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Abstract

An approximation Ansatz for the operator solution, U(z′, z), of a hyper-
bolic first-order pseudodifferential equation, ∂z +a(z, x,Dx) with Re(a) ≥
0, is constructed as the composition of global Fourier integral operators
with complex phases. We prove a convergence result for the Ansatz to
U(z′, z) in some Sobolev space as the number of operators in the com-
position goes to ∞, with a convergence of order α, if the symbol a(z, .)
is in C 0,α with respect to the evolution parameter z, therefore improving
the result of [12]. We also study the consequences of some truncation
approximations of the symbol a(z, .) in the construction of the Ansatz.

AMS 2000 subject classification: 35L05, 35L80, 35S10, 35S30, 86A15.

0 Introduction

We consider the Cauchy problem

∂zu+ a(z, x,Dx)u = 0, 0 < z ≤ Z(0.1)

u |z=0 = u0,(0.2)

with Z > 0 and a(z, x, ξ) continuous with respect to (w.r.t.) z with values in
S1(Rn × R

n) with the usual notation Dx = 1
i ∂x. Further assumptions will be

made on the symbol a(z, x, ξ). We denote U(z, 0) the solution operator of (0.1)–
(0.2). When a(z, x, ξ) is independent of x and z it is natural to treat such a
problem by means of Fourier transformation:

u(z, x′) =

"
exp[i〈x′ − x|ξ〉 − za(ξ)] u0(x) d

−ξ dx,

where d−ξ := dξ/(2π)n. For this to be well defined for all u0 ∈ S (Rn) we shall
impose the real part of the principal symbol of a to be non-negative. When the
symbol a depends on both x and z we can naively expect

u(z, x′) ≈ u1(z, x
′) :=

"
exp[i〈x′ − x|ξ〉 − za(0, x′, ξ)] u0(x) d

−ξ dx
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for z small and hence approximately solve the Cauchy problem (0.1)–(0.2) for
z ∈ [0, z(1)] with z(1) small. If we want to progress in the z direction we have to
solve the Cauchy problem

∂zu+ a(z, x,Dx)u = 0, z(1) < z ≤ Z

u(z, .) |z=z(1) = u1(z
(1), .),

which we again approximately solve by

u(z, x′) ≈ u2(z, x
′)

:=

"
exp[i〈x′ − x|ξ〉 − (z − z(1))a(z(1), x′, ξ)] u1(z

(1), x) d−ξ dx.

This procedure can be iterated until we reach z = Z.

If we denote by G(z′,z) the operator with kernel

G(z′,z)(x
′, x) =

∫
exp[i〈x′ − x|ξ〉] exp[−(z′ − z)a(z, x′, ξ)] d−ξ,

then combining all iteration steps above involves composition of such operators:
let 0 ≤ z(1) ≤ · · · ≤ z(k) ≤ Z, we then have

uk+1(z, x) = G(z,z(k)) ◦ G(z(k),z(k−1)) ◦ · · · ◦ G(z(1),0)(u0)(x),

when z ≥ z(k). We then define the operator WP,z for a subdivision P =
{z(0), z(1), . . . , z(N)}, of [0, Z] with 0 = z(0) < z(1) < · · · < z(N) = Z,

WP,z :=



G(z,0) if 0 ≤ z ≤ z(1),

G(z,z(k))

1∏

i=k

G(z(i),z(i−1)) if z(k) ≤ z ≤ z(k+1).

According to the procedure described above,WP,z(u0) yields an approximation
Ansatz for the solution to the Cauchy problem (0.1)–(0.2) with step size ∆P =
zi − zi−1, i = 1, . . . , N . The operator G(z′,z) is a Fourier integral operator (FIO)
and is often referred to as the thin-slab propagator (see e.g. [2, 1, 12]).

Note that a similar procedure can be used to show the existence of an evolution
system by approximating it by composition of semigroup solutions of the Cauchy
problem with z ’frozen’ in a(z, x,Dx) [8, 15]. Note that the thin-slab propagator
G(z′,z) is however not a semigroup nor an evolution family here (see [12, Section
3] and [7]).

The approximation Ansatz proposed here is a tool to compute approximations of
the exact solution to the Cauchy problem (0.1)–(0.2) and yields a representation
of these solution by means of infinite products of FIOs, even in the case of low
regularity on the symbol a(z, x, ξ) w.r.t. z. Such computations in applications
to geophysical problems have been used in [2]. In exploration seismology one is
confronted with solving equations of the type

(∂z − ib(z, x,Dt,Dx) + c(z, x,Dt,Dx))v = 0,(0.3)

v(0, .) = v0(.),(0.4)

2



where t is time, z is the vertical coordinate and x is the lateral or transverse
coordinate. The operators b and c are of first order, with real principal parts, b1
and c1, where c1(z, x, τ, ξ) is non-negative. Note that the Cauchy problem (0.1)–
(0.2) studied here is more general. The Cauchy problem (0.3)–(0.4) is obtained
by a (microlocal) decoupling of the up-going and down-going wavefields in the
acoustic wave equation (see Appendix A in [12] and [16] for details). In practice,
the proposed Ansatz can then be a tool to approximate the exact solution for
the purpose of imaging the Earth’s interior [2, 1]. For such applications one
is inclined to approximate the symbol a(z, x, ξ) itself. We shall study some
consequences of some type of approximations.

In the present paper, we improve the analysis of the convergence of the approx-
imation scheme WP in Sobolev spaces developed in [12]. Section 1 introduces
the Cauchy problem we study and the precise assumptions made on the symbol
a(z, x, ξ), especially on the real part, c1, and imaginary part, −b1, of its princi-
pal symbol. In Section 2 we study the convergence of the Ansatz WP,z(u0) to
the solution of the Cauchy problem (0.1)–(0.2) in Sobolev spaces as ∆P goes
to 0. A convergence in norm of WP,z to the solution operator of the Cauchy
problem (0.1)–(0.2) is actually obtained (Theorem 2.10):

lim
∆P→0

‖WP,z − U(z, 0)‖(H(s+1),H(s)) = 0,

with a convergence rate of order α when a(z, .) is in C 0,α w.r.t. z, α > 0. We
furthermore obtain (Theorem 2.10)

lim
∆P→0

‖WP,z − U(z, 0)‖(H(s+1),H(s+r)) = 0, 0 ≤ r < 1

with a convergence rate of order α(1 − r) while the operator WP,z strongly
converges to U(z, 0) in H(s+1). The proof relies on the analysis of the thin-slab
propagator G(z′,z) in [12].

