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Abstract

In analogy to the classical isomorphism between L (S (Rn) ,S
′ (Rm)) and S

′
(
R

n+m
)
, we

show that a large class of moderate linear mappings acting between the space GS (Rn) of
Colombeau rapidly decreasing generalized functions and the space Gτ (Rn) of temperate ones
admits generalized integral representations, with kernels belonging to Gτ

(
R

n+m
)
. Further-

more, this result contains the classical one in the sense of the generalized distribution equality.
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Keywords: kernel Theorem, Colombeau temperate generalized functions, integral operator, tem-
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1 Introduction

During the three last decades, theories of nonlinear generalized functions have been developed by
many authors (see [1, 11, 14, 15],...), mainly based on the ideas of J.-F. Colombeau [3, 4], which
we are going to follow in the sequel. Those theories appear to be a natural continuation of the
distributions’ one [12, 21, 22], specially efficient to pose and solve differential or integral problems
with irregular data.

In this paper, we continue the investigations in the field of generalized integral operators ini-
tiated by [18] (recently republished in [19, 20]) and carried on by [2, 5, 9, 10, 23]. Let us recall
that those operators generalize, in the Colombeau framework, the operators with distributional
kernels in the space of Schwartz distributions [2]. More specifically, in [5], we proved that any
moderate net of linear maps (Lε : D (Rn) → C∞ (Rm))ε, that is satisfying some growth properties
with respect to the parameter ε, gives rise to a linear map L : GC (Rn) → G (Rm). (Where G

(
Rd

)

and GC (Rn) denote respectively the space of generalized functions and the space of compactly
supported ones.) The main result is that L can be represented as a generalized integral operator
in the spirit of Schwartz Kernel Theorem.

Going further in this direction, we study here the generalization of the classical isomorphism
between S′ (Rn+m) and the space of continuous linear mappings acting between S (Rn) and S′ (Rm)
[22]. Thus, the spaces of generalized functions considered in this paper are the space GS (Rn) of
rapidly decreasing generalized functions [7, 10, 17] and the space Gτ (Rn) of tempered generalized
functions [4, 11, 18]: GS (Rn) plays here, roughly speaking, the role of S (Rn) (resp. GC (Rn)) in
the classical case (resp. in [5]), whereas Gτ (Rn) plays the role of S′ (Rm) (resp. G (Rm)) in the
classical case (resp. in [5]).
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The main results are the following. First, any kernel H ∈ Gτ (Rm+n) gives rise to a new type
of linear generalized integral operator acting between GS (Rn) and Gτ (Rm) and defined by

H̃ : GS (Rn) → Gτ (Rm) , f 7→ H̃(f) =

[(
x 7→

∫
Hε(x, y)fε(y) dy

)

ε

]

τ

,

where (Hε)ε (resp. (fε)ε) is any representative of H (resp. f) and [·]τ , the class of an element

in Gτ (Rm). Moreover, the linear map H 7→ H̃ from Gτ (Rm+n) to the space of linear maps
L (GS (Rn) ,Gτ (Rm)) is injective (Proposition 14). This gives the first part of the expected result.
Then, new regular subspaces of GS (Rn) and Gτ (Rm) are introduced in the spirit of [6]. They are
used to define the moderate nets of linear maps, which can be extended to act between GS (Rn) and
Gτ (Rm) (Proposition 16). Finally, our main result states that those extensions can be represented
as generalized integral operators (Theorem 17). Furthermore, this result is strongly related to the
classical isomorphism theorem recalled above in the following sense. We can associate to each
linear continuous operator Λ : S (Rn) → S′ (Rm), a moderate map LΛ and consequently a kernel

HLΛ
∈ Gτ (Rm+n) such that, for all f in S (Rn), Λ (f) and H̃LΛ

(f) are equal in the generalized
distribution sense [14] (Proposition 20).

The paper can be divided in two parts. The first part, formed by section 2 and section 3,
introduces the material which is needed in the sequel (regular spaces of generalized functions,
generalized integral operators). The second part, consisting in the two last sections, is devoted to
the definition of moderate nets, the statement of the main theorems and their proofs. Concerning
them, we insist on the differences with [5]: Replacing GC (Rn) by the bigger space GS (Rn) and
G (Rm) by Gτ (Rm) obliges to consider global estimates instead of ones on compact sets. This forces
to introduce a new concept of moderate maps, and to refine the estimates and the arguments
concerning integration. However, we also substantially simplify here the proof of the equality in
generalized distribution sense.

2 Colombeau type algebras

Throughout this section, d will be a strictly positive integer and Ω an open subset of Rd. As
mentioned in the introduction, we only consider in this paper the spaces GS (Ω) of rapidly decreasing
generalized functions and Gτ (Ω) of temperate generalized functions. For f ∈ C∞ (Ω), r ∈ Z and
l ∈ N, set

µr,l(f) = sup
x∈Ω, |α|≤l

(1 + |x|)r |∂αf (x)| (with values in [0,+∞]). (1)

2.1 Rapidly decreasing generalized functions

Set

ES (Ω) =
{
(fε)ε ∈ S (Ω)

(0,1] ∣∣ ∀ (q, l) ∈ N
2, ∃N ∈ N, µq,l (fε) = O

(
ε−N

)
as ε→ 0

}

NS (Ω) =
{
(fε)ε ∈ S (Ω)

(0,1] ∣∣ ∀ (q, l) ∈ N
2, ∀p ∈ N, µq,l (fε) = O (εp) as ε→ 0

}
.

One can show that ES (Ω) is a subalgebra of S (Ω)
(0,1]

and NS (Ω) an ideal of ES (Ω). The
algebra GS (Ω) = ES (Ω) /NS (Ω) is called the algebra of rapidly decreasing generalized functions
[7, 10, 17]. A straightforward exercise shows that the functor GS (·) defines a presheaf of differential
algebras over Rd and a presheaf of modules over the factor ring of generalized constants C =
EM (C) /N (C), with

EM (K) =
{
(xε)ε ∈ K

(0,1]
∣∣∃N ∈ N, |xε| = O

(
ε−N

)
as ε→ 0

}

N (K) =
{
(xε)ε ∈ K

(0,1] | ∀p ∈ N, |xε| = O (εp) as ε→ 0
}
,

for K = C or K = R, R+.
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Set

NS,∗ (Ω) =
{
(fε)ε ∈ C∞ (Ω)

(0,1] | ∀q ∈ N, ∀p ∈ N, µq,0 (fε) = O (εp) as ε→ 0
}
. (2)

We have the exact analogue of Theorems 1.2.25 and 1.2.27 of [11] (see [7]).

