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Abstract

An approximation Ansatz for the operator solution, U(z′, z), of a hyperbolic first-

order pseudodifferential equation, ∂z + a(z, x,Dx) with Re(a) ≥ 0, is constructed

as the composition of global Fourier integral operators with complex phases. The

symbol a(z, .) is assumed to have a regularity as low as Hölder, C 0,α, with respect to

the evolution parameter z. We prove a convergence result for the Ansatz to U(z′, z)

in some Sobolev space as the number of operators in the composition goes to ∞,

with a convergence of order α. We also study the consequences of some truncation

approximations of the symbol a(z, .) in the construction of the Ansatz.

AMS 2000 subject classification: 35L05; 35L80; 35S10; 35S30; 86A15.

Introduction

We consider the Cauchy problem

∂zu + a(z, x,Dx)u = 0, 0 < z ≤ Z(1)

u |z=0 = u0,(2)

with Z > 0 and a(z, x, ξ) continuous with respect to (w.r.t.) z with values in S 1(Rn ×Rn)

with the usual notation Dx =
1
i
∂x. Further assumptions will be made on the symbol

a(z, x, ξ). We denote U(z, 0) the solution operator of (1)–(2).

This article concerns a representation of the solution of (1)–(2), and more generally

of U(z, 0), as a limit of compositions of infinitesimal approximations as introduced in

[12] and analyses its convergence rate. Here, we prove an optimal convergence rate.

Such a representation is possible even in the case of a regularity as low as Hölder

with respect to the evolution parameter z, in which case the classical Fourier-integral-

operator parametrix construction is not feasible [3, 17]. As opposed to the classical

parametrix construction we obtain here an exact representation of the solution of (1)–

(2).

∗LATP, 39 rue F. Joliot-Curie, 13453 Marseille cedex 13.
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When a(z, x, ξ) is independent of x and z it is natural to treat such a problem by means

of Fourier transformation:

u(z, x′) =

Ï

exp[i〈x′ − x|ξ〉 − za(ξ)] u0(x) d−ξ dx,

where d−ξ := dξ/(2π)n. For this to be well defined for all u0 ∈ S (Rn) we shall impose

the real part of the principal symbol of a to be non-negative. When the symbol a

depends on both x and z we can naively expect

u(z, x′) ≈ u1(z, x′) :=

Ï

exp[i〈x′ − x|ξ〉 − za(0, x′, ξ)] u0(x) d−ξ dx

for z small and hence approximately solve the Cauchy problem (1)–(2) for z ∈ [0, z(1)]

with z(1) small. If we want to progress in the z direction we have to solve the Cauchy

problem

∂zu + a(z, x,Dx)u = 0, z(1) < z ≤ Z,

u(z, .) |z=z(1) = u1(z(1), .),

which we again approximately solve by

u(z, x′) ≈ u2(z, x′) :=

Ï

exp[i〈x′ − x|ξ〉 − (z − z(1))a(z(1), x′, ξ)] u1(z(1), x) d−ξ dx.

This procedure can be iterated until we reach z = Z.

If we denote by G(z′,z) the operator with kernel

G(z′,z)(x′, x) =

∫

exp[i〈x′ − x|ξ〉] exp[−(z′ − z)a(z, x′, ξ)] d−ξ,

then combining all iteration steps above involves composition of such operators: let

0 ≤ z(1) ≤ · · · ≤ z(k) ≤ Z, we then have

uk+1(z, x) = G(z,z(k)) ◦ G(z(k),z(k−1)) ◦ · · · ◦ G(z(1),0)(u0)(x),

when z ≥ z(k). We then define the operator WP,z for a subdivision of P of [0,Z],

P = {z(0), z(1), . . . , z(N)}, with 0 = z(0) < z(1) < · · · < z(N) = Z,

WP,z :=



G(z,0) if 0 ≤ z ≤ z(1),

G(z,z(k))

1∏

i=k

G(z(i),z(i−1)) if z(k) ≤ z ≤ z(k+1).

According to the procedure described above,WP,z(u0) yields an approximation Ansatz

for the solution to the Cauchy problem (1)–(2) with step size∆P = zi−zi−1, i = 1, . . . ,N.

The operator G(z′,z) is a Fourier integral operator (FIO) and is often referred to as the

thin-slab propagator (see e.g. [2, 1, 12]).

Note that a similar procedure can be used to show the existence of an evolution system

by approximating it by composition of semigroup solutions of the Cauchy problem with

z ’frozen’ in a(z, x,Dx) [8, 16]. Note that the thin-slab propagator G(z′,z) is however not

a semigroup nor an evolution family here (see [12, Section 3] and [15]).

The approximation Ansatz proposed here is a tool to compute approximations of the

exact solution to the Cauchy problem (1)–(2) and yields a representation of these so-

lution by means of infinite products of FIOs, even in the case of low regularity on
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the symbol a(z, x, ξ) w.r.t. z. Such computations in applications to geophysical prob-

lems have been used in [2]. In exploration seismology one is confronted with solving

equations of the type

(∂z − ib(z, x,Dt,Dx) + c(z, x,Dt,Dx))v = 0,(3)

v(0, .) = v0(.),(4)

where t is time, z is the vertical coordinate and x is the lateral or transverse coordinate.

The operators b and c are of first order, with real principal parts, b1 and c1, where

c1(z, x, τ, ξ) is non-negative. Note that the Cauchy problem (1)–(2) studied here is

more general. In seismology, low regularity in the coefficients is often encountered.

Because of very fine bedding in sedimentary rocks, for example, heterogeneities can

be observed at every scale. Here, we shall consider a regularity as low as Hölder in the

coefficients w.r.t. the evolution parameter z.

The Cauchy problem (3)–(4) is obtained by a (microlocal) decoupling of the up-going

and down-going wavefields in the acoustic wave equation (see Appendix A in [12] and

[18] for details). In practice, the proposed Ansatz can then be a tool to approximate

the exact solution for the purpose of imaging the Earth’s interior [2, 1]. For such

applications one is inclined to approximate the symbol a(z, x, ξ) itself. We shall study

some consequences of some type of approximations.