At the end of Section 2 we relax some regularity property of the symbol a(z, .)
w.r.t. z by the introduction of another, yet natural, Ansatz: following [11], the

thin-slab propagator, G(z′,z), is replaced by the operator Ĝ(z′,z) with kernel

Ĝ(z′,z)(x
′, x) =

∫
exp[i〈x′ − x|ξ〉] exp[−

∫ z′

z
a(s, x′, ξ)ds] d−ξ.

In Section 3, we study the implications of approximating the symbol a(z, x, ξ) in
the convergence result. Such approximations are of importance in practice, for
instance in geophysics, as the symbol a(z, x, ξ) is often known by an asymptotic
series, which is truncated for computational reasons. If the symbol a(z, .) is
given as a(z, x, ξ) ∼

∑∞
j=0 a1−j(z, x, ξ), one may truncate this series and instead

use a(z, x, ξ) =
∑k

j=0 a1−j(z, x, ξ) in the definition of the Ansatz WP,z. If we
denote byW

P,z
the new associated Ansatz, we shall see in fact thatWP,z(u0)−

W
P,z

(u0) is in H(s+k)(Rn) and moreover

‖WP,z −WP,z
‖(H(s),H(s+k)) ≤ CZ sup

z∈[0,Z]

p(a(z, .) − a(z, .)) exp[CZ],

z ∈ [0, Z],
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for some appropriately chosen seminorm p on S−k(Rn × R
n).

In this paper, we shall use the notations of [12]. When the constant C is used,
its value may change from one line to the other. If we want to keep track of
the value of a constant we shall use another letter. When we shall write that
a function is bounded w.r.t. z and/or ∆ we shall actually mean that z is to be
taken in the interval [0, Z] and ∆ in some interval [0,∆max] unless otherwise
stipulated. We shall generally write X, X ′, Y , . . . for R

n, according to variables,
e.g., x, x′, y, . . . .

Throughout the paper, we use spaces of global symbols; a function a ∈ C∞(Rn×

R
p) is in Sm

ρ,δ
(Rn × R

p), 0 < ρ ≤ 1, 0 ≤ δ < 1, if for all multi-indices α, β there
exists Cαβ > 0 such that

|∂α
x ∂

β
ξ
a(x, ξ)| ≤ Cαβ (1 + |ξ|)m−ρ|β|+δ|α|, x ∈ R

n, ξ ∈ R
p.

The best possible constants Cαβ , i.e.,

pαβ(a) := sup
(x,ξ)∈Rn×Rp

(1 + |ξ|)−m+ρ|β|−δ|α||∂α
x ∂

β
ξ
a(x, ξ)|,(0.5)

define seminorms for a Fréchet space structure on Sm
ρ,δ

(Rn × R
p). As usual we

write Sm
ρ (Rn × R

p) in the case ρ = 1 − δ, 1
2 ≤ ρ < 1, and Sm(Rn × R

p) in the
case ρ = 1, δ = 0.

We shall use, in a standard way, the notation # for the composition of symbols
of pseudodifferential operators (ψDO) and make use of the oscillatory integral
representation of the resulting symbol.

1 The homogeneous first-order hyperbolic equation

Let s ∈ R and Z > 0. We consider the Cauchy problem

∂zu+ a(z, x,Dx)u = 0, 0 < z ≤ Z,(1.6)

u |z=0 = u0 ∈ H
(s+1)(Rn),(1.7)

where the symbol a(z, x, ξ) satisfies the following assumption

Assumption 1.1.

az(x, ξ) = a(z, x, ξ) = −i b(z, x, ξ) + c(z, x, ξ)

where b ∈ C 0([0, Z], S1(Rn ×R
n)), with real principal symbol b1 homogeneous of

degree 1 for |ξ| large enough and c ∈ C 0([0, Z], S1(Rn × R
n)) with non-negative

principal symbol c1 homogeneous of degree 1 for |ξ| large enough. Without loss of
generality we can assume that b1 and c1 are homogeneous of degree 1 for |ξ| ≥ 1.

In Section 2, we shall make further regularity assumptions, w.r.t. z, on the
symbol a(z, x, ξ).

We denote by a1 = −ib1+c1 the principal symbol of a and write b = b1+b0 with
b0 ∈ C 0([0, Z], S0(Rn × R

n)) and c = c1 + c0 with c0 ∈ C 0([0, Z], S0(Rn × R
n)).

Assumption 1.1 ensures that the hypotheses (i)–(iii) of Theorem 23.1.2 in [4]
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are satisfied. Then there exists a unique solution in C 0([0, Z],H(s+1)(Rn)) ∩
C 1([0, Z],H(s)(Rn)) to the Cauchy problem (1.6)–(1.7).

Furthermore, we have the following energy estimate [4, Lemma 23.1.1] for any
function in C 1([0, Z],H(s)(Rn)) ∩ C 0([0, Z],H(s+1)(Rn))

(1.8) sup
z∈[0,Z]

exp[−λz] ‖u(z, .)‖H(s) ≤ ‖u(0, .)‖H(s)

+ 2

∫ Z

0

exp[−λz] ‖∂zu+ az(x,Dx)u‖H(s)dz,

with λ large enough (λ solely depending on s).

By Proposition 9.3 in [3, Chapter VI] the family of operators (az)z∈[0,Z] generates
a strongly continuous evolution system. Let U(z′, z) denote the corresponding
evolution system:

U(z′′, z′) ◦ U(z′, z) = U(z′′, z), Z ≥ z′′ ≥ z′ ≥ z ≥ 0.

with

∂zU(z, z0)u0 + a(z, x,Dx)U(z, z0)u0 = 0, 0 ≤ z0 < z ≤ Z,

U(z0, z0)u0 = u0 ∈ H
(s+1)(Rn)

while U(z, z0)u0 ∈ H
(s+1)(Rn) for all z ∈ [z0, Z]. For the Cauchy problem

(1.6)–(1.7) we take z0 = 0.

We now recall some results obtained in [12]. Let z′, z ∈ [0, Z] with z′ ≥ z and
let ∆ := z′ − z. Define φ(z′,z) ∈ C∞(X ′ ×X × R

n) by

(1.9) φ(z′,z)(x
′, x, ξ) := 〈x′ − x|ξ〉+ i∆a1(z, x

′, ξ)

= 〈x′ − x|ξ〉+ ∆b1(z, x
′, ξ) + i∆c1(z, x

′, ξ).