Proposition 1 If the open set Ω is a box, i.e. the product of d open intervals of R (bounded or
not) then NS (Ω) = NS,∗ (Ω) ∩ ES (Ω).

We shall need in the sequel some results concerning embeddings. Consider ρ ∈ S
(
R

d
)

which
satisfies ∫

ρ (x) dx = 1,
∫
xαρ (x) dx = 0 for all α ∈ N

d\ {0} (3)

and set
∀ε ∈ (0, 1] , ∀x ∈ R

d, ρε (x) = ε−dρ
(
x/ε−1

)
. (4)

Proposition 2 [7]
(i) The map

σS : S
(
R

d
)
→ GS

(
R

d
)
, f 7→ [(fε)ε]S with fε = f for all ε ∈ (0, 1]

is an embedding of differential algebras.
(ii) The map

ιS : O′
C

(
R

d
)
→ GS

(
R

d
)
, u 7→ (u ∗ ρε)ε + NS

(
R

d
)

is an embedding of differential vector spaces. (O′
C

(
Rd

)
denotes the space of rapidly decreasing

distributions.)
(iii) Moreover, ιS|S(Rd) = σS .

2.2 Temperate generalized functions

Set

OM (Ω) = {f ∈ C∞ (Ω) | ∀l ∈ N, ∃q ∈ N, µ−q,l(f) < +∞}

Eτ (Ω) =
{
(fε)ε ∈ OM (Ω)

(0,1] ∣∣ ∀l ∈ N, ∃q ∈ N, ∃N ∈ N, µ−q,l (fε) = O
(
ε−N

)
as ε→ 0

}

Nτ (Ω) =
{
(fε)ε ∈ OM (Ω)(0,1] | ∀l ∈ N, ∃q ∈ N, ∀p ∈ N, µ−q,l (fε) = O (εp) as ε→ 0

}
,

where (µr,l)(r,l)∈Z×N
are defined by (1).

The set OM (Ω) is the algebra of multiplicators (or of C∞ functions with slow growth). One

can show that Eτ (Ω) is a subalgebra of OM (Ω)
(0,1]

and Nτ (Ω) an ideal of Eτ (Ω). The algebra
Gτ (Ω) = Eτ (Ω) /Nτ (Ω) is called the algebra of tempered generalized functions [4, 11, 18]. As for
the case of GS (·), the functor Gτ (·) defines a presheaf over Rd of differential algebras and a presheaf
of modules over the factor ring C introduced in subsection 2.1.

The following result will be useful in the sequel. Set

Nτ,∗ (Ω) =
{

(fε)ε ∈ OM (Ω)(0,1] | ∃q ∈ N, ∀p ∈ N, µ−q,0 (fε) = O (εp) as ε→ 0
}
.

Proposition 3 [11] If the open set Ω is a box (see proposition 1) then Nτ (Ω) = Nτ,∗ ∩ Eτ (Ω).

The results about embeddings concerning Gτ

(
Rd

)
can be summarized (Theorems 1.2.27 and

1.2.28 of [11]) in the following proposition:
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Proposition 4 Consider ρ ∈ S
(
Rd

)
which satisfies (3) and define (ρε)ε as in (4).

(i) The map

στ : OM

(
R

d
)
→ Gτ

(
R

d
)
, f 7→ (f)ε + Nτ

(
R

d
)
, with fε = f for all ε ∈ (0, 1]

is an embedding of differential algebras.
(ii) The map

ιτ : S′
(
R

d
)
→ Gτ

(
R

d
)
, u 7→ (u ∗ ρε)ε + Nτ

(
R

d
)

is an embedding of differential vector spaces.
(iii) Moreover, ιτ |OC(Rd) = στ , where

OC (Ω) = {f ∈ C∞ (Ω) | ∃q ∈ N, ∀l ∈ N, µ−q,l(f) < +∞}

2.3 Regular subalgebras of GS (Ω) and G
τ
(Ω)

In the sequel, we need to consider some subspaces of GS (·) and Gτ (·) with restrictive conditions of
growth with respect to ε−1. These spaces give a good framework for the extension of linear maps
and for the convolution of generalized functions. These are essential properties for our main result.
This notions are new for Gτ (Ω), but the main ideas have been given (for the purpose of microlocal
analysis) for G (·) and GS (·) in [6, 7].

Definition 5 A non empty subspace R of RN
+ is regular if

(i) R is “overstable” by translations and by maximum

∀N ∈ R, ∀k ∈ N, ∃N ′ ∈ R, ∀n ∈ N, N (n) + k ≤ N ′ (n) , (5)

∀N1 ∈ R, ∀N2 ∈ R, ∃N ∈ R, ∀n ∈ N, max (N1 (n) , N2 (n)) ≤ N (n) ; (6)

(ii) For all N1 and N2 in R, there exists N ∈ R such that

∀ (l1, l2) ∈ N
2, N1 (l1) +N2 (l2) ≤ N (l1 + l2) . (7)

For example, the set RN
+ of all positive valued sequences and the set B of bounded sequences

are regular.

Let R be a regular subset of R
N
+ and set

ER
S (Ω) =

{
(fε) ∈ E (Ω)

∣∣∣∃N ∈ R, ∀q ∈ N, ∀l ∈ N, µq,l (fε) = O
(
ε−N(l)

)}

ER
τ (Ω) =

{
(fε) ∈ E (Ω)

∣∣∣ ∃N ∈ R, ∃q ∈ N, ∀l ∈ N, µ−q,l (fε) = O
(
ε−N(l)

)}
.

Proposition 6
(i) For all regular subspace R of RN

+, ER
S (·) (resp. ER

τ (·)) is a presheaf of differential algebras over
the ring EM (C).
(ii) For all regular subspaces R1 and R2 of RN

+, with R1 ⊂ R2, ER1

S (·) (resp. ER1
τ (·)) is a

subpresheaf of ER2

S (·) (resp. ER2
τ (·)).