In the present paper, we complete the analysis of the convergence of the approximation

scheme WP in Sobolev spaces developed in [12]. Section 1 introduces the Cauchy

problem we study and the precise assumptions made on the symbol a(z, x, ξ), espe-

cially on the real part, c1, and imaginary part, −b1, of its principal symbol. In Section 2

we study the convergence of the AnsatzWP,z(u0) to the solution of the Cauchy prob-

lem (1)–(2) in Sobolev spaces as ∆P goes to 0. A convergence in norm ofWP,z to the

solution operator of the Cauchy problem (1)–(2) is actually obtained (Theorem 2.10):

lim
∆P→0

‖WP,z − U(z, 0)‖(H(s+1),H(s)) = 0,

with a convergence rate of order α when a(z, .) is in C 0,α w.r.t. z, α > 0 thus improving

the result in [12], where only a convergence of order 1
2

was proven in the case α ≥ 1
2
.

Observe that the proposed Ansatz corresponds to a first-order approximation. The

convergence rate found here, of order one in the case of Lipschitz coefficients, is thus

optimal. This is in agreement with the convergence rate for the wavefront set of the

Ansatz proven in [15].

We furthermore obtain (Theorem 2.10)

lim
∆P→0

‖WP,z − U(z, 0)‖(H(s+1),H(s+r)) = 0, 0 ≤ r < 1

with a convergence rate of order α(1 − r) while the operatorWP,z strongly converges

to U(z, 0) in H(s+1). The proof relies on the analysis of the thin-slab propagator G(z′,z)

in [12].

At the end of Section 2 we relax some regularity property of the symbol a(z, .) w.r.t. z

by the introduction of another, yet natural, Ansatz: following [11], the thin-slab prop-

agator, G(z′,z), is replaced by the operator Ĝ(z′,z) with kernel

Ĝ(z′,z)(x′, x) =

∫

exp[i〈x′ − x|ξ〉] exp[−
∫z′

z a(s, x′, ξ)ds] d−ξ.
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In Section 3, we study the implications of approximating the symbol a(z, x, ξ) in the

convergence result. Such approximations are of importance in practice, for instance in

geophysics, as the symbol a(z, x, ξ) is often known by an asymptotic series, which is

truncated for computational reasons. If the symbol a(z, .) is given as

a(z, x, ξ) ∼

∞∑

j=0

a1− j(z, x, ξ),

one may truncate this series and, instead, use

a(z, x, ξ) =

k∑

j=0

a1− j(z, x, ξ)

in the definition of the Ansatz WP,z. More generally, we may assume that a − a ∈

C 0,α([0,Z], S −k(Rn × Rn)). If we denote byW
P,z

the new associated Ansatz, we shall

see in fact thatWP,z(u0) −W
P,z

(u0) is in H(s+k)(Rn) and moreover

‖WP,z −WP,z
‖(H(s),H(s+k)) ≤ CZ sup

z∈[0,Z]

p(a(z, .) − a(z, .)) exp[CZ],

z ∈ [0,Z],

for some appropriately chosen seminorm p on S −k(Rn × Rn).

In this paper, we shall use the notations of [12]. When the constant C is used, its value

may change from one line to another. If we want to keep track of the value of a constant

we shall use another letter. When we write that a function is bounded w.r.t. z and/or ∆

we shall actually mean that z is to be taken in the interval [0,Z] and ∆ in some interval

[0,∆max] unless otherwise stipulated. We shall generally write X, X′, Y , . . . for Rn,

according to variables, e.g., x, x′, y, . . . .

Throughout the paper, we use spaces of global symbols; a function a ∈ C∞(Rn ×Rp) is

in S m
ρ,δ

(Rn × Rp), 0 < ρ ≤ 1, 0 ≤ δ < 1, if for all multi-indices α, β there exists Cαβ > 0

such that

|∂αx∂
β

ξ
a(x, ξ)| ≤ Cαβ (1 + |ξ|)m−ρ|β|+δ|α|, x ∈ Rn, ξ ∈ Rp.

The best possible constants Cαβ, i.e.,

pαβ(a) := sup
(x,ξ)∈Rn×Rp

(1 + |ξ|)−m+ρ|β|−δ|α||∂αx∂
β

ξ
a(x, ξ)|,(5)

define seminorms for a Fréchet space structure on S m
ρ,δ

(Rn × Rp). As usual we write

S m
ρ (Rn×Rp) in the case ρ = 1−δ, 1

2
≤ ρ < 1, and S m(Rn×Rp) in the case ρ = 1, δ = 0.

We shall use, in a standard way, the notation # for the composition of symbols of pseu-

dodifferential operators (ψDO) and make use of the oscillatory integral representation

of the resulting symbol.

1 The homogeneous first-order hyperbolic equation

Let s ∈ R and Z > 0. We consider the Cauchy problem

∂zu + a(z, x,Dx)u = 0, 0 < z ≤ Z,(1.1)

u |z=0 = u0 ∈ H(s+1)(Rn),(1.2)

where the symbol a(z, x, ξ) satisfies the following assumption
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Assumption 1.1.

az(x, ξ) = a(z, x, ξ) = −i b(z, x, ξ) + c(z, x, ξ),

where b ∈ C 0([0,Z], S 1(Rn × Rn)), with real principal symbol b1 homogeneous of de-

gree 1 for |ξ| large enough and c ∈ C 0([0,Z], S 1(Rn ×Rn)) with non-negative principal

symbol c1 homogeneous of degree 1 for |ξ| large enough. Without loss of generality we

can assume that b1 and c1 are homogeneous of degree 1 for |ξ| ≥ 1.

In Section 2, we shall make further regularity assumptions, w.r.t. z, on the symbol

a(z, x, ξ).

We denote by a1 = −ib1 + c1 the principal symbol of a and write b = b1 + b0 with

b0 ∈ C 0([0,Z], S 0(Rn × Rn)) and c = c1 + c0 with c0 ∈ C 0([0,Z], S 0(Rn × Rn)). As-

sumption 1.1 ensures that the hypotheses (i)–(iii) of Theorem 23.1.2 in [5] are satisfied.

Then there exists a unique solution in C 0([0,Z],H(s+1)(Rn)) ∩ C 1([0,Z],H(s)(Rn)) to

the Cauchy problem (1.1)–(1.2).

Furthermore, we have the following energy estimate [5, Lemma 23.1.1] for any func-

tion in C 1([0,Z],H(s)(Rn)) ∩ C 0([0,Z],H(s+1)(Rn))

(1.3) sup
z∈[0,Z]

exp[−λz] ‖u(z, .)‖H(s) ≤ ‖u(0, .)‖H(s)

+ 2

∫Z

0

exp[−λz] ‖∂zu + az(x,Dx)u‖H(s) dz,

with λ large enough (λ solely depending on s).