Lemma 1.2. φ(z′,z) is a non-degenerate complex phase function of positive type
(at any point (x′0, x0, ξ0) where ∂ξφ(z′,z) = 0).

We put

g(z′,z)(x, ξ) := exp[−∆a0(z, x, ξ)] ∈ S
0(X × R

n).(1.10)

and define a distribution kernel G(z′,z)(x
′, x) ∈ D ′(X ′ × X) by the oscillatory

integral

G(z′,z)(x
′, x) =

∫
exp[i〈x′ − x|ξ〉] exp[−∆a(z, x′, ξ)] d−ξ

=

∫
exp[iφ(z′,z)(x

′, x, ξ)] g(z′,z)(x
′, ξ) d−ξ.

We denote the associated operator by G(z′,z). (This corresponds to the thin-slab
propagator (see e.g. [2, 1]).)

Let J(z′,z) be the canonical ideal locally generated by the phase function φ(z′,z).
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Proposition 1.3. There exists ∆1 > 0, such that, for all z′, z ∈ [0, Z], with z′ ≥ z
and ∆ = z′ − z ≤ ∆1, the phase function φ(z′,z) globally generates the canonical
ideal J(z′,z). Alternatively, it is also generated by the functions

vξj
(x′, x, ξ′, ξ) = ∂x′

j
φ(z′,z)(x

′, x, ξ) − ξ′j = ξj − ξ
′
j + i∆∂xj

a1(z, x
′, ξ),(1.11)

vxj
(x′, x, ξ′, ξ) = ∂ξj

φ(z′,z)(x
′, x, ξ) = x′j − xj + i∆∂ξj

a1(z, x
′, ξ),

j = 1, . . . , n.

Proposition 1.4. If 0 ≤ ∆ = z′ − z ≤ ∆1, with z′ ≥ z, then the operator G(z′,z)

is a global Fourier integral operator with complex phase and its kernel G(z′,z) is

in I0(X ′ ×X, (J(z′,z))
′,Ω

1/2

X ′×X
).

We denote the half density bundle on X ′ ×X by Ω
1/2

X ′×X
and note that (J(z′,z))

′

stands for the twisted canonical ideal, i.e. a Lagrangian ideal (see Section 25.5

in [5]) and I0(X ′ ×X, (J(z′,z))
′,Ω

1/2

X ′×X
) denotes the associated Lagrangian dis-

tributions of order 0.

Theorem 1.5. Let s ∈ R. There exists ∆2 > 0 such that if z′, z ∈ [0, Z], z ≤ z′,
with 0 ≤ ∆ := z′ − z ≤ ∆2 then G(z′,z) continuously maps S into S , S ′ into

S ′, and H(s)(Rn) into H(s)(Rn). In fact, there exists C > 0 such that we have
the following norm estimate

‖G(z′,z)‖(H(s),H(s)) ≤ 1 + C∆,

uniformly w.r.t. z and z′ as above.

The approximation Ansatz is defined by

Definition 1.6. Let P = {z(0), z(1), . . . , z(N)} be a subdivision of [0, Z] with 0 =
z(0) < z(1) < · · · < z(N) = Z such that z(i+1) − z(i) = ∆P. The operator WP,z

is defined as

WP,z :=



G(z,0) if 0 ≤ z ≤ z(1),

G(z,z(k))

1∏

i=k

G(z(i),z(i−1)) if z(k) ≤ z ≤ z(k+1).

We chose to use a constant-step subdivision of the interval [0, Z] but the method
and results presented here can be naturally adapted to any subdivision of [0, Z].

2 An improved convergence result

Let s ∈ R. In [12, Proposition 3.8], it was proved that, for ∆ sufficiently small,
we have

‖(∂z′ + az′(x,Dx))G(z′,z)‖(H(s),H(s−1)) ≤ C∆β ,

with β = min(α, 1
2 ) if az(x, ξ) is of Hölder regular, of order α, w.r.t. z. This

estimate yields the convergence result in Sobolev spaces found in [12] with a
rate of order β:

‖WP,z − U(z, 0)‖(H(s+1),H(s)) ≤ C∆β
P
, z ∈ [0, Z].
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Here, we shall improve this result and show that the convergence rate is in fact
of order α. The proof presented here is actually simpler than that in [12].

We introduce the following definitions.

Definition 2.1. Let L ≥ 2. A symbol q(z, .) bounded w.r.t. z with values in
S1(Rp × R

r) is said to satisfy Property (PL) if it is non-negative and satisfies

(PL) |∂α
y ∂

β
η q(z, y, η)| ≤ C(1 + |η|)−|β|+(|α|+|β|)/L (1 + q(z, y, η))1−(|α|+|β|)/L,

z ∈ [0, Z], y ∈ R
p, η ∈ R

r.

We then set ρ = 1 − 1/L and δ = 1/L.

Definition 2.2. Let L ≥ 2. Let ρ∆(z, y, η) be a function in C∞(Rp×R
r) depending

on the parameters ∆ ≥ 0 and z ∈ [0, Z]. We say that ρ∆ satisfies Property (QL)
if the following holds

(QL) ∂α
y ∂

β
η (ρ∆ − ρ∆|∆=0)(z, y, η) = ∆m+δ(|α|+|β|)ρmαβ

∆
(z, y, η),

for |α|+ |β| ≤ L, 0 ≤ m ≤ 1 − δ(|α|+ |β|),

where ρmαβ
∆

(z, y, η) is bounded w.r.t. ∆ and z with values in Sm−ρ|β|+δ|α|
ρ (Rp×R

r).
It follows that ρ∆(z, y, η) − ρ∆|∆=0(z, y, η) is itself bounded w.r.t. ∆ and z with
values in S0

ρ(Rp × R
r).

We have the following two lemmas [12]

Lemma 2.3. Let q(z, y, η) be bounded w.r.t. z with values in S1(Rp × R
r). If

q ≥ 0 then q satisfies Property (PL) for L = 2.

Examples of symbols with such a property with L > 2 are given in [17].

Lemma 2.4. Let q(z, .) be bounded w.r.t. z with values in S1(Rp × R
r) and

satisfy Property (PL). Define ρ∆(z, y, η) = exp[−∆q(z, y, η)]. Then ρ∆ satisfies
Property (QL) for ∆ ∈ [0,∆max] for any ∆max > 0. As ρ∆|∆=0 = 1, ρ∆ is itself
bounded w.r.t. ∆ and z with values in S0

ρ(Rp × R
r).

