N

N
N

HAL

open science

Controller synthesis & Ordinal Automata
Thierry Cachat

» To cite this version:

‘ Thierry Cachat. Controller synthesis & Ordinal Automata. 2006. hal-00019897v1

HAL Id: hal-00019897
https://hal.science/hal-00019897v1
Preprint submitted on 3 Jun 2006 (v1), last revised 30 Oct 2006 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00019897v1
https://hal.archives-ouvertes.fr

Controller synthesis & Ordinal Automata*

Thierry Cachat

LIAFA/CNRS UMR 7089 & Université Paris 7, France

Abstract. Ordinal automata are used to model physical systems with
Zeno behavior. Using automata and games techniques we solve a con-
trol problem formulated and left open by Demri and Nowak in 2005.
It involves partial observability and a new synchronization between the
controller and the environment.

1 Introduction

Controller synthesis. The synthesis of controller is today one of the most impor-
tant challenges in computer science. Since [RW89] different formalisms have been
considered to model (un)controllable and (un)observable actions. The problem
is well understood for finite systems admitting infinite behavior (indexed by w)
[PR89]. Recent developments concern extensions to e.g. infinite state systems or
timed systems [BDMPO03].

Transforming control problems into two-player games have provided efficient
solutions [Tho95]. In this setting the controller is modeled by a player and the
environment by her opponent. Determining whether a controller exists falls down
to determine the winner and computing a winning strategy is equivalent to
synthesizing a controller.

Systems with Zeno behaviors. When modeling physical systems we face the prob-
lem that different components can have different time scales. For example the
controller of an anti-lock braking system (ABS) is supposed to react much quicker
than the physical environment. In the opposite one can consider physical sys-
tems admitting Zeno behavior —infinitely many actions in a finite amount of
time— whereas the controller is a computer with constant clock frequency. A
simple example is a bouncing ball. Another one is the physical description of
an electronic circuit which evolves much quicker than its logical description in
VHDL. The speeds are so different that one can consider that the former one
evolves infinitely quicker than the latter one.

Following this idea Demri and Nowak [DN05] have proposed to model phys-
ical systems by ordinal automata, thus admitting ordinal sequences as behavior
(typically of length w¥). They define a logic LTL(w*) as an extension of LTL
to express properties of such systems. The controller should be a usual automa-
ton whose execution is an w-sequence. The synchronization between controller

* The author acknowledges partial support by the ACI “Sécurité et Informatique”
CORTOS. http://www.lsv.ens-cachan.fr/aci-cortos/



and environment is the following: environment makes w*~! steps “alone”, then

controller and environment makes one step together, and so on.

Particularly in the context of timed systems, different techniques have been
proposed to forbid or restrict Zeno behaviors, see introduction of [AFHT 03] for
an overview. Our claim is that we want to allow Zeno behavior, to model them
and express properties about them, and finally to control such systems.

Our contribution. The main contribution of our article is a solution to the control
problem stated and left open in [DNO05]. Given a physical system modeled by an
ordinal automaton and a formula v of LTL(w*) we want to determine whether
a controller exists and synthesize one. The technique used is to transform the
control problem into a game problem. Because of the unobservable actions and
also because of the different time scales, the controller can not fully observe the
current state of the system. For that reason we construct a game of imperfect
information. Another difficulty is that the length of the interaction is greater
than w, but fortunately one can summarize w*~! steps done by the environment
“alone”. Several games and automata techniques are used.

Related work. It is known that games of imperfect information have higher com-
putational complexity [Rei84]. Zeno behavior have already been considered in the
literature. In [BP0O] languages of ordinal words accepted by timed automata are
studied. In the framework of hybrid systems [AM98,Bou99] or cellular automata
on continuous time and space [DL05] it is known that allowing Zeno behaviors
gives rise to highly undecidable problems. In [DN05] Demri and Nowak solve
the satisfiability and the model-checking problem for LTL(w¥): given an ordi-
nal automaton reading w*-sequences and a formula ), determine whether every
run of the automaton satisfies ¥. For this they use a “succinct” form of ordinal
automata to have better complexity bounds.

Plan of the paper In the next section we present the temporal logic LTL(w*),
ordinal automata and the control problem. We show a translation to first order
logic. In section 3 we solve our main problem. We first explain how to translate
it to a game and why the controller has imperfect information about the system.