By Proposition 9.3 in [4, Chapter VI] the family of operators (az)z∈[0,Z] generates a

strongly continuous evolution system. Let U(z′, z) denote the corresponding evolution

system:

U(z′′, z′) ◦ U(z′, z) = U(z′′, z), Z ≥ z′′ ≥ z′ ≥ z ≥ 0.

with

∂zU(z, z0)u0 + a(z, x,Dx)U(z, z0)u0 = 0, 0 ≤ z0 < z ≤ Z,

U(z0, z0)u0 = u0 ∈ H(s+1)(Rn)

while U(z, z0)u0 ∈ H(s+1)(Rn) for all z ∈ [z0,Z]. For the Cauchy problem (1.1)–(1.2)

we take z0 = 0.

We now recall some results obtained in [12]. Let z′, z ∈ [0,Z] with z′ ≥ z and let

∆ := z′ − z. Define φ(z′,z) ∈ C∞(X′ × X × Rn) by

(1.4) φ(z′,z)(x′, x, ξ) := 〈x′ − x|ξ〉 + i∆a1(z, x′, ξ)

= 〈x′ − x|ξ〉 + ∆b1(z, x′, ξ) + i∆c1(z, x′, ξ).

Lemma 1.2. φ(z′,z) is a non-degenerate complex phase function of positive type (at any

point (x′
0
, x0, ξ0) where ∂ξφ(z′,z) = 0).

We put

g(z′,z)(x, ξ) := exp[−∆a0(z, x, ξ)] ∈ S 0(X × Rn)(1.5)
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and define a distribution kernel G(z′,z)(x′, x) ∈ D ′(X′ × X) by the oscillatory integral

G(z′,z)(x′, x) =

∫

exp[i〈x′ − x|ξ〉] exp[−∆a(z, x′, ξ)] d−ξ

=

∫

exp[iφ(z′,z)(x′, x, ξ)] g(z′,z)(x′, ξ) d−ξ.

We denote the associated operator by G(z′,z). (This corresponds to the thin-slab propa-

gator (see e.g. [2, 1]).)

Let J(z′,z) be the canonical ideal locally generated by the phase function φ(z′,z).

Proposition 1.3. There exists ∆1 > 0, such that, for all z′, z ∈ [0,Z], with z′ ≥ z and

∆ = z′ − z ≤ ∆1, the phase function φ(z′,z) globally generates the canonical ideal J(z′,z).

Alternatively, it is also generated by the functions

vξ j
(x′, x, ξ′, ξ) = ∂x′

j
φ(z′,z)(x′, x, ξ) − ξ′j = ξ j − ξ

′
j + i∆∂x j

a1(z, x′, ξ),(1.6)

vx j
(x′, x, ξ′, ξ) = ∂ξ j

φ(z′,z)(x′, x, ξ) = x′j − x j + i∆∂ξ j
a1(z, x′, ξ),

j = 1, . . . , n.

Proposition 1.4. If 0 ≤ ∆ = z′ − z ≤ ∆1, with z′ ≥ z, then the operator G(z′,z) is a

global Fourier integral operator with complex phase and its kernel G(z′,z) is in I0(X′ ×

X, (J(z′,z))
′,Ω

1/2

X′×X
).

We denote the half density bundle on X′ × X by Ω
1/2

X′×X
and note that (J(z′,z))

′ stands

for the twisted canonical ideal, i.e., a Lagrangian ideal (see Section 25.5 in [6]) and

I0(X′ × X, (J(z′,z))
′,Ω

1/2

X′×X
) denotes the associated Lagrangian distributions of order 0.

Theorem 1.5. Let s ∈ R. There exists ∆2 > 0 such that if z′, z ∈ [0,Z], z ≤ z′, with

0 ≤ ∆ := z′ − z ≤ ∆2 then G(z′,z) continuously maps S into S , S ′ into S ′, and

H(s)(Rn) into H(s)(Rn). In fact, there exists C > 0 such that we have the following norm

estimate

‖G(z′,z)‖(H(s),H(s)) ≤ 1 +C∆,

uniformly w.r.t. z and z′ as above.

The approximation Ansatz is defined by

Definition 1.6. Let P = {z(0), z(1), . . . , z(N)} be a subdivision of [0,Z] with 0 = z(0) <

z(1) < · · · < z(N) = Z such that z(i+1) − z(i) = ∆P. The operatorWP,z is defined as

WP,z :=



G(z,0) if 0 ≤ z ≤ z(1),

G(z,z(k))

1∏

i=k

G(z(i),z(i−1)) if z(k) ≤ z ≤ z(k+1).

We chose to use a constant-step subdivision of the interval [0,Z] but the method and

results presented here can be naturally adapted to any subdivision of [0,Z].
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2 Convergence result

Let s ∈ R. In [12, Proposition 3.8], it was proved that, for ∆ sufficiently small, we have

‖(∂z′ + az′ (x,Dx))G(z′,z)‖(H(s),H(s−1)) ≤ C∆β,

with β = min(α, 1
2
) if az(x, ξ) is of Hölder regularity of order α, w.r.t. z. This estimate

yields the convergence result in Sobolev spaces found in [12] with a rate of order β:

‖WP,z − U(z, 0)‖(H(s+1),H(s)) ≤ C∆
β

P
, z ∈ [0,Z].

Here, we shall improve this result and show that the convergence rate is in fact of order

α. The proof presented here is actually simpler than that in [12].

We introduce the following definitions.

Definition 2.1. Let L ≥ 2. A symbol q(z, .) bounded w.r.t. z with values in S 1(Rp × Rr)

is said to satisfy Property (PL) if it is non-negative and satisfies

(PL) |∂αy ∂
β
ηq(z, y, η)| ≤ C(1 + |η|)−|β|+(|α|+|β|)/L (1 + q(z, y, η))1−(|α|+|β|)/L,

z ∈ [0,Z], y ∈ Rp, η ∈ Rr.

We then set ρ = 1 − 1/L and δ = 1/L.

Definition 2.2. Let L ≥ 2. Let ρ∆(z, y, η) be a function in C∞(Rp × Rr) depending on

the parameters ∆ ≥ 0 and z ∈ [0,Z]. We say that ρ∆ satisfies Property (QL) if the

following holds

(QL) ∂αy ∂
β
η(ρ∆ − ρ∆|∆=0)(z, y, η) = ∆m+δ(|α|+|β|)ρ

mαβ

∆
(z, y, η),

for |α| + |β| ≤ L, 0 ≤ m ≤ 1 − δ(|α| + |β|),

where ρ
mαβ

∆
(z, y, η) is bounded w.r.t. ∆ and z with values in S

m−ρ|β|+δ|α|
ρ (Rp × Rr). It

follows that ρ∆(z, y, η) − ρ∆|∆=0(z, y, η) is itself bounded w.r.t. ∆ and z with values in

S 0
ρ(R

p × Rr).