We shall assume that c1 satisfies property (PL) for some L ≥ 2. We know that
it is always true for L = 2 by Lemma 2.3 but special choices for c1 can be made.
Setting

p∆(z, x, ξ) := exp[−∆c1(z, x, ξ)],

we obtain that p∆(z, x, ξ) satisfies property (QL) by Lemma 2.4.

In the spirit of some of the properties proved in [12] we have

Proposition 2.5. Let q∆(z, x, ξ) be an amplitude in S0
ρ(Rp × R

p) depending on
the parameters ∆ ≥ 0 and z ∈ [0, Z] that satisfies Property (QL) for |α| = 1 and
such that q∆(z, .)|∆=0 is independent of x. Let rz(x, ξ) be bounded w.r.t. z with
values in Ss(Rp × R

p) for some s ∈ R. Then

(rz # q∆)(z, x, ξ) − rz(x, ξ) q∆(z, x, ξ) = ∆m+δλm
∆(z, x, ξ), 0 ≤ m ≤ ρ,

where the function λm
∆

(z, x, ξ) is bounded with respect to ∆ and z with values in

Sm+s−ρ
ρ (Rp × R

p).
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Proof. For the sake of concision we take p = 1 in the proof, but it naturally
extends to p ≥ 1. Using the oscillatory integral representation of rz # q∆ we
obtain

(rz # q∆)(z, x, ξ) − rz(x, ξ) q∆(z, x, ξ)

=

"
exp[−i〈y|ξ − η〉] rz(x, η) q∆(z, x − y, ξ) d−η dy − rz(x, ξ) q∆(z, x, ξ)

=

"
exp[−i〈y|ξ − η〉] rz(x, η) (q∆(z, x − y, ξ) − q∆(z, x, ξ)) d−η dy.

Taylor’s formula yields

(rz # q∆)(z, x, ξ) − rz(x, ξ) q∆(z, x, ξ)

=

∫ 1

0

"
−y exp[−i〈y|ξ − η〉] rz(x, η) ∂2q∆(z, x − ty, ξ) d−η dy dt.

With an integration by parts we obtain

(rz # q∆)(z, x, ξ) − rz(x, ξ) q∆(z, x, ξ)

= −i

∫ 1

0

"
exp[−i〈y|ξ − η〉] ∂2rz(x, η) ∂2q∆(z, x − ty, ξ) d−η dy dt.

Using Property (QL) we find

(rz # q∆)(z, x, ξ) − rz(x, ξ) q∆(z, x, ξ) = −i∆m+δ

∫ 1

0

"
exp[−i〈y|ξ − η〉] ∂2rz(x, η) q

m10
∆ (z, (1 − t)x+ t(x − y), ξ) d−η dy dt

= −i∆m+δ(∂2rz(x, ξ) # q̃m10
∆ (z, u, x, ξ))|u=x,

where

q̃m10
∆ (z, u, x, ξ) =

∫ 1

0

qm10
∆ (z, (1 − t)u+ tx, ξ) dt.

As q̃m10
∆

is bounded w.r.t. ∆ and z with values in Sm+δ
ρ (R2p × R

p) and ∂2rz is
bounded w.r.t. z with values in Ss−1(Rp × R

p) we obtain the result. �

We recall the following result (Theorem 2.5 and the following remark in [9]),
which shall be of use below

Proposition 2.6. Let Q(z′,z) be the global FIO with kernel

Q(z′,z)(x
′, x) =

∫
exp[i〈x′ − x|ξ〉+ i∆b1(z, x

′, ξ)] σQ(z, x′, ξ) d−ξ,

with σQ(z, .) bounded w.r.t. z with values in Sm
ρ (X × R

n), m ∈ R, 1
2 ≤ ρ ≤ 1.

Then for all s ∈ R there exists K = K(s,m) ≥ 0, ∆3 > 0 such that

‖Q(z′,z)‖(H(s),H(s−m)) ≤ K p(σQ(z, .)),

for all z ∈ [0, Z], and 0 ≤ ∆ ≤ ∆3, where p(.) is some appropriately chosen
seminorm on Sm

ρ (X × R
n).
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In preparation of the main result of this section we define

A(z′,z) := ∂z′ ◦ G(z′,z), B(z′,z) := az(x,D) ◦ G(z′,z).

We have

A(z′,z)u(x
′) = −

"
exp[i〈x′ − x|ξ〉+ i∆b1(z, x

′, ξ)]

az(x
′, ξ) p∆(z, x′, ξ) g(z′,z)(x

′, ξ) u(x) dx d−ξ.

For ∆ sufficiently small, the real phase function

ϕ(z′,z)(x
′, x, ξ) = 〈x′ − x|ξ〉+ ∆b1(z, x

′, ξ)

satisfies Definition 1.2 in [10, Section 10.1] and we have

B(z′,z)u(x
′) =

"
exp[i〈x′ − x|ξ〉+ i∆b1(z, x

′, ξ)] σ∆(z, x′, ξ) u(x) dx d−ξ,

from Theorem 2.2 in [10, Section 10.2], where σ∆(z, x, ξ) is a symbol in S1
ρ(Rn×

R
n) given, as an oscillatory integral, by

σ∆(z, x, ξ) =

"
exp[−i〈x − y|ξ − η〉+ i∆(b1(z, y, ξ) − b1(z, x, ξ))]

p∆(z, y, ξ) az(x, η) g(z′,z)(y, ξ) d
−η dy.

We shall need the following regularity assumption w.r.t. z on the symbol az(x, ξ).

Assumption 2.7. The symbol a(z, .) is assumed to be in C 0,α([0, Z], S1(Rn ×

R
n)), i.e. Hölder continuous w.r.t. z, with values in S1(Rn × R

n), in the sense
that, for some 0 < α < 1

a(z′, x, ξ) − a(z, x, ξ) = (z′ − z)α ã(z′, z, x, ξ), 0 ≤ z ≤ z′ ≤ Z,

with ã(z′, z, x, ξ) bounded w.r.t. z′ and z with values in S1(Rn × R
n).

The following result is the key point in the proof of the convergence theorem
below.

Theorem 2.8. Let s ∈ R. There exists ∆4 > 0 and C ≥ 0 such that for z′−z = ∆,
∆ ∈ [0,∆4],

‖(∂z′ + az′(x,Dx)) ◦ G(z′,z)‖(H(s),H(s−1)) ≤ C∆α.