2 Reasoning about transfinite sequences

We assume basic knowledge about ordinals less than w®, see e.g. [Ros82]. An
ordinal is a well and totally ordered set. It is either 0 or a successor ordinal of the
form 3+ 1 or a limit ordinal. The first limit ordinal is denoted w. For all ordinal
a, f<asfeaand a={F:0 < a}. In this article we restrict ourselves
to ordinals less or equal than w®. By the Cantor Normal Form theorem, for
all @ < w® there exists unique integers p,ni,...,n, and kq,...,k, such that
ki1 >ky>--->k,and o = whing +wkeng 4 - - -+wk1’np. Recall e.g. that 2w = w
and w + w? = w?. An ordinal « is said to be closed under addition whenever
3,8 < a implies 8+ 3 < a. In particular for every a < w®, « is closed under



addition iff « is equal to w? for some 3 < w or a = 0. In the following we will
consider a logic whose models are w” sequences for some k < w.

2.1 Temporal Logic

We recall the definition of the logic LTL(«) introduced in [DNO5]. For every
ordinal « closed under addition, the models of LTL(«) are precisely sequences of
the form o : & — 2P for some countably infinite set AP of atomic propositions.
The formulas of LTL(«) are defined as follows: ¢ :=p | —¢ | ¢1 A d2 |
Xf¢ | ¢1Uﬁ/¢2, where p € AP, 8 < o and ' < «a. The satisfaction relation is
inductively defined below where o is a model for LTL(«) and 5 < a:

—o,BFpiffpea(B),

—o0,8EdMAN T o, fE ¢ and 0,8 E ¢d2, 0,8 = —¢ iff not o, E ¢,

— 0B iff 0,8+ 0 ¢,

— 0,0 = $1U7 ¢y iff there is v < 3 such that 0,8 + v |= ¢2 and for every
Pyl<’77 J7ﬁ+’yl ’:(bl

Closure under addition of « guarantees that 5+ 8’ and 8+« above are strictly
smaller than «. Usual LTL is expressively equivalent to LTL(w): X is equivalent
to X! and U is equivalent to U¥, conversely X™ and U” can be expressed in LTL.
Standard abbreviations are also extended: FA¢ £ TuP¢ and GP¢ £ —FP-.
Using Cantor Normal Form it is easy to effectively encode an LTL(w*) formula
for k < w. We provide below properties dealing with limit states that can be
easily expressed in LTL(w*) (k > 2).

“p holds in the states indexed by limit ordinals strictly less than w””:

k—1

¢ (Xp A AXY ).

For 1 < k' < k — 2, “if p holds infinitely often in states indexed by ordinals of
the form w* x n, n > 1, then ¢ holds in the state indexed by w® T17:

+1 K/

X p) = (et

(ka +1ka q).

2.2 Translation to First Order Logic

In [DNO5] it is proved that LTL(w“) (hence also LTL(w*)) can be translated
to the monadic second order theory of (w“, <), which gives a non-elementary
decision procedure for satisfiability [BS73]. We improve this result by showing
that LTL(w*) can be translated even to the first order theory (FO) of (w*, <).

Proposition 1. For every LTL(w*) formula there exists an equivalent first or-
der formula over (w¥, <).

It is open whether the converse also holds, extending Kamp’s theorem [Kam68].



Proof (sketch). The main point is the definition of a formula +g(z,y) for some
B < w* such that (w¥, <) =y +a(z,y) with v : {z,y} — w* iff v(y) = v(z) + B.
The relation |=, is the standard satisfaction relation under the valuation v. The
formulas of the form +g(z,y) with 8 < w* are inductively defined as:

+o(z,y) = (z=y),

+iz ) EVz(z>z=2y<2)A(z<y),

Foknts(T,y) L3 4 (7, 2) N +orn_1)+8(2,9) (n > 1,k >0),

ok (Z,y) = (x < y) AVz(x < 2 <y = 32/ (o1 (2,2') A2 <)) A

Vy'[((z < y) AVz(z < 2 <y = T2 (+01(2,2) N2 < Y))) =y < V]
(k>1).

Ll

For k = 1, the latter formula is written in the following way. The ordinal y such
that +,(z,y) holds is greater than x, greater than every finite step successors
of x, and y is the least ordinal satisfying this two conditions. By induction one
can show that y > = + n for every n < w. Analogously for k£ > 1, the formula
implies that y > = + w*~!n for every n < w. a

The monadic second order theory of (w“, <) has a non-elementary decision
procedure. For that reason we use ordinal automata, both to model physical
systems and to represent specifications.