We have the following two lemmas [12]

Lemma 2.3. Let q(z, y, η) be bounded w.r.t. z with values in S 1(Rp × Rr). If q ≥ 0 then

q satisfies Property (PL) for L = 2.

Examples of symbols with such a property with L > 2 are given in [19].

Lemma 2.4. Let q(z, .) be bounded w.r.t. z with values in S 1(Rp ×Rr) and satisfy Prop-

erty (PL). Define ρ∆(z, y, η) = exp[−∆q(z, y, η)]. Then ρ∆ satisfies Property (QL) for

∆ ∈ [0,∆max] for any ∆max > 0. As ρ∆|∆=0 = 1, ρ∆ is itself bounded w.r.t. ∆ and z with

values in S 0
ρ(R

p × Rr).

We shall assume that c1 satisfies property (PL) for some L ≥ 2. We know that it is

always true for L = 2 by Lemma 2.3 but special choices for c1 can be made. Setting

p∆(z, x, ξ) := exp[−∆c1(z, x, ξ)],

we obtain that p∆(z, x, ξ) satisfies property (QL) by Lemma 2.4.

In the spirit of some of the properties proved in [12] we have
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Proposition 2.5. Let q∆(z, x, ξ) be an amplitude in S 0
ρ(R

p × Rp) depending on the

parameters ∆ ≥ 0 and z ∈ [0,Z] that satisfies Property (QL) for |α| = 1 and such that

q∆(z, .)|∆=0 is independent of x. Let rz(x, ξ) be bounded w.r.t. z with values in S s(Rp×Rp)

for some s ∈ R. Then

(rz # q∆)(z, x, ξ) − rz(x, ξ) q∆(z, x, ξ) = ∆m+δλm
∆ (z, x, ξ), 0 ≤ m ≤ ρ,

where the function λm
∆

(z, x, ξ) is bounded w.r.t. ∆ and z with values in S
m+s−ρ
ρ (Rp ×Rp).

Proof. For the sake of concision we take p = 1 in the proof, but it naturally extends to

p ≥ 1. Using the oscillatory integral representation of rz # q∆ we obtain

(rz # q∆)(z, x, ξ) − rz(x, ξ) q∆(z, x, ξ)

=

Ï

exp[−i〈y|ξ − η〉] rz(x, η) q∆(z, x − y, ξ) d−η dy − rz(x, ξ) q∆(z, x, ξ)

=

Ï

exp[−i〈y|ξ − η〉] rz(x, η) (q∆(z, x − y, ξ) − q∆(z, x, ξ)) d−η dy.

Taylor’s formula yields

(rz # q∆)(z, x, ξ) − rz(x, ξ) q∆(z, x, ξ)

=

∫1

0

Ï

−y exp[−i〈y|ξ − η〉] rz(x, η) ∂2q∆(z, x − ty, ξ) d−η dy dt.

With an integration by parts we obtain

(rz # q∆)(z, x, ξ) − rz(x, ξ) q∆(z, x, ξ)

= −i

∫1

0

Ï

exp[−i〈y|ξ − η〉] ∂2rz(x, η) ∂2q∆(z, x − ty, ξ) d−η dy dt.

Using Property (QL) we find

(rz # q∆)(z, x, ξ) − rz(x, ξ) q∆(z, x, ξ) =

− i∆m+δ

∫1

0

Ï

exp[−i〈y|ξ − η〉] ∂2rz(x, η) qm10
∆

(z, (1 − t)x + t(x − y), ξ) d−η dy dt

= −i∆m+δ(∂2rz(x, ξ) # q̃m10
∆

(z, u, x, ξ))|u=x,

where

q̃m10
∆

(z, u, x, ξ) =

∫1

0

qm10
∆

(z, (1 − t)u + tx, ξ) dt.

As q̃m10
∆

is bounded w.r.t. ∆ and z with values in S m+δ
ρ (R2p × Rp) and ∂2rz is bounded

w.r.t. z with values in S s−1(Rp × Rp) we obtain the result. �

We recall the following result (Theorem 2.5 and the following remark in [9]), which

shall be of use below

Proposition 2.6. Let Q(z′,z) be the global FIO with kernel

Q(z′,z)(x′, x) =

∫

exp[i〈x′ − x|ξ〉 + i∆b1(z, x′, ξ)] σQ(z, x′, ξ) d−ξ,

8



with σQ(z, .) bounded w.r.t. z with values in S m
ρ (X × Rn), m ∈ R, 1

2
≤ ρ ≤ 1. Then for

all s ∈ R there exist K = K(s,m) ≥ 0, ∆3 > 0 such that

‖Q(z′,z)‖(H(s),H(s−m)) ≤ K p(σQ(z, .)),

for all z ∈ [0,Z], and 0 ≤ ∆ ≤ ∆3, where p(.) is some appropriately chosen seminorm

on S m
ρ (X × Rn).

In preparation of the main result of this section we define

A(z′,z) := ∂z′ ◦ G(z′,z), B(z′,z) := az(x,D) ◦ G(z′,z).

We have

A(z′,z)u(x′) = −

Ï

exp[i〈x′ − x|ξ〉 + i∆b1(z, x′, ξ)]

× az(x′, ξ) p∆(z, x′, ξ) g(z′,z)(x′, ξ) u(x) dx d−ξ.

For ∆ sufficiently small, the real phase function

ϕ(z′,z)(x′, x, ξ) = 〈x′ − x|ξ〉 + ∆b1(z, x′, ξ)

satisfies Definition 1.2 in [10, Section 10.1] and we have

B(z′,z)u(x′) =

Ï

exp[i〈x′ − x|ξ〉 + i∆b1(z, x′, ξ)] σ∆(z, x′, ξ) u(x) dx d−ξ,

from Theorem 2.2 in [10, Section 10.2], where σ∆(z, x, ξ) is a symbol in S 1
ρ(R

n × Rn)

given, as an oscillatory integral, by

σ∆(z, x, ξ) =

Ï

exp[−i〈x − y|ξ − η〉 + i∆(b1(z, y, ξ) − b1(z, x, ξ))]

× p∆(z, y, ξ) az(x, η) g(z′,z)(y, ξ) d−η dy.

We shall need the following regularity assumption w.r.t. z on the symbol az(x, ξ).