We refer the reader to [6] for the proof for the case of rapidly decreasing generalized functions.
The proof for temperate ones is similar.

Definition 7 For all regular subset R of R
N
+, the presheaf of factor algebras GR

S (·) (resp. GR
τ (·))

is called the presheaf of R-regular algebras of rapidly decreasing (resp. temperate) generalized
functions.

Example 8 Taking R = RN
+, we recover the presheaf GS (·) (resp. Gτ (·)) of rapidly decreasing

(resp. temperate) generalized functions. Taking R = B, we obtain the presheaf G∞
S (·) (resp.

G∞
τ (·)) which is analogue for GS (·) (resp. Gτ (·)) to the sheaf of G∞-generalized functions for

G (·). (See [15] for G∞ (·) and [6] for G∞
S (·).)
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Example 9 Rapidly decreasing and temperate generalized functions with slow asymp-

totic growth. We consider mainly the two following examples of regular spaces [5]:

L0 =

{
q ∈ R

N

+ with lim
l→+∞

(q(l)/l) = 0

}
La =

{
q ∈ R

N

+ with lim sup
l→+∞

(q(l)/l) < a

}
(a > 0).

The corresponding presheaves of algebras GLa

S (·) (resp. GLa

τ (·)) are called the presheaves of rapidly
decreasing (resp. temperate) generalized functions with slow asymptotic growth, with respect to the
regularizing parameter ε.

2.4 Fundamental lemma

Lemma 10 Let a be a real in [0, 1]. Consider ρ ∈ S
(
Rd

)
which satisfies (3) and define (ρε)ε as

in (4). For any (gε)ε ∈ ELa

S

(
Rd

)
(resp. ELa

τ

(
Rd

)
), we have

(gε ∗ ρε − gε)ε ∈ NS

(
R

d
)

(resp. Nτ

(
R

d
)
). (8)

Proof. It suffices to treat the case a = 1, since ELa

S ⊂ EL1

S (resp. ELa

τ ⊂ EL1
τ ). We shall do the

proof for the case d = 1, the general case only differs by more complicated algebraic expressions.

(i) Case of EL1

S (R).- Fix (gε)ε ∈ EL1

S (R) and set, for ε ∈ (0, 1],

∀y ∈ R, ∆ε(y) = (gε ∗ ρε) (y) − gε(y) =

∫
(gε(y − x) − gε(y)) ρε(x) dx.

There exists N ∈ L1 such that

∀q ∈ N, ∀l ∈ N, ∀ξ ∈ R,
∣∣∣g(l)

ε (ξ)
∣∣∣ ≤ Cl,q (1 + |ξ|)−q

ε−N(l) (Cl,q > 0),

for ε smaller than some ηi,q depending on i and q.
Let p and q be two integers. As limsupl→+∞ (N (l) /l) < 1, we get liml→+∞ (l −N(l)) = +∞

and the existence of an integer k such that k −N(k) > p. Taylor’s formula gives

∀ (x, y) ∈ R
2, gε(y − x) − gε(y) =

k−1∑

l=1

(−x)l

l!
g(l)

ε (y) +
(−x)k

(k − 1)!

∫ 1

0

g(k)
ε (y − ux) (1 − u)

k−1
du,

and

∀y ∈ R, ∆ε(y) =

∫
(−x)k

(k − 1)!
(

∫ 1

0

g(k)
ε (y − ux) (1 − u)k−1 du) ρε(x) dx.

since
∫
xiθε(x) dx = 0 (for all i ≥ 1). Setting v = x/ε, we get

∀y ∈ R, ∆ε(y) =
εk

(k − 1)!

∫
(−v)k (

∫ 1

0

g(k)
ε (y − εuv) (1 − u)k−1 du) ρ (v) dv.

and

∀y ∈ R, |∆ε(y)| ≤
εk

(k − 1)!

∫
|v|k (

∫ 1

0

∣∣∣g(k)
ε (y − εuv)

∣∣∣ du) |ρ (v)| dv. (9)

For all y ∈ R, ε ∈ (0, ηk,q], u ∈ (0, 1], we have

∣∣∣g(k)
ε (y − εuv)

∣∣∣ ≤ Ck,q (1 + |y − εuv|)−q
ε−N(k).

Since ρ is rapidly decreasing, there exists C > 0 such that

∀v ∈ R, |ρ (v)| ≤ C (1 + |v|)−q−k−2
.
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Replacing in (9), we get the existence of a constant C′
k,q > 0 such that

∀y ∈ R, ∀ε ∈ (0, ηk,q] , |∆ε(y)|

≤ C′
k,qε

k−N(k)

∫
(

∫ 1

0

(1 + |y − εuv|)−q
(1 + |v|)−q

du) |v|k (1 + |v|)−k−2
dv.

One can verify (by hand) that (1 + |y − εuv|)−q
(1 + |v|)−q ≤ (1 + |y|)−q

, for all y ∈ R, ε ∈ (0, 1],
u ∈ (0, 1]. Thus, there exists a constant C′′

k,q > 0 such that

∀y ∈ R, ∀ε ∈ (0, ηk,q] , |∆ε(y)| ≤ C′′
k,q ε

k−N(k) (1 + |y|)−q
.

By assumption on k, we finally get

sup
y∈R

|(1 + |y|)q
∆ε(y)| = O (εp) as ε→ 0.

Thus, ∆ε(y) satisfies the 0-estimate of the ideal NS (R). As (∆ε)ε ∈ ES (R), we can conclude that
(∆ε)ε ∈ NS (R), without estimating the derivatives by using Proposition 1.

(ii) Case of EL1
τ (R).- The proof is an improvement of the proof of Theorems 1.2.28 of [11], based

on the ideas developed for the case of EL1

S
(R) above.

Remark 11 Consider a net of mollifiers (ρε)ε as in Lemma 10. Relation (8) shows that [(ρε)ε]S
(resp. [(ρε)ε]τ ) plays the role of identity for convolution in GLa

S

(
Rd

)
(resp. GLa

τ

(
Rd

)
) whereas this

is false for GS

(
Rd

)
(resp. Gτ

(
Rd

)
). This is an essential feature of these new spaces.

3 Generalized integral operators

As mentioned in the introduction, we consider here generalized integral operators acting on GS(Rn)
with values in Gτ (Rm). (We refer the reader to [2] and [10] for the more usual case of generalized
integral operators acting on G(Rn).) From now on m and n are two strictly positive integers.