Proof. In the proof, we shall always assume that ∆ is sufficiently small to apply
the invoked properties and results. We have ‖G(z′,z)‖(H(s),H(s)) ≤ C by Theo-
rem 1.5. With Assumption 2.7 we have

‖(az(x,Dx) − az′(x,Dx)) ◦ G(z′,z)‖(H(s),H(s−1)) ≤ C∆α,

by Theorem 18.1.13 in [4]. It is thus sufficient to prove

‖A(z′,z) + B(z′,z)‖(H(s),H(s−1)) = ‖(∂z′ + az(x,Dx)) ◦ G(z′,z)‖(H(s),H(s−1)) ≤ C∆.
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With the first-order Taylor formula and Lemma 18.1.10 in [4] we find

g(z′,z)(x, ξ) := 1 + ∆g̃(z′,z)(x, ξ),(2.12)

with g̃(z′,z) bounded w.r.t. ∆ and w.r.t. z with values in S0(Rn × R
n). We can

thus write A(z′,z) = A
(z′,z)

+ ∆Ã(z′,z) with

Ã(z′,z)u(x
′) = −

"
exp[i〈x′ − x|ξ〉+ i∆b1(z, x

′, ξ)]

az(x
′, ξ) p∆(z, x′, ξ) g̃(z′,z)(x

′, ξ) u(x) dx d−ξ,

and A
(z′,z)

is given by the same formula with g̃(z′,z) replaced by 1. With Propo-

sition 2.6 we find ‖Ã(z′,z)‖(H(s),H(s−1)) ≤ C since az(x, ξ)p∆(z, x, ξ) g̃(z′,z)(x, ξ) is

bounded w.r.t. z′ and z with values in S1
ρ(Rn × R

n).

Similarly we write the amplitude of B(z′,z) as

σ∆(z, x, ξ) = σ∆(z, x, ξ) + ∆σ̃∆(z, x, ξ),

where

σ̃∆(z, x, ξ) =

"
exp[−i〈x − y|ξ − η〉+ i∆(b1(z, y, ξ) − b1(z, x, ξ))]

p∆(z, y, ξ) az(x, η) g̃(z′,z)(y, ξ) d
−η dy,

and σ∆(z, x, ξ) is given by

(2.13) σ∆(z, x, ξ) =

"
exp[−i〈x − y|ξ − η〉+ i∆(b1(z, y, ξ) − b1(z, x, ξ))]

p∆(z, y, ξ) az(x, η) d
−η dy.

From Theorem 2.2 in [10, Section 10.2] (and its proof) we find that σ̃∆(z, x, η) is
bounded w.r.t. ∆ and z with values in S1

ρ(Rn ×R
n). Writing B(z′,z) = B

(z′,z)
+

∆B̃(z′,z) accordingly, we obtain ‖B̃(z′,z)‖(H(s),H(s−1)) ≤ C with Proposition 2.6.
To conclude, it thus suffices to prove ‖A

(z′,z)
+ B

(z′,z)
‖(H(s),H(s−1)) ≤ C∆. By

Proposition 2.6, this follows from the next lemma. �

We denote by κ∆ the amplitude of the FIO A
(z′,z)

+ B
(z′,z)

. We have

Lemma 2.9. The symbol κ∆(z, x, ξ) := σ∆(z, x, ξ)−az(x, ξ)p∆(z, x, ξ) is equal to
∆κ̃∆(z, x, ξ) with κ̃∆(z, x, ξ) bounded w.r.t. ∆ and z with values in S1

ρ(Rn×R
n).

Proof. We first write κ∆(z, x, ξ) = κ∆,1(z, x, ξ) + κ∆,2(z, x, ξ) with

κ∆,1(z, x, ξ) := σ∆(z, x, ξ) − (az # p∆(z, .))(x, ξ),

κ∆,2(z, x, ξ) := (az # p∆(z, .))(x, ξ) − az(x, ξ) p∆(z, x, ξ),

and work on each one separately.
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The composition product of ψDOs gives [4, Theorem 18.1.8]

(az # p∆(z, .))(x, ξ) =

"
exp[−i〈x − y|ξ − η〉] az(x, η) p∆(z, y, ξ) d−η dy.

We thus obtain

κ∆,1(z, x, ξ) =

"
exp[−i〈x − y|ξ − η〉] (exp[i∆ν(z, x, y, ξ)] − 1)

az(x, η) p∆(z, y, ξ) d−η dy,

as an oscillatory integral where

ν(z, x, y, ξ) = b1(z, y, ξ) − b1(z, x, ξ) = 〈y − x|h(z, x, y, ξ)〉,

for h(z, x, y, ξ) continuous w.r.t. z with values in S1(R2n ×R
n), homogeneous of

degree 1 by Assumption 1.1 and estimate (1.1.9) in [6]. Taylor’s formula yields

κ∆,1(z, x, ξ) = i∆

∫ 1

0

"
exp[−i〈x − y|ξ − η〉] exp[is∆ν(z, x, y, ξ)]

〈y − x|h(z, x, y, ξ)〉 az(x, η) p∆(z, y, ξ) d−η dy ds

= −∆

∫ 1

0

"
〈h(z, x, y, ξ)|∇η exp[−i〈x − y|ξ − η〉]〉 exp[is∆ν(z, x, y, ξ)]

az(x, η) p∆(z, y, ξ) d−η dy ds,

which after integration by parts gives

κ∆,1(z, x, ξ) = ∆

∫ 1

0

"
exp[−i〈x − y|ξ − η〉] exp[is∆(b1(z, y, ξ) − b1(z, x, ξ))]

〈h(z, t, y, ξ)|∇ηaz(x, η)〉 p∆(z, y, ξ) d−η dy ds|t=x.

We thus recover a composition formula for a ΨDO and an FIO, as that given in
Theorem 2.2 in [10, Section 10.2], with t, s and z as parameters. For j = 1, . . . , n,
hj(z, t, y, ξ)p∆(z, y, ξ) is continuous w.r.t. z and smooth and bounded w.r.t.
t ∈ R

n with values in S1
ρ(Rn × R

n) and ∂ηj
az(x, η) is continuous w.r.t. z with

values in S0(Rn × R
n). We thus obtain that κ∆,1(z, x, ξ) = ∆κ̃∆,1(z, x, ξ) with

κ̃∆,1(z, x, ξ) continuous w.r.t. z and bounded w.r.t. ∆ with values in S1
ρ(Rn×R

n).