Assumption 2.7. The symbol a(z, .) is assumed to be in C 0,α([0,Z], S 1(Rn × Rn)), i.e.

Hölder continuous w.r.t. z, with values in S 1(Rn × Rn), in the sense that, for some

0 < α < 1

a(z′, x, ξ) − a(z, x, ξ) = (z′ − z)α ã(z′, z, x, ξ), 0 ≤ z ≤ z′ ≤ Z,

with ã(z′, z, x, ξ) bounded w.r.t. z′ and z with values in S 1(Rn × Rn).

The following result is the key point in the proof of the convergence theorem below.

Theorem 2.8. Let s ∈ R. There exist ∆4 > 0 and C ≥ 0 such that for z′ − z = ∆,

∆ ∈ [0,∆4],

‖(∂z′ + az′ (x,Dx)) ◦ G(z′,z)‖(H(s),H(s−1)) ≤ C∆α.

Proof. In the proof, we shall always assume that ∆ is sufficiently small to apply the

invoked properties and results. We have ‖G(z′,z)‖(H(s),H(s)) ≤ C by Theorem 1.5. With

Assumption 2.7 we have

‖(az(x,Dx) − az′ (x,Dx)) ◦ G(z′,z)‖(H(s),H(s−1)) ≤ C∆α,

9



by Theorem 18.1.13 in [5]. It is thus sufficient to prove

‖A(z′,z) + B(z′,z)‖(H(s),H(s−1)) = ‖(∂z′ + az(x,Dx)) ◦ G(z′,z)‖(H(s),H(s−1)) ≤ C∆.

With the first-order Taylor formula and Lemma 18.1.10 in [5] we find

g(z′,z)(x, ξ) := 1 + ∆g̃(z′,z)(x, ξ),(2.1)

with g̃(z′,z) bounded w.r.t. ∆ and w.r.t. z with values in S 0(Rn × Rn). We can thus write

A(z′,z) = A(z′,z)
+ ∆Ã(z′,z) with

Ã(z′,z)u(x′) = −

Ï

exp[i〈x′ − x|ξ〉 + i∆b1(z, x′, ξ)]

× az(x′, ξ) p∆(z, x′, ξ) g̃(z′,z)(x′, ξ) u(x) dx d−ξ,

andA
(z′,z)

is given by the same formula with g̃(z′,z) replaced by 1. With Proposition 2.6

we find ‖Ã(z′,z)‖(H(s),H(s−1)) ≤ C since az(x, ξ) p∆(z, x, ξ) g̃(z′,z)(x, ξ) is bounded w.r.t. z′ and

z with values in S 1
ρ(R

n × Rn).

Similarly we write the amplitude of B(z′,z) as

σ∆(z, x, ξ) = σ
∆

(z, x, ξ) + ∆σ̃∆(z, x, ξ),

where

σ̃∆(z, x, ξ) =

Ï

exp[−i〈x − y|ξ − η〉 + i∆(b1(z, y, ξ) − b1(z, x, ξ))]

× p∆(z, y, ξ) az(x, η) g̃(z′,z)(y, ξ) d−η dy,

and σ
∆

(z, x, ξ) is given by

(2.2) σ
∆

(z, x, ξ) =

Ï

exp[−i〈x − y|ξ − η〉 + i∆(b1(z, y, ξ) − b1(z, x, ξ))]

× p∆(z, y, ξ) az(x, η) d−η dy.

From Theorem 2.2 in [10, Section 10.2] (and its proof) we find that σ̃∆(z, x, η) is

bounded w.r.t. ∆ and z with values in S 1
ρ(R

n × Rn). Writing B(z′,z) = B(z′,z)
+ ∆B̃(z′,z)

accordingly, we obtain ‖B̃(z′,z)‖(H(s),H(s−1)) ≤ C with Proposition 2.6. To conclude, it thus

suffices to prove ‖A
(z′,z)
+B

(z′,z)
‖(H(s),H(s−1)) ≤ C∆. By Proposition 2.6, this follows from

the next lemma. �

We denote by κ∆ the amplitude of the FIOA
(z′,z)
+ B

(z′,z)
. We have

Lemma 2.9. The symbol κ∆(z, x, ξ) := σ
∆

(z, x, ξ)− az(x, ξ) p∆(z, x, ξ) can be written as

∆̃κ∆(z, x, ξ) with κ̃∆(z, x, ξ) bounded w.r.t. ∆ and z with values in S 1
ρ(R

n × Rn).

Proof. We first write κ∆(z, x, ξ) = κ∆,1(z, x, ξ) + κ∆,2(z, x, ξ) with

κ∆,1(z, x, ξ) := σ
∆

(z, x, ξ) − (az # p∆(z, .))(x, ξ),

κ∆,2(z, x, ξ) := (az # p∆(z, .))(x, ξ) − az(x, ξ) p∆(z, x, ξ),

and work on each one separately.
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The composition product of ψDOs gives [5, Theorem 18.1.8]

(az # p∆(z, .))(x, ξ) =

Ï

exp[−i〈x − y|ξ − η〉] az(x, η) p∆(z, y, ξ) d−η dy.

We thus obtain

κ∆,1(z, x, ξ) =

Ï

exp[−i〈x − y|ξ − η〉]
(
exp[i∆ν(z, x, y, ξ)] − 1

)

× az(x, η) p∆(z, y, ξ) d−η dy,

as an oscillatory integral where

ν(z, x, y, ξ) = b1(z, y, ξ) − b1(z, x, ξ) = 〈y − x|h(z, x, y, ξ)〉,

for h(z, x, y, ξ) continuous w.r.t. z with values in S 1(R2n × Rn), homogeneous of degree

1 by Assumption 1.1 and estimate (1.1.9) in [7]. Taylor’s formula yields

κ∆,1(z, x, ξ) = i∆

∫1

0

Ï

exp[−i〈x − y|ξ − η〉] exp[is∆ν(z, x, y, ξ)]

× 〈y − x|h(z, x, y, ξ)〉 az(x, η) p∆(z, y, ξ) d−η dy ds

= −∆

∫1

0

Ï

〈h(z, x, y, ξ)|∇η exp[−i〈x − y|ξ − η〉]〉 exp[is∆ν(z, x, y, ξ)]

× az(x, η) p∆(z, y, ξ) d−η dy ds,

which after integration by parts gives

κ∆,1(z, x, ξ) = ∆

∫1

0

Ï

exp[−i〈x − y|ξ − η〉] exp[is∆(b1(z, y, ξ) − b1(z, x, ξ))]

〈h(z, t, y, ξ)|∇ηaz(x, η)〉 p∆(z, y, ξ) d−η dy ds|t=x.

