also with the�berwise L∞-morphism UK , then UK de�nes a L∞-morphism from (T, dE , [, ]S) to
(D, ∂ + dE , [, ]G).Now observe that (T, 0, dE) and (D, ∂, dE) are double 
omplexes; U

[1]
K = Ahkr isan in
lusion of double 
omplexes. Thus we have a long exa
t sequen
e in 
ohomol-ogy

· · · → Hk(T, dE) → Hk(D, ∂ + dE) → Hk(D/T, ∂ + dE) → · · ·Sin
e the in
lusion Ahkr : (T, 0) → (D, ∂) is a quasi-isomorphism of 
omplexes onehas H∗(D/T, ∂) = 0. Then the (se
ond) spe
tral sequen
e of the double 
omplex
(D/T, ∂, dE) goes to zero and thus H∗(D/T, ∂ + dE) = 0.Consequently Ahkr indu
es an isomorphism H∗(T, dE)→̃H∗(D, ∂+dE). It meansthat UK is a quasi-isomorphism of DGLA from (T, dE , [, ]S) to (D, ∂ +dE , [, ]G). �On V the element B ∈ EΩ(V, T 0) ⊂ EΩ(V,D0) is well-de�ned, and sin
e Dis square zero it is a Maurer-Cartan element. It means that (EΩ(V, T ), D, [, ]S)(resp. (EΩ(V,D), ∂ + D, [, ]G)) 
an be obtained using a twisting of the DGLA
(EΩ(V, T ), dE , [, ]S) (resp. (EΩ(V,D), ∂ + dE , [, ]G)) by B (a general des
riptionof twisting pro
edures for DGLA and their L∞-morphisms is presented in [Do2,se
tion 2.3℄).Due to properties 3 and 5 in theoremA.3, UK mapsB ∈EΩ(V, T 0) toB ∈EΩ(V,D0).
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an de�ne a quasi-isomorphism Ũ of DGLA from (EΩ(V, T ), D, [, ]S) to
(EΩ(V, T ), ∂ + D, [, ]G) using a twisting of UK by B. Namely,(10) Ũ(Y ) = exp((−B)∧)UK(exp(B∧)Y )Next proposition tells us that Ũ does not depend on the 
hoi
e of lo
al 
oordinatesand thus is de�ned globaly.Proposition 3.2. Ũ extends to a quasi-isomorphism of DGLA from (EΩ(X, T ), D, [, ]S)to (EΩ(X,D), ∂ + D, [, ]G).Proof. See [Do1, proposition 3℄ (it makes use of property 4 in theorem A.3). �3.2. End of the proof: 
ontra
tion of Ũ . On one hand we know from proposi-tion 2.4 that there exists a quasi-isomorphism of DGLA UT from (TpolyE, 0, [, ]E)to (EΩ(X, T ), D, [, ]S). On the other hand we have also a quasi-isomorphism ofDGLA Ũ from (EΩ(X, T ), D, [, ]S) to (EΩ(X,D), ∂ + D, [, ]G) (se
tion 3.1). Let usde�ne U = Ũ ◦ UT and 
laimProposition 3.3. One 
an modify U to 
onstru
t a quasi-isomorphism of DGLA
U from TpolyE to EΩ(X,D) whose stru
ture maps take values in Z0(EΩ(X,D), D).Proof. See [Do1, proposition 5℄. �Consequently, 
omposing U with the DGLA-isomorphism of proposition 2.5 weobtain a quasi-isomorphism of DGLA UE from (TpolyE, 0, [, ]E) to (DpolyE, ∂, [, ]).Thus we have proved theorem 1.4. Q.E.D.3.3. Equivariant formality theorem. By a good a
tion of a group G on a Liealgebroid E → X we mean a smooth a
tion, linear in the �bers and 
ompatiblewith an
hor map and bra
ket: for all g ∈ G, u, v ∈ E, g · ρ(u) = ρ(g · u) and
g · [u, v]E = [g · u, g · v]E . Su
h an a
tion extends naturally to TpolyE and DpolyEwith the property that all stru
tures are G-invariant. In this 
ontext the quasi-isomorphism of 
omplexes de�ned in theorem 1.2 is G-equivariant. In parti
ular itrestri
ts to a quasi-isomorphism of 
omplexes Uhkr : (TpolyE)G → (DpolyE)G. Thefollowing theorem is a G-equivariant version of theorem 1.4.Theorem 3.4. Consider a Lie algebroid E → X equipped with a good a
tion of agroup G. If there exists a G-invariant torsion free E-
onnexion ∇, then one 
an
onstru
t a G-equivariant quasi-isomorphism of DGLA from TpolyE to DpolyE.Proof. First one 
an 
anoni
ally extend the a
tion of G to the spa
es EΩ(M,W),
EΩ(M, T ) and EΩ(M,D) in su
h a way that all algebrai
 stru
tures we have de�nedare G-invariant.First we are going to prove that the resolutions 
onstru
ted in se
tion 2.3 are
G-equivariant. The di�erential δ, the homotopy operator κ and the proje
tion Hare obviously G-invariant. The G-invarian
e of the 
onne
tion ∇ implies the G-invarian
e of the indu
ed derivation (also 
alled ∇) and of the 
urvature tensor R.Thus equation (5) has a G-invariant solution A (3) and then the di�erential D (4) ofproposition 2.2 is G-invariant. In the same way, ϑ is G-invariant sin
e it is de�nedby G-equivariant equation (8). Thus the DGLA-isomorphisms of propositions 2.4and 2.5 are G-equivariant.Se
ond, sin
e G a
ts on the �bers by linear transformations and due to property2 in theorem A.3 the �berwise quasi-isomorphism UK is G-equivariant.