Lemma 12 Consider H ∈ Gτ (Rm+n), f ∈ GS(Rn) and (Hε)ε (resp. (fε)ε) any representative of
H (resp. f). The net of C∞ maps

(
H̃ε (fε)

)

ε
:=

(
x 7→

∫
Hε(x, y)fε(y) dy

)

ε

(10)

belongs to Eτ (Rn) and the class
[(
H̃ε (fε)

)

ε

]

τ
depends only on H and f but not on the represen-

tatives (Hε)ε and (fε)ε.

Proof. Firstly, for all x ∈ Rm and ε ∈ (0, 1], Hε(x, ·)fε(·) belongs to L1 (Rn) as well as its

derivatives, since fε ∈ S(Rn) and Hε(x, ·) ∈ OM (Rn). Thus, H̃ε (fε) is well defined and it is easily

seen that H̃ε (fε) belongs to C∞(Rm). Secondly, for any α ∈ Nm, there exist q1 ∈ N and C1 > 0
such that (for ε small enough)

∀ (x, y) ∈ R
m+n, |∂α

xHε(x, y)| ≤ C1 (1 + |x|)q1 (1 + |y|)q1 ε−q1 . (11)

As (fε)ε ∈ ES(Rn), there exist q2 ∈ N and C2 > 0 such that (for ε small enough)

∀y ∈ R
n, |fε(y)| ≤ C2 (1 + |y|)−q1−d−1

ε−q2 . (12)

Inserting (11) and (12) in the definition of H̃ε (fε), we get a constant C3 > 0 such that

∀x ∈ R
m,

∣∣∣∂αH̃ε (fε) (x)
∣∣∣ ≤ C3 (1 + |x|)q1 ε−q1−q2 .

6



Thus
(
H̃ε

)

ε
is in Eτ (Rm). Finally, suppose that (Hε)ε (resp. (fε)ε) is in Nτ (Rm+n) (resp.

NS(Rn)). From estimates similar to (11) and (12), we get that
(
H̃ε (fε)

)

ε
is in Nτ (Rm). Hence,

the independence on the representatives of
[(
H̃ε (fε)

)

ε

]

τ
is proved.

Lemma 12 justifies the following:

Definition 13 Let H be in Gτ (Rm+n). The integral operator of kernel H is the map H̃ defined by

H̃ : GS (Rn) → Gτ (Rm) , f 7→ H̃ (f) =

[(
x 7→

∫
Hε(x, y)fε(y) dy

)

ε

]

τ

,

with the notations of Lemma 12.

Proposition 14 With the notations of Definition 13, the operator H̃ defines a linear mapping
from Gτ (Rn) to GS (Rm). Moreover, the map

Gτ (Rm+n) → L (GS (Rn) ,Gτ (Rm)) , H 7→ H̃

is injective.

Proof. Only the last assertion needs a proof. Consider H ∈ Gτ (Rm+n) and let (Hε)ε be one
of its representative. As (Hε)ε is in Eτ (Rm+n), there exist q ∈ N and C0 > 0 such that

∀ (x, y) ∈ R
m+n, |Hε (x, y)| ≤ C0

(
1 + |(x, y)|2

)q

ε−q ≤ C0

((
1 + |x|2

)(
1 + |y|2

))q

ε−q,

for ε small enough. Now, suppose that H̃ is null. Then, for all g ∈ GS (Rn) with representative
(gε)ε, there exists r > 0 such that

∀p ∈ N, ∃C > 0, ∀x ∈ R
m,

∣∣∣H̃ε (gε) (x)
∣∣∣ =

∣∣∣∣
∫
Hε(x, y)gε(y) dy

∣∣∣∣ ≤ C
(
1 + |x|2

)r

εp, (13)

for ε small enough.

Set, for all (x, y) ∈ Rm+n, Bε(x, y) = εqHε(x, y)
((

1 + |x|2
)(

1 + |y|2
))−q−1

. The net (Bε)ε

belongs to Eτ (Rm+n). For f ∈ GS (Rn) with representative (fε)ε, we have

∫
Bε(x, y)fε(y) dy =

(
1 + |x|2

)−q−1
∫
Hε(x, y) ε

q
(
1 + |y|2

)−q−1

fε(y) dy.

As the net of functions

(
y 7→ εq

(
1 + |y|2

)−q−1

fε(y)

)

ε

belongs to ES (Rn), we get from (13), the

existence of r1 ∈ Z (r1 = r − q − 1) such that

∀p ∈ N, ∃C > 0, ∀x ∈ R
m,

∣∣∣B̃ε (fε) (x)
∣∣∣ =

∣∣∣∣
∫
Bε(x, y)fε(y) dy

∣∣∣∣ ≤ C
(
1 + |x|2

)r1

εp, (14)

for ε small enough. Thus, the operator B̃ defined by B = [(Bε)ε]τ is null.
Remark that it suffices to show that

∀p ∈ N, ∃η′ > 0, ∃C′ > 0, ∀ε ∈ (0, η′] , ∀ (x, y) ∈ R
m+n, |Bε (x, y)| ≤ C′εp (15)

to conclude that H is null. Indeed, if (15) holds, for any p ∈ N, we get a constant C′ > 0 such that

∀ (x, y) ∈ R
m+n, |Hε (x, y)| ≤ εp−qC′

((
1 + |x|2

) (
1 + |y|2

))q+1

≤ εp−qC′
(
1 + |(x, y)|2

)2q+2

,

for ε small enough. As q is fixed, this proves that (Hε)ε satisfies the 0-estimate of Nτ (Rm+n).
Furthermore, (Hε)ε is in Eτ (Rm+n): Thus, Proposition 3 shows that (Hε)ε is in Nτ (Rm+n).
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We are now going to show (15). We suppose, on the contrary, that

∃p0 ∈ N, ∀η′ > 0, ∀C′ > 0, ∃ε ∈ (0, η′] , ∃ (x, y) ∈ R
m+n, |Bε (x, y)| > C′εp0 . (16)

Thus, there exists a sequence (εl)l converging to 0 such that, for all l ∈ N, there exists (xl, yl) ∈
Rm+n such that |Bεl