We thus recover a composition formula for a ΨDO and an FIO, as that given in The-

orem 2.2 in [10, Section 10.2], with t, s and z as parameters. For j = 1, . . . , n,

h j(z, t, y, ξ)p∆(z, y, ξ) is continuous w.r.t. z and smooth and bounded w.r.t. t ∈ Rn with

values in S 1
ρ(R

n × Rn) and ∂η j
az(x, η) is continuous w.r.t. z with values in S 0(Rn × Rn).

We thus obtain that κ∆,1(z, x, ξ) = ∆̃κ∆,1(z, x, ξ) with κ̃∆,1(z, x, ξ) continuous w.r.t. z and

bounded w.r.t. ∆ with values in S 1
ρ(R

n × Rn).

For the second term, κ∆,2(z, x, ξ), we apply Proposition 2.5 with m = ρ and obtain

κ∆,2(z, x, ξ) = ∆̃κ∆,2(z, x, ξ) with κ̃∆,2(z, x, ξ) bounded w.r.t. z and ∆ with values in

S 1
ρ(R

n × Rn). �

With the same line of arguments as in [12, Section 3] we obtain, from Theorem 2.8,

the following convergence result

Theorem 2.10. Assume that a(z, .) is in C 0,α([0,Z], S 1(Rn ×Rn)), i.e. Hölder continu-

ous w.r.t. z, with values in S 1(Rn × Rn), in the sense that, for some 0 < α < 1

a(z′, x, ξ) − a(z, x, ξ) = (z′ − z)α ã(z′, z, x, ξ), 0 ≤ z ≤ z′ ≤ Z,
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or Lipschitz (α = 1), with ã(z′, z, x, ξ) bounded w.r.t. z′ and z with values in S 1(Rn×Rn).

Let s ∈ R and 0 ≤ r < 1. Then the approximation AnsatzWP,z converges to the so-

lution operator U(z, 0) of the Cauchy problem (1.1)–(1.2) in L(H(s+1)(Rn),H(s+r)(Rn))

uniformly w.r.t. z as ∆P goes to 0 with a convergence rate of order α(1 − r):

‖WP,z − U(z, 0)‖(H(s+1),H(s+r)) ≤ C∆
α(1−r)

P
, z ∈ [0,Z].

Furthermore, the operatorWP,z strongly converges to the solution operator U(z, 0) in

L(H(s+1)(Rn),H(s+1)(Rn)) uniformly w.r.t. z ∈ [0,Z].

A result similar to that of the previous theorem can be obtained with weaker assump-

tions on the symbol a(z, .) by introducing another, yet natural, Ansatz to approxi-

mate the exact solution to the Cauchy problem (1.1)–(1.2). For a symbol q(z, y, η) ∈

C 0([0,Z], S m(Rp × Rr)) we define q̂(z′,z)(y, η) ∈ C 0([0,Z]2, S m(Rp × Rr))

q̂(z′,z)(y, η) :=
1

z′ − z

∫z′

z

q(s, y, η) ds, 0 ≤ z < z′ ≤ Z.

Then we define

(2.3) φ̂(z′,z)(x′, x, ξ) := 〈x′ − x|ξ〉 + i∆̂a1(z′,z)(x′, ξ)

= 〈x′ − x|ξ〉 + ∆̂b1(z′,z)(x′, ξ) + i∆̂c1(z′,z)(x′, ξ).

and

ĝ(z′,z)(x, ξ) := exp[−∆̂a0(z′,z)(x, ξ)](2.4)

and finally, following [11], we denote by Ĝ(z′,z) the FIO with distribution kernel

Ĝ(z′,z)(x′, x) =

∫

exp[i〈x′ − x|ξ〉] exp[−∆̂a(z′,z)(x′, ξ)] d−ξ

=

∫

exp[îφ(z′,z)(x′, x, ξ)] ĝ(z′,z)(x′, ξ) d−ξ.

with the associated approximation Ansatz.

Definition 2.11. Let P = {z(0), z(1), . . . , z(N)} be a subdivision of [0,Z] with 0 = z(0) <

z(1) < · · · < z(N) = Z such that z(i+1) − z(i) = ∆P. The operator ŴP,z is defined as

ŴP,z :=



Ĝ(z,0) if 0 ≤ z ≤ z(1),

Ĝ(z,z(k))

1∏

i=k

Ĝ(z(i),z(i−1)) if z(k) ≤ z ≤ z(k+1).

Theorem 2.12. With the sole assumption of the continuity of the symbol a(z, .) w.r.t.

z with values in S 1(Rn × Rn) (Assumption 1.1) the same results in as Theorem 2.10

hold for the operator ŴP,z, with a convergence rate of order 1 − r for the operator

convergence in L(H(s+1)(Rn),H(s+r)(Rn)).

12



3 Approximation of the symbol az(x, ξ) and consequences

In applications, as shown for instance in [18] and in Appendix A of [12], the symbol

of the operator a(z, x,Dx) is often given by an asymptotic series, say

a(z, x, ξ) ∼

∞∑

j=0

a1− j(z, x, ξ)

with a1− j(z, x, ξ) ∈ C 0([0,Z], S 1− j(Rn × Rn)). Here, we shall assume that the symbols

a1− j(z, x, ξ), j ∈ N, are in C 0,α([0,Z], S 1− j(Rn × Rn)), i.e. Hölder continuous w.r.t. z

with values in S 1(Rn × Rn), in the sense that, for some 0 < α ≤ 1

a1− j(z
′, x, ξ) − a1− j(z, x, ξ) = (z′ − z)α ã1− j(z

′, z, x, ξ), 0 ≤ z ≤ z′ ≤ Z, j ∈ N,

with ã1− j(z
′, z, x, ξ) bounded w.r.t. z′ and z with values in S 1− j(Rn × Rn).

The following lemma show that the regularity of the a1− j’s w.r.t. z can in fact be inher-

ited by their asymptotic series.

Lemma 3.1. The symbol a(z, x, ξ) ∼
∑∞

j=0 a1− j(z, x, ξ) can be chosen, in its class mod-

ulo S −∞(Rn × Rn), to be in C 0,α([0,Z], S 1− j(Rn × Rn)).

The proof can be made along the line of that of Proposition 18.1.3 in [5].