12 DAMIEN CALAQUEThird we have to prove that the quasi-isomorphim Ũ 
onstru
ted with the helpof the twisting pro
edure (10) is G-equivariant. Let V be a 
oordinate disk and Bbe the twisting element of se
tion 3.1. Sin
e UK is G-equivariant one has
gU

[n+m]
K (B, . . . , B, v1, . . . , vn) = U

[n+m]
K (gB, . . . , gB, gv1, . . . , gvn)where g ∈ G a
ts on B as on a tensor element. Now a su�
ient 
ondition for Ũ tobe G-equivariant is

gU
[n+m]
K (B, . . . , B, v1, . . . , vn) = U

[n+m]
K (g · B, . . . , g · B, gv1, . . . , gvn)where g· a
ts by ususal transformations of Christo�el's symbols in B. Then remarkthat g · B − gB is a �berwise polyve
tor �eld linear in the �bers on V ; thus usingproperty 4 of theorem A.3 we obtain the desired result.Finally, it is not di�
ult to see that the 
ontra
tion pro
edure of se
tion 3.2involves only G-equivariant 
ohomologi
al equations (see [Do1℄ for details). �Examples 3.5. (i) Consider the 
ase of a Lie algebra g (i.e., a Lie algebroidover a point) with the adjoint a
tion of its Lie group G (whi
h is a good a
tion).Then the Lie algebroid 
onne
tion given by half the Lie bra
ket on g is a torsionfree G-invariant 
onne
tion and we obtain a G-equivariant quasi-isomorphism ofDGLA from ∧∗g to ⊗∗Ug. In parti
ular for any subgroup H ⊂ G one obtains aquasi-isomorphism of DGLA from (∧∗g)H to (⊗∗Ug)H .(ii) If a group G a
ts smoothly on a manifold X , then it indu
es a good a
tionon TX . In this parti
ular 
ase our theorem is equivalent to theorem 5 of [Do1℄.(iii) Now if E → X is a Lie algebroid with inje
tive an
hor (i.e., E is the Liealgebroid of a foliation), then any smooth a
tion of a group G on X that respe
tsthe foliation (i.e., that sends a leaf to a leaf) gives rise to a good a
tion on E. Inthis 
ontext we obtain a leafwise version of the previous example.Appendix A. Formality, L∞ and all thatA.1. Quasi-isomorphisms of di�erential graded Lie algebras. Let (g, d, [, ])be a di�erential graded Lie algebra (DGLA). We assume that the di�erential is ofdegree one and the Lie super-bra
ket is of degree zero. One 
an asso
iate to g a
o
ommutative 
oalgebra C∗(g[1]) 
ofreely generated by the ve
tor spa
e g with ashifted parity, equipped with a 
oderivation Q having two non-vanishing stru
turemaps Q[1] = d : g → g[1] and Q[2] = [, ] : ∧2g → g. The fa
t that (g, d, [, ]) is aDGLA is equivalent to the nilpoten
y of Q (i.e., Q2 = 0).De�nition A.1. A L∞-morphism between two DGLA (g1, d1, [, ]1) and (g2, d2, [, ]2)is a morphism of 
o
ommutative 
oalgebras L : C∗(g1) → C∗(g2) 
ompatible withthe DGLA stru
tures in the following sens: Q2 ◦L = L◦Q1, where Qi is the squarezero 
oderivation 
orresponding to (di, [, ]i).De�nition A.2. A quasi-isomorphism of DGLA from (g1, d1, [, ]1) to (g2, d2, [, ]2)is a L∞-morphism U from g1 to g2 whose �rst stru
ture map U [1] : g1 → g2 indu
esan isomorphism in 
ohomology H∗(g1, d1) ∼= H∗(g2, d2).A DGLA is formal if it is quasi-isomorphi
 to the graded Lie algebra (with zerodi�erential) of its 
ohomology.