(xl, yl)| ≥ εp0

l .
As

∀ε ∈ (0, 1] , ∀ (x, y) ∈ R
m+n, |Bε (x, y)| ≤ C0

(
1 + |x|2

)−1 (
1 + |y|2

)−1

, (17)

the function Bε is bounded by C0, with lim|(x,y)|→+∞ |Bε(x, y)| = 0. Thus, there exists (xε, yε) ∈
Rm+n, such that sup(x,y)∈Rm+n |Bε(x, y)| = |Bε (xε, yε)| = Mε. Moreover, due to (16), we have

∀l ∈ N, Mεl
> εp0

l . (18)

Note that we necessarily have

∀l ∈ N, |xεl
| ≤ ε−p0 and |yεl

| ≤ ε−p0 . (19)

(Indeed, supposing that: ∃l ∈ N, |xεl
| > ε−p0

l or |yε| > ε−p0

l contradicts (18), using (17).)
For all l ∈ N, we can find a neighborhood Vl (resp. Wl) of xεl

(resp. yεl
) such that

∀ (x, y) ∈ Vl ×Wl, |Bε(x, y)| ≥Mεl
/2.

Moreover, for all l ∈ N, Vl (resp. Wl) can be chosen such that its diameter δ (Wl) is greater than
some εp1

l , for a fixed p1 ≥ 0. Indeed, as the net (Bε)ε belongs to Eτ (Rm+n) and as (xεl
, yεl

)ε

satisfies (19), the differential of Bεl
grows at most polynomially in ε−1

l for l → +∞ in some convex
neighborhood of (xεl

, yεl
)ε of diameter, let us say, 1. Thus, supposing that: ∀s ∈ N, ∃l ∈ N,

δ (Wl) ≤ εs
l leads to a contradiction, since it violates the growth property of the sequence (∇Bεl

)l.
We define a net (θε)ε as follows. For all l ∈ N, θεl

∈ D (Rn) is such that 0 ≤ θεl
≤ 1, θε ≡ 1 on

Wl. For ε /∈ {εl, l ∈ N} we simply choose θε ≡ 0. Moreover, we can suppose that the net (θε)ε is
in ES (Rn). (This is done by starting from some θ ∈ D (Rn) with 0 ≤ θ ≤ 1, θ ≡ 1 on B(0, 1) and
then by using linear transformations.) Set, for all ε ∈ (0, 1] and y ∈ Rn, fε(y) = Bε(xε, y)θε (y).
As the net (Bε)ε belongs to Eτ (Rn) and (xεl

)l satisfies (19), the net (fε)ε is in ES(Rn). Therefore,
using (14), we get the existence of r1 - which can always be supposed positive - such that

∀p ∈ N, ∃η > 0, ∃C > 0, ∀x ∈ R
m, ∀ε ∈ (0, η] ,

∣∣∣B̃ε (fε) (x)
∣∣∣ ≤ C

(
1 + |x|2

)r1

εp, (20)

Returning to the definition of (Wl)land (θεl
)l, we have, for all l ∈ N,

∣∣∣B̃εl
(fεl

) (xεl
)
∣∣∣ =

∫
|Bεl

(xεl
, y)|2 θεl

(y) dy ≥

∫

Wl

|Bεl
(xεl

, y)|2 dy

≥ δ (Wl)M
2
εl
/4 ≥ εp1

l M
2
εl
/4. (21)

Inserting (21) in (20), we get

∀p ∈ N, ∃C > 0, M2
εl
≤ 4C

(
1 + |xεl

|2
)r1

εp−p1

l ,

for l large enough. From (19), we have
(
1 + |xεl

|2
)r1

≤
(
1 + ε−2p0

l

)r1

≤ 2r1ε−2p0r1

l , for all l ∈ N.

Finally, by setting p2 = 2p0r1 + p1, we get

∀p ∈ N, ∃C′ > 0, Mεl
≤ C′ε

(p−p2)/2
l ,

for l large enough. Thus, we get a contradiction with (18), ending the proof.
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4 Kernel Theorems

4.1 Extension of linear maps

Nets of maps (Lε)ε between two topological algebras, having some good growth properties with
respect to the parameter ε, can be extended to act between the corresponding Colombeau algebras,
as it is shown in [5, 11, 18] for example. We are going to introduce here new notions adapted to
our framework. In the sequel L (·, ·) (resp. L (·, ·)) denote a space of continuous linear maps acting
between classical spaces (resp. of C linear maps acting between generalized spaces).

Definition 15 Let j be an integer and (Lε)ε ∈ L (S (Rn) ,OM (Rm))
(0,1]

be a net of linear maps.
(i) We say that (Lε)ε is moderate (resp. negligible) if

∀l ∈ N, ∃ (Cε)ε ∈ EM (R+) (resp. N (R+) ), ∃ (p, q, l′) ∈ N3,
∀f ∈ S (Rn) , µ−p,l (Lε (f)) ≤ Cε µq,l′ (f) , for ε small enough.

(22)

(ii) Let (b, c) be in [0,+∞]× R+. We say that (Lε)ε is Lb,c-strongly moderate if

∃λ ∈ Lb , ∃r ∈ Lc , ∀l ∈ N, ∃C ∈ R+, ∃ (p, q) ∈ N2,
∀f ∈ S (Rn) , µ−p,l (Lε (f)) ≤ C ε−r(l) µq,λ(l) (f) , for ε small enough.

(23)

For the strong moderation, more precise estimates are given for the constants which appear in
(22).

Proposition 16

(i) Any moderate net (Lε)ε ∈ (L (S (Rn) ,OM (Rm)))(0,1] can be extended to a map L belonging to
L(GS (Rn) ,Gτ (Rm)) and defined by

L (f) = (Lε (fε))ε + Nτ (Rm) , (24)

where (fε)ε is any representative of f .
(ii) The extension L depends only on the family (Lε)ε in the following sense: If (Nε)ε is a negligible
net of maps, then the extensions of (Lε)ε and (Lε +Nε)ε are equal.
(iii) If the family (Lε)ε is moderate, with the assumption that the net of constants (Cε)ε in (22)
satisfies Cε = O

(
ε−r(l)

)
with lim sup

l→+∞
(r(l)/l) < c, then L (G∞

S (Rn)) is included in GLc

τ (Rm).