In practical applications, see e.g. [2, 13, 14], the full symbol is not computed. Instead,

one truncates the asymptotic series and uses

a(z, x, ξ) =

k∑

j=0

a1− j(z, x, ξ),

for some k ≥ 0. The purpose of this section is to study the consequences of such

an approximation of the symbol a(z, x, ξ) for the representation of the solution to the

Cauchy problem (1.1)–(1.2) byWP,z, and its limit, as ∆P goes to zero.

More generally, we consider that for some k ≥ 0, we have a−a ∈ C 0,α([0,Z], S −k(Rn×

R
n)). We denote by a

1
the principal part of a and by a

0
the remaining part. We see that

a
i
∈ C 0,α([0,Z], S i(Rn × Rn)), i = 0, 1. We note that a − a = a0 − a

0
since a

1
= a1.

We define the distribution kernel in D ′(X′ × X)

G
(z′,z)

(x′, x) :=

∫

exp[i〈x′ − x|ξ〉] exp[−∆a(z, x′, ξ)] d−ξ

=

∫

exp[iφ(z′,z)(x′, x, ξ)] g
(z′,z)

(x′, ξ) d−ξ,

where

g
(z′,z)

(x, ξ) := exp[−∆a
0
(z, x, ξ)],

and the phase function φ(z′,z)(x′, x, ξ) defined as in (1.4).

We denote by G
(z′,z)

the operator with G
(z′,z)

for distribution kernel. The operator G
(z′,z)

is a global Fourier integral operator with complex phases by Proposition 1.4 for ∆

sufficiently small. We have
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Lemma 3.2. Let s ∈ R. There exist ∆5 > 0 and C > 0 such that for z′, z ∈ [0,Z] with

z′ ≥ z and 0 ≤ ∆ = z′ − z ≤ ∆5, we have

‖G(z′,z) − G
(z′,z)
‖(H(s),H(s+k)) ≤ C∆ p(az − a

z
),

for some appropriately chosen seminorm p on S −k(Rn × Rn).

Proof. With Taylor’s formula we write

σ∆(z, x, ξ) := g
(z′,z)

(x, ξ) − g(z′,z)(x′, ξ) = ∆(a0(z, x, ξ) − a
0
(z, x, ξ))

exp[−∆a0(z, x, ξ)]

∫1

0

exp[s∆(a0(z, x, ξ) − a
0
(z, x, ξ))] ds.

Hence, σ∆(z, x, ξ) = ∆σ̃∆(z, x, ξ) and observing that

exp[−∆a0(z, x, ξ)]

∫1

0

exp[s∆(a0(z, x, ξ) − a
0
(z, x, ξ))] ds

is bounded w.r.t. z and ∆ with values in S 0(Rn × Rn) by Lemma 18.1.10 in [5], the

symbol σ̃∆(z, .) is bounded w.r.t. z and ∆ with values in S −k(Rn × Rn). We thus obtain

G
(z′,z)
−G(z′,z) = ∆

∫

exp[iφ(z′,z)(x′, x, ξ)] σ̃∆(z, x′, ξ) d−ξ.

We conclude with Proposition 2.26 in [12] (one can also invoke Proposition 2.6 above

and consider the previous kernel with an amplitude in S −k
ρ (Rn × Rn), 1

2
≤ ρ ≤ 1, and a

real phase). �

Definition 3.3. For z′′ ≥ z′ ≥ z ∈ [0,Z] we write G(z′′,z′,z) := G(z′′,z′) ◦ G(z′,z) and more

generally for z(N) ≥ z(N−1) ≥ · · · ≥ z(0) ∈ [0,Z] we write G(z(N),...,z(0)) := G(z(N),z(N−1)) ◦ · · · ◦

G(z(1),z(0)). Similarly we write G
(z(N),...,z(0))

:= G
(z(N),z(N−1))

◦ · · · ◦ G
(z(1),z(0))

.

Recall that the thin-slab propagator G(z′,z) is however not a semigroup nor an evolution

family here (see [12, Section 3] and [15]). Thus G(z(N),...,z(0)) , G(z(N),z(0)).

With the operators we just defined we have

Proposition 3.4. Let s ∈ R and R ≥ 1. There exist ∆6 > 0 and C > 0 such that for

N ∈ N with N∆6 ≤ RZ and 0 ≤ z(0) ≤ z(1) ≤ · · · ≤ z(N) ≤ Z, with z( j+1) − z( j) ≤ ∆ ≤ ∆6,

j = 0, . . . ,N − 1, we have

‖G(z(N),...,z(0)) − G(z(N),...,z(0))
‖(H(s),H(s+k)) ≤ CZ sup

z∈[0,Z]

p(az − a
z
) exp[CZ],

for some appropriately chosen seminorm p on S −k(Rn × Rn).

Proof. We write

G(z(N),...,z(0)) − G(z(N),...,z(0))

=

N−1∑

i=0

(
G(z(N),...,z(i)) ◦ G(z(i),...,z(0))

− G(z(N),...,z(i+1)) ◦ G(z(i+1),...,z(0))

)

=

N−1∑

i=0

G(z(N),...,z(i+1)) ◦

(
G(z(i+1),z(i)) − G(z(i+1),z(i))

)
◦ G

(z(i),...,z(0))
.
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From Theorem 1.5, there exists M > 0 such that

‖G(z(N),...,z(i+1))‖(H(s+k),H(s+k)) ≤ (1 + M∆)N−i−1,

‖G
(z(i),...,z(0))

‖(H(s),H(s)) ≤ (1 + M∆)i.

for ∆6 sufficiently small. Lemma 3.2 then yields

‖G(z(N),...,z(0)) − G(z(N),...,z(0))
‖(H(s),H(s+k))

≤ CN∆ sup
z∈[0,Z]

p(az − a
z
) (1 + M∆)N−1

≤ CRZ sup
z∈[0,Z]

p(az − a
z
) (1 + RZM/N)N−1.

Since the right-hand side converges to CRZ supz∈[0,Z] p(az − a
z
) exp[RMZ], as an in-

creasing sequence, this concludes the proof. �

We define the operatorW
P,z

:

Definition 3.5. Let P = {z(0), z(1), . . . , z(N)} be a subdivision of [0,Z] with 0 = z(0) <

z(1) < · · · < z(N) = Z such that z(i+1) − z(i) = ∆P. The operatorW
P,z

is defined as

W
P,z

:=



G
(z,0)

if 0 ≤ z ≤ z(1),

G
(z,z(k))

1∏

i=k

G
(z(i),z(i−1))

if z(k) ≤ z ≤ z(k+1).