2.3 Ordinal Automata

A particular class of ordinal automata is well suited to solve our problem. See
[Bed98] for the equivalence between different definitions. An ordinal automaton
is a tuple (Q, X, 6, E, I, F) where:

— (@ is a finite set of states,

— X is a finite alphabet,

0 C Q x X x(@Q is a one-step transition relation,
— E C 29 x Q is a limit transition relation,

— I C @ is a finite set of initial states,

— F C (@ is a finite set of final states.

We write ¢ % ¢ whenever {q,a,q’) € § and P — ¢ whenever (P,q) € E.
A path of length a4+ 1 is an (a + 1)-sequence r : o + 1 — @ labeled by an

a-sequence o : a — X such that for every 5 € a, r(0) 2) r(B + 1) and for
every limit ordinal 8 € a + 1, there is P — r(8) € E s.t. P = cofinal(8,7)
with cofinal(3,7) = {q € Q : for every v € f3, there is 4/ such that v < 4/ <

B and r(v') = q}.
If moreover r(0) € I, it is a run. If moreover r(a) € F, it is accepting.

Example 1. We present here an example of ordinal automa-
ton A with limit transitions {0} — 1 and {0,1} — 2.
One can show that L(A) contains only w?-sequences and

L(A) = (a - b)~.




For all k£ < w there exists an ordinal automaton accepting exactly the sequences
of length w¥, using k + 1 states. But if an ordinal automaton accepts a sequence
of length w*, then it must also accept longer sequences. That is a second reason,
beside closure under addition, why we restrict ourselves to ordinals less than w®.

Level An ordinal automaton A = (Q, X,6, E, I, F) is of level k > 1 iff there is a
map [ : Q — {0, ..., k} such that:

— for every q € F, I(q) = k;

— q¢% ¢ €6 implies I(¢) = 0 and I(q) < k;

— P — ¢ € E implies I(q) > 1, for every ¢’ € P, I(¢') < l(¢q), and there is
¢’ € P such that I(¢') = 1(q) — 1.

The idea is that a state of level i is reached at positions § + w'.j, j < w.
Since [VW86], different techniques for translating logic formulas to automata
are widely used.

Proposition 2 ([DNO05]). For all LTL(w") formula, there exists an equivalent
ordinal automaton.

This result can be obtain by translating an LTL(w*) formula into a equivalent
first order formula (or even monadic second order) and applying results from
[BS73]. In [DNO5] a succinct version of ordinal automata is defined to improve
the complexity of the translation from non-elementary to polynomial (reps. ex-
ponential) when integers in the formulas are encoded in unary (resp. binary).

2.4 Control Problem

Before we recall the control problem from [DNO05] we need some preliminary
definitions. In order for the physical system to evolve much faster than the
controller we need a particular synchronization between them.

Synchronous product. We define below the synchronous product of two ordinal
automata having possibly different alphabets. They synchronize only on the
common actions. This is used later to model unobservable actions. Let X; = 24¢ti
for « = 1,2, a letter from X; is a set of actions. Given two ordinal automata
A =(Q4, %5, 6;, B, I, Fy), for i = 1,2, their synchronous product is defined as
A x Ay =(Q, X, 0,E, I, F) where:

_ Q — Ql X QQ, 3 = 2Act1UAct2.

— (g1, @) = (g, gb) €6 iff g DAM gf and gy CATR g

— P — {q,q2) € E iff there exists P; — ¢; € F; and P, — g2 € F5 such that
{¢:{q,d') e P} =P and {¢' : (g,¢') € P} = P>.
—I=1 x1I, F=F x F,.



Lifting. In order to synchronize the system with a controller working on w-
sequences, we need to transform the controller so that its product with S only
constraints states on positions w*~! x n, n < w. The other positions are not
constrained.

Let A ={(Q, X, 4, E, I, F,l) be an automaton of level 1. We define its lifting
lift,, (A) at level k > 2 to be the automaton (@', X, ¢, E', I', F',l') by:

—Q ={0,....k}xQ, I'={k—1}xI, F ={k}xF
= U'((i,q") =1,
— 0 ={k—1,q) > L40,q) : ¢ ¢ €5}U
{{i,q) % (0,q) : 0<i<k—2a€X, q¢F)},
- B = {{<0 @), (i—L,g}— (i,q) : 1<i<k, qeQU{{{0,q1),...,(k—
Lg),..., (0, qn> v lk=1qn)} = (kq) | {q1,...gn} — q € E}.