For the second term, κ∆,2(z, x, ξ), we apply Proposition 2.5 with m = ρ and
obtain κ∆,2(z, x, ξ) = ∆κ̃∆,2(z, x, ξ) with κ̃∆,2(z, x, ξ) bounded w.r.t. z and ∆
with values in S1

ρ(Rn × R
n). �

With the same line of arguments as in [12, Section 3] we obtain, from Theo-
rem 2.8, the following convergence result

Theorem 2.10. Assume that a(z, .) is in C 0,α([0, Z], S1(Rn × R
n)), i.e. Hölder

continuous w.r.t. z, with values in S1(Rn × R
n), in the sense that, for some

0 < α < 1

a(z′, x, ξ) − a(z, x, ξ) = (z′ − z)α ã(z′, z, x, ξ), 0 ≤ z ≤ z′ ≤ Z,
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or Lipschitz (α = 1), with ã(z′, z, x, ξ) bounded w.r.t. z′ and z with values in
S1(Rn × R

n). Let s ∈ R and 0 ≤ r < 1. Then the approximation Ansatz
WP,z converges to the solution operator U(z, 0) of the Cauchy problem (1.6)–
(1.7) in L(H(s+1)(Rn),H(s+r)(Rn)) uniformly w.r.t. z as ∆P goes to 0 with a
convergence rate of order α(1 − r):

‖WP,z − U(z, 0)‖(H(s+1),H(s+r)) ≤ C∆
α(1−r)

P
, z ∈ [0, Z].

Furthermore, the operator WP,z strongly converges to the solution operator
U(z, 0) in L(H(s+1)(Rn),H(s+1)(Rn)) uniformly w.r.t. z ∈ [0, Z].

A result similar to that of the previous theorem can be obtained with weaker
assumptions on the symbol a(z, .) by introducing another, yet natural, Ansatz to
approximate the exact solution to the Cauchy problem (1.6)–(1.7). For a symbol
q(z, y, η) ∈ C 0([0, Z], Sm(Rp × R

r)) we define q̂(z′,z)(y, η) ∈ C 0([0, Z]2, Sm(Rp ×

R
r))

q̂(z′,z)(y, η) :=
1

z′ − z

∫ z′

z

q(s, y, η) ds, 0 ≤ z < z′ ≤ Z.

Then we define

(2.14) φ̂(z′,z)(x
′, x, ξ) := 〈x′ − x|ξ〉+ i∆â1(z′,z)(x

′, ξ)

= 〈x′ − x|ξ〉+ ∆̂b1(z′,z)(x
′, ξ) + i∆ĉ1(z′,z)(x

′, ξ).

and

ĝ(z′,z)(x, ξ) := exp[−∆â0(z′,z)(x, ξ)].(2.15)

and finally, following [11], we denote Ĝ(z′,z) the FIO with distribution kernel

Ĝ(z′,z)(x
′, x) =

∫
exp[i〈x′ − x|ξ〉] exp[−∆â(z′,z)(x

′, ξ)] d−ξ

=

∫
exp[iφ̂(z′,z)(x

′, x, ξ)] ĝ(z′,z)(x
′, ξ) d−ξ.

with the associated approximation Ansatz

Definition 2.11. Let P = {z(0), z(1), . . . , z(N)} be a subdivision of [0, Z] with
0 = z(0) < z(1) < · · · < z(N) = Z such that z(i+1) − z(i) = ∆P. The operator

ŴP,z is defined as

ŴP,z :=



Ĝ(z,0) if 0 ≤ z ≤ z(1),

Ĝ(z,z(k))

1∏

i=k

Ĝ(z(i),z(i−1)) if z(k) ≤ z ≤ z(k+1).

Theorem 2.12. With the sole assumption of the continuity of the symbol a(z, .)
w.r.t. z with values in S1(Rn × R

n) (Assumption 1.1) the same results in as

Theorem 2.10 hold for the operator ŴP,z, with a convergence rate of order 1−r
for the operator convergence in L(H(s+1)(Rn),H(s+r)(Rn)).
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3 Truncation of the symbol az(x, ξ) and consequences

In applications, as shown for instance in [16] and in Appendix A of [12], the
symbol of the operator a(z, x,Dx) is often given by an asymptotic series, say

a(z, x, ξ) ∼

∞∑

j=0

a1−j(z, x, ξ)

with a1−j(z, x, ξ) ∈ C 0([0, Z], S1−j(Rn × R
n)). Here, we shall assume that the

symbols a1−j(z, x, ξ), j ∈ N, are in C 0,α([0, Z], S1−j(Rn × R
n)), i.e. Hölder

continuous w.r.t. z with values in S1(Rn × R
n), in the sense that, for some

0 < α < 1

a1−j(z
′, x, ξ) − a1−j(z, x, ξ) = (z′ − z)α ã1−j(z

′, z, x, ξ), 0 ≤ z ≤ z′ ≤ Z, j ∈ N,

with ã1−j(z
′, z, x, ξ) bounded w.r.t. z′ and z with values in S1−j(Rn × R

n).

In practical applications, see e.g. [2, 13, 14], the full symbol is not computed.
Instead, one truncates the asymptotics series and uses

a(z, x, ξ) =

k∑

j=0

a1−j(z, x, ξ),

for some k ≥ 0, so that a(z, .) − a(z, .) is S−k(Rn × R
n) for all z. The purpose

of this section is to study the consequences of such an approximation of the
symbol a(z, x, ξ) for the representation of the solution to the Cauchy problem
(1.6)–(1.7) byWP,z, and its limit, as ∆P goes to zero.

The following lemma show that the regularity of the a1−j ’s w.r.t. z can in fact
be inherited by their asymptotic series.

Lemma 3.1. The symbol a(z, x, ξ) ∼
∑∞

j=0 aj(z, x, ξ) can be chosen, in its class

modulo S−∞(Rn × R
n), to be in C 0,α([0, Z], S1−j(Rn × R

n)).