From Proposition 3.4 we have the following theorem which estimates the error in com-

putingW
P,z

(u0) in place ofWP,z(u0) and a convergence result in H(s+k)(Rn) if az − a
z

converges to 0 in S −k(Rn × Rn).

Theorem 3.6. Let P = {z(0), z(1), . . . , z(N)} be a subdivision of [0,Z] with 0 = z(0) <

z(1) < · · · < z(N) = Z such that z(i+1) − z(i) = ∆P. For ∆P ≤ ∆6 then

‖WP,z −WP,z
‖(H(s),H(s+k)) ≤ CZ sup

z∈[0,Z]

p(az − a
z
) exp[CZ], z ∈ [0,Z].

for some appropriately chosen seminorm p on S −k(Rn × Rn).

From Theorem 2.10, we know that the AnsatzWP,z strongly converges in H(s)(Rn) to

the solution operator of the Cauchy problem

∂zu + a(z, x,Dx)u = 0, 0 < z ≤ Z,(3.1)

u |z=0 = u0 ∈ H(s)(Rn).(3.2)

and similarly the AnsatzW
P,z

strongly converges in H(s)(Rn) to the solution operator

to the Cauchy problem

∂zu + a(z, x,Dx)u = 0, 0 < z ≤ Z,(3.3)

u |z=0 = u0 ∈ H(s)(Rn).(3.4)

With the hypothesis made on the symbol a(z, x, ξ) there exist a unique solution in

C 0([0,Z],H(s)(Rn)) ∩ C 1([0,Z],H(s−1)(Rn)) to (3.3)–(3.4). To support the ‘optimal-

ity’ of the result of Theorem 3.6 we note that
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Proposition 3.7. There exist λ0 > 0 and C > 0 such that

‖u(z, .) − u(z, .)‖H(s+k) ≤ CZ sup
z∈[0,Z]

p(az − a
z
) exp[λZ]‖u0‖H(s) , z ∈ [0,Z], λ > λ0,

for some appropriately chosen seminorm p on S −k(Rn × Rn).

Proof. We note that

(∂z + az(x,Dx))(u − u) = (∂z + az(x,Dx))u = (az(x,Dx) − a
z
(x,Dx))u.

With u0 ∈ H(s)(Rn) then u(z, .) ∈ C 0([0,Z],H(s)(Rn)) ∩C 1([0,Z],H(s−1)(Rn)) by Theo-

rem 23.1.2 in [5]. With az(x, ξ) − a
z
(x, ξ) continuous w.r.t. z with values in S −k(Rn) we

obtain (az(x,Dx) − a
z
(x,Dx))u ∈ C 0([0,Z],H(s+k)) and

‖(az(x,Dx) − a
z
(x,Dx))u‖H(s+k) ≤ sup

z∈[0,Z]

p(az − a
z
) ‖u‖H(s)

for some appropriately chosen seminorm p on S −k(Rn × Rn) by Proposition 2.6. The-

orem 23.1.2 in [5] yields that u − u ∈ C 0([0,Z],H(s+k)(Rn)) and satisfies the energy

estimate

sup
z∈[0,Z]

exp[−λz] ‖u(z, .) − u(z, .)‖H(s+k)

≤ 2

∫Z

0

exp[−λz] ‖(az(x,Dx) − a
z
(x,Dx))u‖H(s+k) dz

≤ C sup
z∈[0,Z]

p(az − a
z
)

∫Z

0

exp[−λz] ‖u‖H(s) dz ≤ CZ sup
z∈[0,Z]

p(az − a
z
) ‖u0‖H(s) ,

for λ greater than some λ0 > 0 which solely depends on s and k since

sup
z∈[0,Z]

exp[−λz] ‖u(z, .)‖H(s) ≤ ‖u0‖H(s) ,

by Theorem 23.1.2 in [5]. �

Remark 3.8. With the result of the previous proposition, one can consider to use a

regularized (w.r.t. z) version of az(x, ξ), e.g. by convolution with some molifier, say

aεz (x, ξ) converging to az(x, ξ) in C 0,α([0,Z], S 1(Rn × Rn) as ε goes to zero. Then the

solution uε to

∂zu
ε + aεz (x,Dx)uε = 0, 0 < z ≤ Z,(3.5)

uε |z=0 = u0 ∈ H(s)(Rn),(3.6)

converges to the solution u to (3.1)–(3.2) in H(s−1) by Proposition 3.7. The symbol

aεz (x, ξ) is smooth and one can then use the classical FIO parametrix construction to

represent uε. Such a representation of the solution operator has the drawback of being

up to a regularizing operator.

In applications, one is not only interested in the convergence of the Ansatz, be it

WP,z(u0) or W
P,z

(u0), to the exact solution of the Cauchy problem (1.1)–(1.2) but

one also expect the wavefront set of the approximate solution to be close, in some
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sense, to that of the exact solution. This is particularly true in applications such as

seismology where the wavefront set of the solution is to be connected to interfaces in

the subsurface [1].

The propagation of singularities for the proposed AnsatzW
P,z

(u0) is fully govern by

the principal part of the symbol a
z
(x, ξ): following the analysis of [15] we find the

following convergence for the wavefront set of W
P,z

(u0), independent of the lower-

order symbols that compose a
z
.

Theorem 3.9. Let u0(.) ∈ H(−∞)(Rn) and u(z, .), z ∈ [0,Z], be the solution to the

Cauchy problem (1.1)–(1.2). Let Z′ ∈ [0,Z] and K be a compact set in T ∗(Rn) such that

for all γ(0) = (x(0), ξ(0)) ∈ K \0 the bicharacteristics χz(γ
(0)) associated to −b1 = Re(a1)

originating from γ(0) at z = 0 satisfies χz(γ
(0)) ∈ Ωz for all z ∈ [0,Z′] with

Ωz =
{
(x, ξ) ∈ T ∗(Rn) \ 0; (z, x, ξ) < supp(c1)

}
.

If γ(0) ∈ K ∩WF(u0) we have χZ′ (γ
(0)) ∈ WF(u(Z′, .)). For a subdivision P of [0,Z],

with ∆P sufficiently small, we then have

dist (χz(γ
(0)),WF(W

P,z
(u0)))→ 0, as ∆P → 0

uniformly w.r.t. γ(0) ∈ K ∩WF(u0) and z ∈ [0,Z′]. Furthermore, the convergence is of

order α, 0 < α ≤ 1, if b1(z, .) is in C 0,α([0,Z], S 1(Rn,Rn)).
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