FORMALITY FOR LIE ALGEBROIDS 13A.2. Kontsevi
h formality theorem. Let Dpoly(X) be the ve
tor spa
e of poly-di�erential operators on a smooth manifold X . It is a graded ve
tor spa
e
Dpoly(X) =

⊕

k≥−1

Dk
poly(X)where Dk

poly(X) denotes the subspa
e of operators of rank k + 1. We de�ne on
Dpoly(X) a Lie super-bra
ket (the Gerstenhaber bra
ket) given on homogeneouselements by Pi ∈ Dki

poly(X) (i = 1, 2) by [P1, P2]G = P1 • P2 − (−1)k1k2P2 • P1,where
P1 • P2(f0, . . . , fk1+k2

) =

k1∑

i=0

(−1)ik2P1(f0, . . . , fi−1, P2(fi, . . . , fi+k2
), . . . , fk1+k2

)Asso
iativity 
ondition for the multipli
ation operator m0 ∈ D1
poly(X) 
an be writ-ten in terms of the Gerstenhaber bra
ket as [m0, m0]G = 0. Thus (∂ = [m0, ·]G, [, ]G)de�nes a DGLA stru
ture on Dpoly(X).Let now Tpoly(X) be the DGLA of polyve
tor �elds on X :

Tpoly(X) =
⊕

k≥−1

T k
poly(X) =

⊕

k≥−1

Γ(X,∧k+1TX)endowed with the standard S
houten-Nijenhuis bra
ket and zero di�erential.Ho
hs
hild-Kostant-Rosenberg theorem says that the antisymmetrisation map
Ahkr : Tpoly(X) → Dpoly(X) indu
es an isomorphism H∗(Dpoly(X), ∂) ∼= T ∗

poly(X),and Kontsevi
h has proved in [K℄ that Dpoly(X) is formal. We will use a version ofthis result when X = R
d
formal:Theorem A.3 (Kontsevi
h,[K℄). There exists a quasi-isomorphism of DGLA UKfrom Tpoly(Rd) to Dpoly(Rd) whi
h has the following properties:(1) UK 
an be de�ned for R

d
formal (the formal 
ompletion of R

d at the origin)as well.(2) UK is GLd(R)-equivariant.(3) For any n ≥ 2, v1, . . . , vn ∈ T 0
poly(Rd

formal), U
[n]
K (v1, . . . , vn) = 0.(4) For any n ≥ 2, v ∈ gld(R) ⊂ T 0

poly(Rd
formal), χ2, . . . , χn ∈ Tpoly(Rd

formal),
U

[n]
K (v, χ2, . . . , χn) = 0.(5) U
[1]
K = Ahkr. Appendix B. Hopf algebroidsDe�nition B.1 ([X℄, see also [L℄). A Hopf algebroid is an asso
iative algebra withunit H together with a base algebra R, an algebra homomorphism s : R → Hand an algebra antihomomorphism t : R → H whose respe
tive images 
ommutetogether (the sour
e and target maps, whi
h give H an R-bimodule stru
ture), and

R-bimodule maps ∆ : H → H ⊗R H (the 
oprodu
t) and ε : H → R (the 
ounit)su
h that(1) ∆(1) = 1 ⊗R 1 and (∆ ⊗R id) ◦ ∆ = (id⊗R ∆) ◦ ∆(2) ∀a ∈ R, ∀h ∈ H, ∆(h)(t(a) ⊗R 1 − 1 ⊗R s(a)) = 0(3) ∀h1, h2 ∈ H, ∆(h1h2) = ∆(h1)∆(h2)(4) ε(1H) = 1R and (ε ⊗R idH) ◦ ∆ = (idH ⊗R ε) ◦ ∆ = idH