Ezxample 2. We present below an example of ordinal automaton A with limit
transition {qo,q1} — ¢2 and the corresponding automaton lift,(A) with limit

transitions {(0, o)} — (1,40), {(0,q1)} — (1,41), and
{{0,90), (1, qo), (0, q1), (1,q1), } — (2,q2). We omit useless transitions.

A lift,(A
D=0 “ :
(wat~(om) )»

Proposition 3 ([DNO5]). For all w € ot we L(lift, (A)) iff the word w'" €
X, defined by w' (i) = w(wh™ x 1), is in L(A).

A physical system S is modeled as a structure

(As, Acte, Actp, Act)

where Ag is an ordinal automaton of level k with alphabet 24Act where Act is
a finite set of actions, Acty C Act is the set of observable actions, Acte C Acto
is the set of controllable actions. The set Act\ Actc of uncontrollable actions is
denoted by Actpe. A specification of the system S is naturally an LTL(w*) for-
mula . A controller C for the pair (S, ) is a system whose complete executions
are w-sequences (typically ordinal automata of level 1) verifying the properties
below.

— Only observable actions are present in the controller. Hence, thanks to the
synchronization mode, in the product system between & and C, unobservable
actions do not change the C-component of the current state. So the alphabet
of C is 24¢to.

— From any state of C, uncontrollable actions can always be executed: Vq - Va C

Acto \ Actc, there is a transition ¢ LR ¢’ in C such that b N Actpe = a.



— Finally, the system S controlled by C satisfies 1. Because S and C work
on sequences of different length, the controlled system is in fact equal to
lift,(C) x S. So lift,(C) x S | v should hold. This is equivalent to the
emptiness of the language of the product automaton lift; (C) x S x A .

We say that C is a controller for S (without mentioning ¢) if C fulfills the first
two conditions. The notion of final state is not relevant for the controller or
the physical system. To conform with previous definitions we require that every
(w + 1)-run of the controller and (w* + 1)-run of S end in a final state.

3 Solving the Control Problem

Given a physical system S modeled by an ordinal automaton A of level k and an
LTL(w")-formula 1, we are looking for a controller C such that lift;(C) x As =
1 and C has the expected properties about uncontrollable and unobservable
actions.

From Control Problem to Game. Let B = lift(C) x As x A-y. At a given point
in a run of B the controller is in a state ¢q. From ¢ and for all o C Act, N Actpe
it must have at least one transition labeled by o U ¢ for some ¢ C Act.. The
most general form of a controller (possibly with infinite memory) is a function
[ (24¢to) x (24¢toNActne) _, 9Acte hecause the current state of the controller
shall only depend on the past observable actions. This function is exactly a
strategy in a game that we will define. A controller for (S, ) is such that every
run according to f is winning.

Let A = As x A-y. It is also an ordinal automaton of level k£ : A =
(Q,X,6,E,I,F,l). We are looking for a controller C such that lift,(C) x A
is empty. We will consider a game where the environment tries to built an ac-
cepting run of A, whereas the controller tries to avoid that, using the controlled
actions. In fact the environment plays both for the system S and for the au-
tomaton of —1), as we will see later.

3.1 Some Definitions from Game Theory

We recall some definitions about games. See for example [Tho95,GTWO02] for an
introduction. An arena, or game graph, is a triple (Vp, V1, G), where V. =V, UV,
is the set of vertices and G C V x V is the set of edges. The vertices of Vj belongs
to Player 0, those of V; to Player 1 (Vo N'Vy = 0). A play from vy € V proceeds
as follows: if v € Vj, Player 0 chooses a successor v; of vy, else Player 1 does.
Again from v; € V;, Player i chooses a successor v of v1, and so on.

A play m = vg, v1,ve, ... is a finite or infinite sequence of vertices such that
Vi, (vi,vi41) € G. If the play is finite, the convention is that the player who
belongs the last vertex loses (he is stuck). If the play is infinite, the winner is
determined by a winning set, Win C V¢: Player 0 wins an infinite play = if
and only if 7 € Win. Usually Win is an w-regular set, defined by a Biichi,



Rabin, parity or Muller automaton. One speaks also of winning condition. A
game (Vo, Vi, G, Win) is an arena together with a winning condition and possibly
an initial vertex vg € V.