(iv) Let (a, b, c) be in (R+)
3
: If the net (Lε)ε is Lb,c-strongly moderate, then L

(
GLa

S (Rn)
)

is

included in G
Lab+c

τ (Rm).

Moreover, L
(
GL0

S (Rn)
)

is included in GLc

τ (Rm) even if b = +∞.

Proof. Assertions (i) & (ii).- Fix l ∈ N and let (fε)ε be in ES (Rn). According to the definition
of moderate nets, we get (Cε)ε ∈ EM (R+) and (p, q, l′) ∈ N3 such that

µ−p,l (Lε (fε)) ≤ Cε µq,l′ (fε) , for ε small enough. (25)

Inequality (25) leads to (Lε (fε))ε ∈ Eτ (Rm). Moreover, if (fε)ε belongs to NS (Rn), the same
inequality implies that (Lε (fε))ε ∈ Nτ (Rm). These two properties show that L is well defined by
formula (24). The C linearity follows from from the moderation. Moreover, inequality (25) implies
easily the second assertion.

Assertion (iii) & (iv).- We shall prove (iv) for a ∈ (0,+∞), since the proof of (iii) and of the
case a = 0 in (iv) are even simpler. Suppose that (Lε)ε is Lb,c-strongly moderate and consider

(fε)ε ∈ ELa

S (Rn). There exist a sequence λ ∈ RN
+, with limsupl→+∞ (λ(l)/l) < b, and a sequence

r ∈ RN
+, with limsupl→+∞ (r(l)/l) < c, such that

∀l ∈ N, ∃C ∈ R+, ∃ (p, q) ∈ N
2, µ−p,l (Lε (fε)) ≤ C ε−r(l)µq,λ(l) (fε) (for ε small enough).

9



As (fε)ε is in ELa

S (Rn), there exists a sequence N ∈ RN
+, with limsupλ→+∞ (N(λ)/λ) < a, such

that
∀s ∈ N, ∀λ ∈ N, µs,λ (fε) = O

(
ε−N(λ)

)
as ε→ 0.

We get that

∀l ∈ N, ∃C ∈ R+, ∃p ∈ N, µ−p,l (Lε (fε)) ≤ C ε−N1(l) with N1 (l) = r(l) +N (λ(l)) ,

for ε small enough.

• If λ(l) is bounded, we immediately have: N1 (l) /l = O (r(l)/l) for l → +∞.

• If λ(l) is not bounded, for λ(l) 6= 0, we have

N1 (l)

l
=
r(l)

l
+
N (λ(l))

λ(l)

λ(l)

l
. (26)

We have lim supl→+∞ (N (λ(l)) /λ(l)) < a and thus lim supl→+∞
N(λ(l))

λ(l)
λ(l)

l < ab. This gives

lim sup
l→+∞

(N1(l)/l) < ab+ c

and (Lε (fε))ε ∈ E
Lab+c

τ (C∞ (Rm)), which shows the assertion.

Finally, if (fε)ε is in EL0

S (Rn), the sequence N can be chosen such that limλ→+∞ (N (λ) /λ) = 0.
Then, for b = +∞, the sequence l 7→ λ(l)/l is bounded. It follows that limsupl→+∞ (N1(l)/l) < c.

4.2 Main results

Theorem 17 Consider (a, b, c) ∈ R3
+ with a ≤ 1 and ab+c ≤ 1. Let (Lε)ε ∈ L (S(Rn),OM (Rm))

(0,1]

be a net of Lb,c-strongly moderate linear maps and L ∈ L (GS(Rn),Gτ (Rm)) its canonical extension.
There exists HL ∈ Gτ (Rm+n) such that

∀f ∈ G
L

a

S (Rn) , L (f) =

[(
x 7−→

∫
HL,ε(x, y)fε(y) dy

)

ε

]
, (27)

where (HL,ε)ε (resp. (fε)ε) is any representative of HL (resp. f).

Remark 18 In Theorem 17, the parameter b (resp. c ) is related to the “regularity” of the net
(Lε)ε, with respect to the derivative index l in the family of semi-norms (µr,l)r,l (resp. to the

parameter ε). The more “irregular” the net of maps (Lε)ε is, that is the bigger b is (resp. the
closer to 1 c is), the smaller is the space on which equality (27) holds. The limit cases for c are

c = 1 (for which a = 0 and (27) holds only on G
L

0

S (Rn)) and c = 0 (the net of constants (Cε)ε

in relation (22) depends slowly on ε) for which the conditions on (a, b, c) are reduced to a < 1 and
ab ≤ 1. (Note that these limiting conditions are induced by Lemma 10.)

By using Proposition 16-(iii), we can obtain an analogon of Theorem 17 valid for more irregular
nets of maps.

Theorem 19 Let (Lε)ε ∈ L (S(Rn),OM (Rm))
(0,1]

be a net of moderate linear maps such that the
net of constants (Cε)ε in relation (22) satisfies Cε = O

(
ε−r(l)

)
with r ∈ L

1
. Then, the extension

(Lε)ε admits an integral representation such that relation (27) holds for f in G∞
S (Rn).

We turn now to the relationship with the classical isomorphism result: Consider

Λ ∈ L (S(Rn),S′(Rm))

and define a net of linear mappings (Lε)ε by

Lε : S (Rn) → C∞ (Rm) , f 7→ Λ (f) ∗ ϕεs , (s fixed real parameter in (0, 1) )

where (ϕε)ε is defined as in (4), starting from ϕ ∈ S (Rm) which satisfies (3). We have:
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Proposition 20
(i) For all ε ∈ (0, 1], Lε is continuous for the usual topologies of S (Rn) and OM (Rm) and the net
(Lε)ε is (0, s)-strongly moderate.
(ii) From (i), the extension L of the net (Lε)ε admits a kernel HL. Furthermore, for all f ∈ S (Rn),

Λ (f) is equal to H̃L (f) in the generalized distribution sense [14], that is

∀g ∈ S (Rm) , 〈Λ (f) , g〉 =
〈
H̃L (f) , g

〉
in C. (28)

In other words, equality (28) means that, for all p ∈ N,

∀g ∈ S (Rm) , 〈Λ (f) , g〉 −

∫ (∫
HL,ε (x, y) f (y) dy

)
g (x) dx = O (εp) , as ε→ 0, (29)

where (HL,ε)ε is any representative of HL. In particular, this result implies that Λ (f) and H̃L (f)
are associated or weakly equal, i.e.