14 DAMIEN CALAQUEGiven a Hopf algebroid H over a base R, an an
hor is a representation ρ : H →End(R) whi
h is also a R-bimodule map and satis�es
s(ρ(x1) · a)x2 = xs(a) x ∈ H, a ∈ R
x1t(ρ(x2) · a) = xt(a) x ∈ H, a ∈ R
ρ(x) · 1R = ε(x) x ∈ HA twistor ([X℄) in a Hopf algebroid H over a base R is an invertible element

J ∈ H ⊗R H that satis�es(11) J12,3J1,2 = J1,23J2,3

(ε ⊗R id)(J) = (id⊗R ε)(J) = 1HLet H be a Hopf algebroid over a base R (resp. with an
hor ρ), and let J =∑
i xi ⊗R yi be a twistor. Then one 
an de�ne a new produ
t on R given by

a ∗J b =
∑

i(ρ(xi)a)(ρ(yi)b), a new 
oprodu
t ∆J = J−1∆J , and new sour
e andtarget maps given by sJ (a) =
∑

i s(ρ(xi)a)yi and tJ(a) = t(ρ(yi)a)xi. Denote
RJ = (R, ∗J).Theorem B.2 ([X℄, theorem 4.14). Let (H, R, ∆, s, t, ε) be a Hopf algebroid (resp.with an
hor ρ). If J is a twistor, then (H, RJ , ∆J , sJ , tJ , ε) is again a Hopf algebroid(resp. with the same an
hor ρ).Appendix C. Lie algebroid 
onne
tionsLet (E, [, ]E , ρ) be a Lie algebroid over a smooth manifold X .De�nition C.1. A linear E-
onne
tion is a map∇ : Γ(X, E)×Γ(X, E) → Γ(X, E)su
h that(1) ∇ is C∞(X)-linear with respe
t to the �rst argument.(2) ∇ is R-linear with respe
t to the se
ond argument.(3) for all f ∈ C∞(X) and u, v ∈ Γ(X, E), ∇ufv = f∇uv + (ρ(u) · f)v.In a lo
al base (e1, . . . , er) of E, ∇ is 
ompletely determined by its Christo�el'ssymbols Γk

ij whi
h are given by: ∇ei
ej = Γk

ijek.Remark. As with usual 
onne
tions, one 
an de�ne the 
ovariant derivative on
E-tensor in a unique way su
h that ∇u is a derivation with respe
t to the tensorprodu
t of E-tensors, 
ommutes with the 
ontra
tion of E-tensors, a
ts as ρ(u) onfun
tions, and is R-linear.De�nition C.2. (i) The torsion T of ∇ is the E-(1, 2)-tensor de�ned by

T (u, v) = ∇uv −∇vu − [u, v]E(ii) The 
urvature R of ∇ is the E-(1, 3)-tensor de�ned by
R(u, v)w = ([∇u,∇v] −∇[u,v]E )wCoe�
ients of these tensors 
an be expressed in a lo
al base (e1, . . . , en):(12) T k

ij = Γk
ij − Γk

ji − ck
ij

Rl
ijk = Γl

imΓm
jk − Γm

ikΓl
jm + ρ(ei) · Γ

l
jk − ρ(ej) · Γ

l
ik − cm

ij Γl
mkProposition C.3. There exists a torsion free linear E-
onne
tion.Proof. Let (Uα)α be a 
overing of X by trivializing opens for E. On ea
h Uα onehas a basis (ei)i of se
tions and then 
an de�ne ∇

(α)
ei ej = 1

2 [ei, ej ]. Let fα be su
hthat ∑
α fα = 1 and de�ne ∇ = fα∇

(α). ∇ is a torsion free linear E-
onne
tion. �
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hi's identities). For all u, v, w ∈ Γ(X, E)

∇uR(v, w) + R(T (u, v), w) + c.p.(u, v, w) = 0

R(u, v)w − T (T (u, v), w) −∇uT (v, w) + c.p.(u, v, w) = 0Proof. See for example [Fs℄. �Referen
es[CW℄ A. Cannas da Silva, A. Weinstein, Geometri
 models for non
ommutative algebras, BerkeleyMathemati
s Le
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