Proof. We shall use the notations and the same line of argument as for the proof
of Proposition 18.1.3 in [4]. Let (εj)j be a decreasing sequence converging to 0
to be set below. We define

Aj(z, x, ξ) := (1 − χ(εjξ)) aj(z, x, ξ),

Ãj(z
′, z, x, ξ) := (1 − χ(εjξ)) ãj(z

′, z, x, ξ),

Since 1−χ(εjξ) converges to 0 in S1(Rn×R
n) as εj goes to zero (see Proposition

18.1.2), we can then choose the sequence (εj)j such that

|∂α
x ∂

β
ξ
Aj(z, x, ξ)| ≤ 2−j(1 + |ξ|)2−j−|α|,

|∂α
x ∂

β
ξ
Ãj(z

′, z, x, ξ)| ≤ 2−j(1 + |ξ|)2−j−|α|,

x ∈ R
n, ξ ∈ R

n, 0 ≤ z ≤ z′ ≤ Z, |α|+ |β| ≤ j,
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since aj(z, x, ξ) and ãj(z
′, z, x, ξ) are bounded w.r.t. z (and z′) in S1−j(Rn×R

n).
We then set

a(z, x, ξ) :=

∞∑

j=0

Aj(z, x, ξ), 0 ≤ z ≤ Z,

ã(z′, z, x, ξ) :=

∞∑

j=0

Ãj(z
′, z, x, ξ), 0 ≤ z ≤ z′ ≤ Z.

where the sums are in fact locally finite. Following the proof of Proposition
18.1.3 in [4], we find a(z, x, ξ) and ã(z′, z, x, ξ) are bounded w.r.t. z (and z′)
with values in S1(Rn × R

n) and a(z, x, ξ) ∼
∑∞

j=0 aj(z, x, ξ). Furthermore, we
have

a(z′, x, ξ) − a(z, x, ξ) = (z′ − z)αã(z′, z, x, ξ), 0 ≤ z ≤ z′ ≤ Z,

which concludes the proof. �

For k ≥ 0, we thus have a − a ∈ C 0,α([0, Z], S−k(Rn × R
n)). We denote by

a1 the principal part of a and by a0 the remaining part. We see that ai ∈

C 0,α([0, Z], Si(Rn × R
n)), i = 0, 1. We note that a − a = a0 − a0 since a1 = a1.

We define the distribution kernel in D ′(X ′ ×X)

G(z′,z)(x
′, x) :=

∫
exp[i〈x′ − x|ξ〉] exp[−∆a(z, x′, ξ)] d−ξ

=

∫
exp[iφ(z′,z)(x

′, x, ξ)] g
(z′,z)

(x′, ξ) d−ξ,

where

g
(z′,z)

(x, ξ) := exp[−∆a0(z, x, ξ)],

and the phase function φ(z′,z)(x
′, x, ξ) defined as in (1.9).

We denote by G
(z′,z)

the operator with G(z′,z) for distribution kernel. The

operator G
(z′,z)

is a global Fourier integral operator with complex phases by

Proposition 1.4 for ∆ sufficiently small. We have

Lemma 3.2. Let s ∈ R. There exists ∆5 > 0 and C > 0 such that for z′, z ∈
[0, Z] with z′ ≥ z and 0 ≤ ∆ = z′ − z ≤ ∆5, we have

‖G(z′,z) − G(z′,z)
‖(H(s),H(s+k)) ≤ C∆ p(az − az),

for some appropriately chosen seminorm p on S−k(Rn × R
n).

Proof. With Taylor’s formula we write

σ∆(z, x, ξ) := g
(z′,z)

(x, ξ) − g(z′,z)(x
′, ξ) = ∆(a0(z, x, ξ) − a0(z, x, ξ))

exp[−∆a0(z, x, ξ)]

∫ 1

0

exp[s∆(a0(z, x, ξ) − a0(z, x, ξ))] ds.
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Hence, σ∆(z, x, ξ) = ∆σ̃∆(z, x, ξ) and observing that

exp[−∆a0(z, x, ξ)]

∫ 1

0

exp[s∆(a0(z, x, ξ) − a0(z, x, ξ))] ds

is bounded w.r.t. z and ∆ with values in S0(Rn ×R
n) by Lemma 18.1.10 in [4],

the symbol σ̃∆(z, .) is bounded w.r.t. z and ∆ with values in S−k(Rn ×R
n). We

thus obtain

G(z′,z) −G(z′,z) = ∆

∫
exp[iφ(z′,z)(x

′, x, ξ)] σ̃∆(z, x′, ξ) d−ξ.

We conclude with Proposition 2.26 in [12] (one can also invoke Proposition 2.6
above and consider the previous kernel with an amplitude in S−kρ (Rn × R

n),
1
2 ≤ ρ ≤ 1, and a real phase). �

Definition 3.3. For z′′ ≥ z′ ≥ z ∈ [0, Z] we write G(z′′,z′,z) := G(z′′,z′) ◦G(z′,z) and

more generally for z(N) ≥ z(N−1) ≥ · · · ≥ z(0) ∈ [0, Z] we write G(z(N),...,z(0)) :=
G(z(N),z(N−1)) ◦ · · · ◦G(z(1),z(0)). Similarly we write G

(z(N),...,z(0))
:= G

(z(N),z(N−1))
◦

· · · ◦ G
(z(1),z(0))

.

Recall that the thin-slab propagator G(z′,z) is however not a semigroup nor
an evolution family here (see [12, Section 3] and [7]). Thus G(z(N),...,z(0)) 6=
G(z(N),z(0)).

With the operators we just defined we have

Proposition 3.4. Let s ∈ R and R ≥ 1. There exists ∆6 > 0 and C > 0 such
that for N ∈ N with N∆6 ≤ RZ and 0 ≤ z(0) ≤ z(1) ≤ · · · ≤ z(N) ≤ Z, with
z(j+1) − z(j) ≤ ∆ ≤ ∆6, j = 0, . . . , N − 1, we have

‖G(z(N),...,z(0)) − G(z(N),...,z(0))
‖(H(s),H(s+k)) ≤ CZ sup

z∈[0,Z]

p(az − az) exp[CZ],

for some appropriately chosen seminorm p on S−k(Rn × R
n).

Proof. We write

G(z(N),...,z(0)) − G(z(N),...,z(0))

=

N−1∑

i=0

(
G(z(N),...,z(i)) ◦ G(z(i),...,z(0))

− G(z(N),...,z(i+1)) ◦ G(z(i+1),...,z(0))

)

=

N−1∑

i=0

G(z(N),...,z(i+1)) ◦

(
G(z(i+1),z(i)) − G(z(i+1),z(i))

)
◦ G

(z(i),...,z(0))
.

From Theorem 1.5, there exists M > 0 such that

‖G(z(N),...,z(i+1))‖(H(s+k),H(s+k)) ≤ (1 +M∆)N−i−1,

‖G
(z(i),...,z(0))

‖(H(s),H(s)) ≤ (1 +M∆)i.
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for ∆6 sufficiently small. Lemma 3.2 then yields

‖G(z(N),...,z(0)) − G(z(N),...,z(0))
‖(H(s),H(s+k))

≤ CN∆ sup
z∈[0,Z]

p(az − az) (1 +M∆)N−1

≤ CRZ sup
z∈[0,Z]

p(az − az) (1 +RZM/N)N−1.