(
x 7→

∫
HL,ε (x, y) f (y) dy

)
−→ Λ (f) in S′ (Rm) as ε→ 0.

5 Proofs of Theorem 17 and Proposition 20

5.1 Proof of Theorem 17

We shall prove Theorem 17. (The proof of Theorem 19 follows the same lines.) Consider ϕ ∈ S (Rm)
(resp. ψ ∈ S (Rn)) which satisfies (3) and define (ϕε)ε (resp. (ψε)ε) as in (4). For all ε ∈ (0, 1] and
y ∈ Rn, we set

ψε, · : R
n → S (Rn) , y 7→ ψε,y = {v 7→ ψε (y − v)} .

Then, for all ε ∈ (0, 1], the map

Hε : R
m+n → C, (x, y) 7→ (Lε (ψε,y) ∗ ϕε) (x) =

∫
Lε (ψε,y) (x− u)ϕε (u) du,

is well defined.
Indeed, Lε (ψε,y) belongs to OM (R) and ϕε to S (Rm), making Lε (ψε,y) (x− ·)ϕε (·) - and its

derivatives - L1 functions.

Lemma 21 For all ε ∈ (0, 1], Hε is of class C∞ and (Hε)ε ∈ Eτ (Rm+n).

Proof. The fact that Hε is of class C∞ follows from classical arguments of integral calculus.
It also uses the topological isomorphism between C∞

(
Rd1 ,C∞

(
Rd2

))
and C∞

(
Rd1+d2 ,C

)
(d1,

d2 ∈ N\ {0}), the linearity and continuity of both Lε and the convolution. (See Lemma 28 and 29
in [5] for very close proofs.)

Let us now consider (α, β) ∈ Nm+n and ∂α
x (resp. ∂β

y ) the α-partial derivative (resp. β-partial
derivative) with respect to the variable x (resp. y). and set l = |β|. We have

∀ (x, y) ∈ R
m+n, ∂α

x ∂
β
yHε (x, y) =

(
∂β

yLε (ψε,y) ∗ ∂α
xϕε

)
(x)

=

∫
∂β

yLε (ψε,y) (x− u) ∂α
xϕε (u) du

=

∫
∂β

yLε (ψε,y) (x− εζ) ∂α
xϕ (ζ) dζ (30)

Using the moderation of (Lε)ε, we get the existence of (Cε)ε ∈ EM (R+), (p, q, l′) ∈ N3 such that,
for ε small enough,

∀ (x, ζ) ∈ R
2m,

∣∣∂β
yLε (ψε,y) (x− u)

∣∣ ≤ Cε (1 + |x− εζ|)p
µq,l′ (ψε,y)

≤ Cε (1 + |x|)p
(1 + |ζ|)p

µq,l′ (ψε,y) .
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We have

µq,l′ (ψε,y) = sup
w∈Rn, |α|≤l′

(1 + |y − w|)q |∂αψε(w)| ≤ (1 + |y|)q µq,l′ (ψε)

≤ ε−n−l′ (1 + |y|)q µq,l′ (ψ) .

Therefore, there exists (C′
ε)ε ∈ EM (R+) such that

∀ (x, ζ, y) ∈ R
2m+n,

∣∣∂β
yLε (ψε,y) (x− εζ)

∣∣ ≤ C′
ε (1 + |x|)p

(1 + |ζ|)p
(1 + |y|)q

.

for ε small enough. As ∂α
xϕ is rapidly decreasing, by replacing the last estimate above in (30), we

get the existence of C′′
ε ∈ EM (R+) such that

∀ (x, y) ∈ R
m+n,

∣∣∂α
x ∂

β
yHε (x, y)

∣∣ ≤ C′′
ε (1 + |x|)p

(1 + |y|)q ≤ C′′
ε (1 + |(x, y)|)p+q

,

for ε small enough. Thus, (Hε)ε ∈ Eτ (Rm+n) as claimed.

Lemma 22 For all (fε)ε in ES (Rn), we have

H̃ε (fε) (x) = (Lε (ψε ∗ fε) ∗ ϕε) (x).

Proof. Let (fε)ε be in ES (Rn). For any fixed ε ∈ (0, 1] and x ∈ Rm, we have

H̃ε (fε) (x) =

∫ (∫
Lε (ψε,y) (x− u)ϕε (u) du

)
fε(y) dy.

Using a similar argument as in the proof of Lemma 21, we get the existence of Cε(x) > 0 such that

∀u ∈ R
m, |Lε (ψε,y) (x− u)| ≤ Cε(x) (1 + |u|)p

.

Thus, the map (u, y) 7→ Lε (ψε,y) (x− u)ϕε (u) fε(y) is in L1 (Rm+n) and, by Fubini’s Theorem,

H̃ε (fε) (x) =

∫ (∫
Lε (ψε,y) (x− u) fε(y) dy

)
ϕε (u) du

= ( {ξ 7→

∫
Lε (ψε,y) (ξ) fε(y) dy} ∗ ϕε ) (x) .

An adaptation of the proof of Lemma 30 in [5] shows that, for all ξ ∈ Rm, we have the following
equality

∀g ∈ D (Rn) ,

∫
Lε (ψε,y) (ξ) g(y) dy = Lε

(
{v 7→

∫
ψε,y (v) g(y)dy}

)
(ξ) (31)

( = Lε

(
{v 7→

∫
ψε (y − v) g(y)dy}

)
(ξ) ).

(Indeed, the integrals under consideration in (31) are integrals of continuous functions on compact
sets and can be considered as limits of Riemann sums in the spirit of [12], Lemma 4.1.3. The
linearity and the continuity of Lε allows to exchange the order or the operations integral and Lε.)

Then, a density argument shows that equality (31) holds for g ∈ S (Rn). Thus

∫
Lε (ψε,y) (ξ) fε(y) dy = Lε

(
{v 7→

∫
ψε (y − v) fε(y)dy}

)
(ξ) = Lε (ψε ∗ fε) (ξ)

and H̃ε (fε) (x) = (Lε (ψε ∗ fε) ∗ ϕε) (x) as claimed.