For a game or an automaton, a Biichi condition is given by a set FF C V of
“final” vertices and m € Win if and only if Vi > 0,35 > i,m; € F. A Muller
condition is given by F C 2V, F = {Fy,--- ,F,}, and 7 € Win if and only if
the set of states visited infinitely often along 7 is equal to one of the Fj’s.

A strategy for Player 0 is a (partial) function fo : V*Vy +— V such that
for every prefix vg,v1,v,---v; of a play, where v; € Vy, f(vovive---v;) is a
vertex v;41 such that (v;,v;41) € G. A play 7 is played according to a strategy
fo if Vi,v; € Vh = vig1 = f(voviva---v;). A strategy for Player 1 is defined
analogously. A strategy of Player 0 is winning if every play according to it is
winning for Player 0. An important case in practice is when the strategy is
positional: it depends only on the current vertex, not on the past of the play,
i.e., for all vy, v1,ve, - v, f(vovive -+ v;) = f(v;).

From [Mar75] we know that every zero-sum two-player turn based game of
complete information with Borel winning condition (including w-regular and
many more) is determined: from a given initial configuration, one of the players
has a winning strategy.

In the case of incomplete information, the players do not in general know
exactly the current position of the game. They only know that the position
belongs to a certain set of uncertainty. The move chosen by a player (by his
strategy) shall depend on this set, but not on the precise position of the play. As
we will see in some cases one can transform such a game into a game of complete
information, where a vertex represents a set of positions of the original game.

3.2 Optimistic Version: the Control has Complete Information

In this section we introduce a game (G;) modeling the interaction between the
controller and the environment. This game does not yet allow to give a solution
to our control problem, but it can help understand the more complicated game
(G2) defined in the next section.

From the definition of [ift; we see that the controller can act only every
wk=1 steps of the environment. Our aim is to summarize w*~! steps of the
environment in a single step. One can compute a relation R C @ x 29 x @ such
that (¢, P,q') € R iff there exists in A a path from ¢ to ¢’ of length w*~1 + 1
where the set of states seen along this path is exactly P. Note that to determine
R, one has to look for cycles in A and states that are seen infinitely often, but
in R itself we only need to know states that are ever visited. Relation R can be
computed in time 29U@D [Car02].

Let Gi be the game between the environment (Env) and the controller (Cont)
defined by the following steps:

1. Env chooses qo € I, an initial state of A,
2. Env chooses u C Acty.,
3. Cont chooses ¢ C Act. (controllable actions),



4. Env chooses a one step transition qq ue qf in A,
5. Env chooses Py and ¢; such that (gg, Fo, ¢1) € R, summarizing wk=1 steps,
6. continue from g;: go to point 2 whit ¢; instead of qq.

A play of G; is a finite or infinite sequence qq, q)), Po, q1,4}, Pi1, ... summarizing
a run in A. It can be finite only if Env is stuck in a deadlock, in this case Env
loses. If the play is infinite, the winner is determined by A: one has to determine
whether the run can be followed by a transition to a final state (of level k) of A.
For that we have to know which states are present in infinitely many P;’s.

Related to point 4, it is possible that A4 is not deterministic. In particular it is
possible that A-, is not deterministic and Env has to choose which subformulas
of =1 he wants to make true.

3.3 A Solution With Incomplete Information

The game G; above is much easier for the controller than our original control
problem. It is not possible in general for the controller to know exactly the
current state of the game for several reasons.

— As Env chooses u C Acty,., Cont can only observe the actions that are in
Act, (recall also that A is not necessarily deterministic).

— Moreover Cont cannot know exactly the (g;, P;) chosen by Env, because they
correspond to the w*~! steps done by the environment without control.

— Also Cont cannot know exactly the initial state chosen by Env.

In this section we will define a game G, where Cont has partial information. A
position of the game is a subset Q; of @, such that Cont knows that the current
state of the system is in @);, but does not know which state exactly. The game
is described by the following steps:

the initial position is Qg = I, the set of initial states of A,
Env chooses o C Act, N Act e,

Cont chooses ¢ C Act,.,

there is a one step transition to

=W e

Qb =1{d € Q:3i C Act\Act,,3q € Qo,q =24 '},

5. there is a jump to Q;, summarizing w*~! steps
Q1=1{q€Q:3¢ € Qy,3(d, P,q) € R},
6. continue from ()1 at point 2.