Since the right-hand side converges to CRZ supz∈[0,Z] p(az −az) exp[RMZ], as
an increasing sequence, this concludes the proof. �

We define the operatorW
P,z

:

Definition 3.5. Let P = {z(0), z(1), . . . , z(N)} be a subdivision of [0, Z] with 0 =
z(0) < z(1) < · · · < z(N) = Z such that z(i+1) − z(i) = ∆P. The operator W

P,z
is defined as

W
P,z

:=



G
(z,0)

if 0 ≤ z ≤ z(1),

G
(z,z(k))

1∏

i=k

G
(z(i),z(i−1))

if z(k) ≤ z ≤ z(k+1).

From Proposition 3.4 we have the following theorem which estimates the er-
ror in computing W

P,z
(u0) in place of WP,z(u0) and a convergence result in

H(s+k)(Rn) if az − az converges to 0 in S−k(Rn × R
n).

Theorem 3.6. Let P = {z(0), z(1), . . . , z(N)} be a subdivision of [0, Z] with 0 =
z(0) < z(1) < · · · < z(N) = Z such that z(i+1) − z(i) = ∆P. For ∆P ≤ ∆6 then

‖WP,z −WP,z
‖(H(s),H(s+k)) ≤ CZ sup

z∈[0,Z]

p(az − az) exp[CZ], z ∈ [0, Z].

for some appropriately chosen seminorm p on S−k(Rn × R
n).

From Theorem 2.10, we know that WP,z strongly converges in H(s)(Rn) to
the solution operator of the Cauchy problem (1.6)–(1.7) and similarly W

P,z

strongly converges in H(s)(Rn) to the solution operator to the Cauchy problem

∂zu+ a(z, x,Dx)u = 0, 0 < z ≤ Z,(3.16)

u |z=0 = u0 ∈ H
(s)(Rn).(3.17)

With the hypothesis made on the symbol a(z, .) there exist a unique solution in
C 0([0, Z],H(s)(Rn)) ∩ C 1([0, Z],H(s−1)(Rn)) to (3.16)–(3.17). To support the
‘optimality’ of the result of Theorem 3.6 we note that

Proposition 3.7. There exists λ0 > 0 and C > 0 such that

‖u(z, .) − u(z, .)‖H(s+k)

≤ CZ sup
z∈[0,Z]

p(az − az) exp[λZ]‖u0‖H(s) , z ∈ [0, Z], λ > λ0,

for some appropriately chosen seminorm p on S−k(Rn × R
n).
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Proof. We note that

(∂z + az(x,Dx))(u − u) = (∂z + az(x,Dx))u = (az(x,Dx) − az(x,Dx))u.

With u0 ∈ H
(s)(Rn) then u(z, .) ∈ C 0([0, Z],H(s)(Rn)) ∩ C 1([0, Z],H(s−1)(Rn))

by Theorem 23.1.2 in [4]. With az(x, ξ)−az(x, ξ) continuous w.r.t. z with values

in S−k(Rn) we obtain (az(x,Dx) − az(x,Dx))u ∈ C 0([0, Z],H(s+k)) and

‖(az(x,Dx) − az(x,Dx))u‖H(s+k) ≤ sup
z∈[0,Z]

p(az − az) ‖u‖H(s)

for some appropriately chosen seminorm p on S−k(Rn ×R
n) by Proposition 2.6.

Theorem 23.1.2 in [4] yields that u−u ∈ C 0([0, Z],H(s+k)(Rn)) and satisfies the
energy estimate

sup
z∈[0,Z]

exp[−λz] ‖u(z, .) − u(z, .)‖H(s+k)

≤ 2

∫ Z

0

exp[−λz] ‖(az(x,Dx) − az(x,Dx))u‖H(s+k)dz

≤ C sup
z∈[0,Z]

p(az − az)

∫ Z

0

exp[−λz] ‖u‖H(s) dz ≤ CZ sup
z∈[0,Z]

p(az − az) ‖u0‖H(s) ,

for λ greater than some λ0 > 0 which solely depends on s and k since

sup
z∈[0,Z]

exp[−λz] ‖u(z, .)‖H(s) ≤ ‖u0‖H(s) ,

by Theorem 23.1.2 in [4]. �

In applications, one is not only interested in the convergence of the Ansatz, be
it WP,z(u0) or W

P,z
(u0), to the exact solution of the Cauchy problem (1.6)–

(1.7) but one also expect the wavefront set of the approximate solution to be
close, in some sense, to that of the exact solution. This is particularly true in
applications such as seismology where the wavefront set of the solution is to be
connected to interfaces in the subsurface [1].

The propagation of singularities for the proposed AnsatzW
P,z

(u0) is fully gov-

ern by the principal part of the symbol az(x, ξ): following the analysis of [7] we
find the following convergence for the wavefront set of W

P,z
(u0), independent

of the lower-order symbols that compose az.

Theorem 3.8. Let u0(.) ∈ H
(−∞)(Rn) and u(z, .), z ∈ [0, Z], be the solution to

the Cauchy problem (1.6)–(1.7). Let Z′ ∈ [0, Z] and K be a compact set in
T ∗(Rn) such that for all γ(0) = (x(0), ξ(0)) ∈ K \ 0 the bicharacteristics χz(γ

(0))
associated to −b1 = Re(a1) originating from γ(0) at z = 0 satisfies χz(γ

(0)) ∈ Ωz

for all z ∈ [0, Z′] with

Ωz =
{
(x, ξ) ∈ T ∗(Rn) \ 0; (z, x, ξ) /∈ supp(c1)

}
.

If γ(0) ∈ K ∩WF(u0) we have χZ′(γ
(0)) ∈WF(u(Z′, .)). For a subdivision P of

[0, Z], with ∆P sufficiently small, we then have

dist (χz(γ
(0)),WF(W

P,z
(u0)))→ 0, as ∆P → 0

uniformly w.r.t. γ(0) ∈ K ∩WF(u0) and z ∈ [0, Z′]. Furthermore, the conver-
gence is of order α, 0 < α ≤ 1, if b1(z, .) is in C 0,α([0, Z], S1(Rn,Rn)).
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[6] L. Hörmander. The analysis of linear partial differential operators, vol-
ume I. Springer-Verlag, second edition, 1990.
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