We now complete the proof of Theorem 17. Set

HL = [(Hε)ε]τ = ((x, y) 7→ (Ψε,y ∗ ϕε) (x) )ε + Nτ

(
R

m+n
)
.
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For all (fε)ε in ELa

S (Rn), we have

H̃L

(
[(fε)ε]S

)
=

[(
H̃ε (fε)

)

ε

]

τ
,

by definition of the integral operator. We have to compare
(
H̃ε (fε)

)

ε
and (Lε (fε))ε. According

to Lemma 22, we have for all ε ∈ (0, 1]

H̃ε (fε) − Lε (fε) = (Lε (ψε ∗ fε) ∗ ϕε) − Lε (fε)

= Lε (ψε ∗ fε) ∗ ϕε − Lε (fε) ∗ ϕε + Lε (fε) ∗ ϕε − Lε (fε)

= Lε (ψε ∗ fε − fε) ∗ ϕε + Lε (fε) ∗ ϕε − Lε (fε) .

Remarking that (fε)ε ∈ ELa

S (Rn) and (Lε (fε))ε ∈ E
La+bc

τ (Rm) ⊂ EL1
τ (Rm), we get

(Lε (fε) ∗ ϕε − Lε (fε) )ε ∈ Nτ (Rm) and (ψε ∗ fε − fε )ε ∈ NS (Rm)

by Lemma 10. This last property gives

(Lε (ψε ∗ fε − fε) )ε ∈ Nτ (Rm) and (Lε (ψε ∗ fε − fε) ∗ ϕε ) ∈ Nτ (Rm) ,

since (ηε ∗ ϕε)ε ∈ Nτ (Rm) for all (ηε)ε ∈ Nτ (Rm). Finally

[(
H̃ε (fε)

)

ε

]

τ
= [(Lε (fε))ε]τ = L

(
[(fε)ε]S

)
,

this last equality by definition of the extension of a linear map.

5.2 Proof of Proposition 20

Assertion (i).- For a fixed ε ∈ (0, 1], Lε is obtained by composition of the continuous maps
Λ : S (Rn) 7→ S′ (Rm) and

S′ (Rm) → OM (Rn) , T 7→ Tk ∗ ϕεs

Thus Lε is continuous. We have now to show that the net (Lε)ε ∈ L (S (Rn) ,OM (Rm))(0,1] is
strongly moderate. We have

∀f ∈ S (Rn) , ∀x ∈ R
m, ∀α ∈ N

m, ∂α (Lε(f)) (x) = (Λ (f) ∗ ∂αϕεs) (x)

= 〈Λ (f) , {y 7→ ∂αϕεs (x− y)}〉 .

The map
Θ : S (Rn) × S (Rm) , (f, ϕ) → 〈Λ (f) , ϕ〉

is a bilinear map, separately continuous since Λ is continuous. As S (Rn) and S (Rm) are Fréchet
spaces, Θ is globally continuous. There exist C1 > 0, (q1, l1, q2, l2) ∈ N4, such that

∀ (f, ϕ) ∈ S (Rn) × S (Rm) , |〈Λ (f) , ϕ〉| ≤ C1 µq1,l1(f)µq2,l2(ϕ).

In particular, for any l ∈ N and α ∈ Nm with |α| ≤ l, we have

∀x ∈ R
m, |〈Λ (f) , ∂αϕε (x− ·)〉| ≤ C1 µq1,l1(f)µq2,l2(∂

αϕεs (x− ·)),

with

∀x ∈ R
m, µq2,l2(∂

αϕεs (x− ·)) = sup
ξ∈Rm,|β|≤l2

(1 + |ξ|)q2
∣∣∂α+βϕεs (x− ξ)

∣∣

= sup
ξ∈Rm,|β|≤l2

(1 + |x− ξ|)q2
∣∣∂α+βϕεs (ξ)

∣∣

≤ (1 + |x|)q2 µq2,l2+l |ϕεs | .
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Using the definition of (ϕεs)ε, we get C2 > 0 such that µq2,l2+l |ϕεs | ≤ C2 ε
−s(m+l2+l), for ε small

enough. Thus, there exists C > 0, such that, for ε small enough,

∀x ∈ R
m, |∂α (Lε(f)) (x)| = |〈Λ (f) , ∂αϕε (x− ·)〉| ≤ C (1 + |x|)q2 µq1,l1(f)ε−s(m+l2+l).

Finally
µ−q2,l (Lε(f)) ≤ C ε−s(m+l2+l)µq1,l1(f).

The sequence r (·) = {l 7→ s (m+ l2 + l)} satisfies liml→+∞ (r(l)/l) = s < 1. Recalling that l1 does
not depend on l, we obtain our claim.

Assertion (ii).- We have the following:

Lemma 23 For all u ∈ S′ (Rm), [(u ∗ ϕεs)ε] is equal to u in the generalized distribution sense.

Proof. Take u ∈ S′ (Rm). There exist α ∈ Nm, q ∈ N, and f : Rm → C a continuous bounded
function such that [21]

u = ∂α (M qf) ,

where M : Rm → C is the function defined by M(x) = 1 + |x|2. For any g ∈ S (Rm), we have

〈u ∗ ϕεs , g〉 = 〈u, g ∗ ϕ̌εs〉 = (−1)
|α| 〈f,M q (∂αg) ∗ ϕ̌εs〉 .

On the other hand,

〈u, g〉 = (−1)|α| 〈f,M q ∂αg〉 .

Thus
〈u ∗ ϕεs , g〉 − 〈u, g〉 = 〈f,M q ((∂αg) ∗ ϕ̌εs − ∂αg)〉 .

A simplification of the proof of 10 shows that ((∂αg) ∗ ϕ̌εs − ∂αg)ε ∈ NS

(
Rd

)
. The same holds for

M q ((∂αg) ∗ ϕ̌εs − ∂αg). Thus, for all p in N,

〈u ∗ ϕεs , g〉 − 〈u, g〉 = O (εp) as ε→ 0.

This lemma implies that for all f ∈ S (Rn), [(Lε(f))ε]τ = [(Λ (f) ∗ ϕεs)ε]τ is equal to Λ (f) in
the generalized distribution sense. On the other hand, according to Theorem 17, [(Lε(f))ε]τ =

H̃L (f) where H̃L is the integral operator associated to the canonical extension of (Lε)ε. This ends
the proof of Proposition 20.
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