In this game the knowledge of Cont about the current state is exactly what a
controller can compute in the original problem, based on the observable actions.
A play is essentially a sequence Qo,Qf, Q1,Q%,... (a more precise definition
of the game graph is given below) and now it is more intricate to determine
the winner. The sequence Qo, @, @1, QY ... represents the point of view of the



controller, and we call it an abstract play. Afterward Env has to choose inside
this abstract play a concrete path qo,q),q1,4],-.. such that ¢; € Q;,¢; € Q]
and compatible to the sequence of choices of ¢;’s and 0;’s. That is to say Env
has to choose a sequence of elements u; € Act\Act, and (¢}, P;,q;) € R. Then
we are back to a play (or path) similar to those of Gi, and we can determine
the winner. Therefore the set of winning plays of Env can be defined by a non
deterministic Muller automaton searching a concrete path, as we will see below,
after we make some comments.

The advantage that Env plays “abstractly” the game, and selects a concrete
path only afterward is not unfair. Again we want a controller that is secure,
and we worry if the environment could have “won”. And in the case that the
controller does not have a winning strategy, it does not necessarily mean that
the environment has one, but it means that there is a risk that the environment
wins. This is related to the fact that games of incomplete information are not
determined in general: it is possible that no player has a winning strategy.

We now describe the automaton defining the set of winning plays and then
the arena in more details. Note that the sequence Qo, @y, @1, Q%, ... above is
uniquely determined by the sequence o, cg, 01, c1, ... of actions chosen by Cont
and Env. The state space of the automaton Ay, recognizing the winning plays

for Env is Q x 29. For all P # { there is a transition (g, P) =2 (¢/,0) if and

only if 3i C Act\ Act,, I ¢ % ¢/ in A and there is a transition (¢",0) 5 (¢, P)

if and only if 3(¢', P,q) € R.

The automaton Ay, non-deterministically guesses a run in A conforming
to the sequence og, ¢g, 01,1, ... The acceptance condition of Ay, is then the
same as those of A: it can be seen as a Muller condition depending on the
states appearing infinitely often in a run. It is given by a set of sets of states
F. The usual way to handle such a non-deterministic Muller automaton is to
transform it into a non-deterministic Biichi automaton [GTWO02, Ch. 1]. The
Biichi automaton By, simulates Ay i, and guesses at some point which subset
of states are going to be visited infinitely often and that other states are no
longer visited. The state space of Bywin is QU Q x F x (Q U {gs}). It checks
in turn that each state of the chosen acceptance component F' € F is visited
infinitely often and it is not necessary to remember the whole (¢, P) € Q x 29
of -AWm

Using e.g. Safra’s construction [GTWO02, Ch. 3] one can transform the Biichi
automaton Bw;, into a deterministic Rabin automaton Cw;,. Then the In-
dex Appearance Record allows to have a deterministic parity automaton Dy,
[GTWO02, p.86] [L6d98].

For defining the arena, we see that Cont and Env essentially choose the
actions ¢; and o;:

VE _ 2ActC VC ;= 2Actol"1ActnC
G = (VEnv X VCont) U (VCont X VEnU)

Now the product of the arena (Vgny, Voont, G) by the parity automaton Dyy;y,

gives rise to a parity game on a finite graph. In fact the successive sets Qo, @, @1, @}, - - -

10



of the above description are computed by Dy, (thanks to Safra’s construction
already in Cy 4y, ). The sizes, in number of states, are as follows:

ICwin| = O (Z‘BWM‘) =0 (Z‘Qm}-l) where | F| < 21@Ql

20(|BW‘LTL‘) | — 20(‘Bwln‘)

|DWm | = |CWm | hence |Dwm

The size of Dy, is exponential only in the number of Rabin pairs of the accep-
tance condition of Cyy,, which is in O(|Bwin|). The best known deterministic
algorithm for solving parity games is polynomial in the size of the graph, and ex-
ponential in the number of priorities. It computes a positional winning strategy
for the winner. The time complexity is in

O ((2|A6t°|.|DWm|)IDWM)

Theorem 1. The control problem defined in Section 2.4 can be solved in 3EX-
PTIME. Moreover if a controller exists, then there is one with finite memory of
size in 2EXPTIME.

The number of states of the controller is at most 2!4¢t<122'“' The complexity is
measured in the number |Q| of states of A = As x A_,. Recall that the usual
control problem is 2EXPTIME-complete [PR89] in the size of the system and the
length of the formula.

Proof (Sketch). Tt is sufficient to prove the following facts. If the game Go is won
by Cont then a controller for (S, 1) exists, and it can be constructed. Conversely
if a controller for (S, ) exists then Gy is won by Cont.

By construction a strategy for Cont in G5 is a finite state automaton with
expected properties about (un)observable and (un)controllable actions. Moreover
if that strategy is winning, it defines a controller for (S, v): every run of lift, (C) x
S fulfills 4.

Conversely, if a controller for (S,1) exists, possibly with infinite memory,
then this controller provides a winning strategy for Cont in G5. From the analysis
above we know that if there is a winning strategy, then there is a winning strategy
with finite memory, and one can compute it. a

4 Perspectives

It is open whether the upper bounds of Theorem 1 are tight, and whether one
can find LTL-fragments or restrictions on the physical system such that the
complexity of the control problem is lower.

Given a timed automaton, it is possible to determine whether it has Zeno
behaviors. Our motivation is to extend the semantics such that after w transitions
there is a limit transition to a new control state and the new clock values are
the limit of the former one’s.

A Zeno behavior is not necessarily an ordinal sequence, it can be a more
general linear ordering (see [BCO05]). One should extend the results to this more
general class of automata.

11



Acknowledgments. Great thanks to Stéphane Demri and David Nowak for many
interesting discussions, helpful comments on previous versions and for their help.

References

[AFHT03] L. de Alfaro, M. Faélla, T. A. Henzinger, R. Majumdar, and M. Stoelinga.

[AMOYS]

[BCO5]

The element of surprise in timed games. CONCUR’03, LNCS 2761, pp.
142-156. 2003.

E. Asarin and O. Maler. Achilles and the tortoise climbing up the arith-
metical hierarchy. JCSS 57(3), pp. 389-398. 1998.

A. Beés and O. Carton. A kleene theorem for languages of words indexed
by linear orderings. DLT’05, LNCS 3572, pp. 158-167. 2005.

[BDMPO3] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with

[Bed98]
[Bou99)]
[BPOO]
[BST3]
[Car02]

[DLO3]

[DNO5]
[GTWO02]
[GW94]
[Kam68]
[L5d98]
[Mar75]
[PR89)
[Reig4]

[Ros82)
[RW89]

[Tho95]

[VWS6]

partial observability. CAV’03, LNCS 2725, pp. 180-192. 2003.

N. Bedon. Langages reconnaissables de mots indexés par des ordinaux. PhD
thesis, Université de Marne-la-Vallée. 1998.

O. Bournez. Achilles and the tortoise climbing up the hyper-arithmetical
hierachy. T'CS, 210(1):21-71. 1999.

B. Bérard and C. Picaronny. Accepting Zeno words: A way toward timed
refinements. Acta Informatica, 37(1):45-81. 2000.

J. R. Buchi and D. Siefkes. The monadic second order theory of all countable
ordinals, Lect. Notes in Math. 328 Springer. 1973.

O. Carton.  Accessibility in automata on scattered linear orderings.
MFCS’02, LNCS 2420, pp. 155-164. 2002.

J. Durand-Lose. Abstract geometrical computation for black hole compu-
tation (extended abstract). In Machines, computations, and universality,
LNCS 3354, pp. 176-187. 2005.

S. Demri and D. Nowak. Reasoning about transfinite sequences (extended
abstract). ATVA’05, LNCS 3707. 2005.

E. Griadel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infi-
nite Games: A Guide to Current Research, LNCS 2500. 2002.

P. Godefroid and P. Wolper. A partial approach to model checking. Inform.
and Comput., 110(2):305-326. 1994.

H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California at Los Angeles, 1968.

C. Léding. Methods for the transformation of omega-automata: Complexity
and connection to second order logic. Master’s thesis, Christian-Albrechts-
University of Kiel, 1998.

D. A. Martin. Borel Determinacy. Annals of Math., 102:363-371, 1975.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
POPL’89, pp. 179-190. ACM, 1989.

J. H. Reif. The complexity of two-player games of incomplete information.
J. Comput. System Sci., 29(2):274-301. 1984.

J. G. Rosenstein. Linear orderings. Academic Press Inc. 1982.

P. J. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of IEEE 77(1), pp. 81-98. 1989.

W. Thomas. On the synthesis of strategies in infinite games. STACS’95,
LNCS 900, pp. 1-13. 1995.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. LICS’86, pp. 332—-344. 1986.

12



