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Symbolic Strategy Synthesis for Games on
Pushdown Graphs

Thierry Cachat

Lehrstuhl fiir Informatik VII, RWTH, D-52056 Aachen
Fax: (49) 241-80-22215, Email: cachat@informatik.rwth-aachen.de

Abstract We consider infinite two-player games on pushdown graphs,
the reachability game where the first player must reach a given set of ver-
tices to win, and the Biichi game where he must reach this set infinitely
often. We provide an automata theoretic approach to compute uniformly
the winning region of a player and corresponding winning strategies, if
the goal set is regular. Two kinds of strategies are computed: positional
ones which however require linear execution time in each step, and strate-
gies with pushdown memory where a step can be executed in constant
time.

1 Introduction

Games are an important model of reactive computation and a versatile tool
for the analysis of logics like the p-calculus [5,6]. In recent years, games over
infinite graphs have attracted attention as a framework for the verification and
synthesis of infinite-state systems [8]. In the present paper we consider pushdown
graphs (transition graphs of pushdown automata). It was shown in [12] that in
two-player parity games played on pushdown graphs, winning strategies can
be realized also by pushdown automata. The drawback of these results [8,12]
are a dependency of the analysis on a given initial game position, and a lack
of algorithmic description of the (computation of) winning strategies. Such an
algorithmic (or “symbolic”) solution must transform the finite presentation of
the pushdown game into a finite description of the winning regions of the two
players as well as of their strategies.

In this paper we develop such an algorithmic approach, also leading to uni-
form complexity bounds. The nodes of the game graph, i.e., the game positions,
are unbounded finite objects: stack contents of a given pushdown automaton.
Our “symbolic approach” uses finite automata as defining devices for sets of
game positions and for the description of strategies. This lifts the results of [1]
and [2] from CTL and LTL model checking over pushdown systems to the level
of program synthesis.

In this paper we only consider reachability games and Biichi games (where a
winning play should reach a given regular set of nodes, respectively should pass
infinitely often through this set). This restriction is justified by two aspects:
First, reachability and Biichi games are the typical cases in the analysis of safety



and liveness conditions. Secondly, as our construction shows, these cases can be
handled with set-oriented computations (in determining fixed-points) which fits
well to the symbolic approach. So far, it seems open whether in the more general
case of parity games the treatment of individual game positions can be avoided
in order to have a symbolic computation.

Our paper is structured as follows: we first exhibit a computation of the
winning region of a reachability game. In third section, we derive from it two
kinds of winning strategies. Finally in fourth section this material is used to
solve Biichi games on pushdown graphs. The proofs can be found on the Web
at http://www-17.informatik.rwth-aachen.de/"cachat/ .

2 Reachability Game, Computing the Attractor

2.1 Technical Preliminaries

A Pushdown Game System (PDS) & is a triple (P, I, A), where I is the finite
stack alphabet, P = Py P; the partitioned finite set of control locations, where
P; indicates the game positions of Player i, and A C P x I' x P x I'* the finite
set of (unlabelled) transition rules.

Each macro-state or configuration is a pair pw of a control location p and a
stack content w. The set of nodes of the pushdown game graph ¥ = (V, <) is
the set of all configurations: V = PI'™*, and the arcs are exactly the pairs

pyv < quwv, for (p,7y,q,w) € A, wherey € 'and v € I'™* .

Referring to the case v = € we also write rules of A in the form py < qw. In
the following ~ is always a single letter from I'. If one needs a bottom stack
symbol (L) one has to declare it explicitly in I" and A. The set of nodes of
Player 0 is Vo = PyI'™, that of Player 1 is V; = P, I'*. Starting in a given
configuration my € V, a play in & proceeds as follows: if my € V5, Player 0 picks
the first transition (move) to 71, else Player 1 does, and so on from the new
configuration 7. A play is a (possibly infinite) maximal sequence momy - - -

We describe sets of configurations (and thus also winning conditions in push-
down games) by finite automata. We are thus interested in regular sets of con-
figurations. We define them from alternating &-automata. They are alternating
word automata with a special convention about initial states. A &-automaton &/
is a tuple (I, Q, —, P, F), where @ is a finite set of states, — C QxI'x2%a
set of transitions, P C () a set of initial states (which are taken here as the control
locations of &), and F C @ a set of final states. For each p € P and w € I'*, the
automaton & accepts a configuration pw iff there exists a successful &/-run on w
from p. Formally a transition has the form r -1 3, where  is a positive boolean
formula over @ in Disjunctive Normal Form. To simplify the exposition we allow
AND-transitions r X3y A -+ - A1y, written as r X5 {ry,--- ,7,}, and we capture
disjunction by nondeterminism. So a transition like r Xy (11 A r2) V (13 AT4) i
represented here by two transitions r -5 {r,r2} and r 25 {rs,r4}.

We define the global transition relation of .o, the reflexive and transitive
closure of — , denoted —* C Q x I'* x 29, as follows:



— r =3 {r}, (e is the empty word),
—r 5 {ry, -} A Vi, s S, = r 28, UZSZ .

The automaton &7 accepts the word pw iff there exists a run p—25+« S with S C F,
i.e., all finally reached states are final.

In section 3 we will need the description of a run. The run trees of an alter-
nating automaton &7 (where the branching captures the AND-transitions) can be
transformed to “run DAGs” (Directed Acyclic Graphs, see [9,10]). In such a run
DAG, the states occurring on each level of the tree are collected in a set, and a
transition r — {ry,- -+, } connects state r of level ¢ with states {ry,--- ,rr} of
level i + 1. Note that every transition of level 7 is labelled by the same i-th letter
of the input word. Let @ be the set of partial functions from () to the transition
relation — of /. A run DAG from state p labelled by w = ¢ - - - 7y, is described
by a sequence oy, - - - , 0, of elements of ¢ and a sequence Qp, @1, - , @n of sub-
sets of @), such that Q; = Dom(o;), and from each ¢ € @; the transition ¢;(q) is
used from gq:

Qo = {p}Z—2>Q13—1> o Qra S
So o; describes the step Q; X% ;41 by the transitions used. We write shortly
{p} ==+ S, assuming o = 0q,- - , 0y, O just {p} 2+« S to denote the run.

2.2 Reachability

We consider a regular goal set R C PI'™*, defined by a #-automaton «/g. Player 0
wins a play iff it reaches a configuration of R. Our goal is to compute the winning
region Wy of this game: the set of nodes from which Player 0 can force the play to
reach the set R or a deadlock for Player 1. The set W is clearly the “0-attractor
of R” (see [11]), denoted Attrq(R), and defined inductively by

Attr§(R) = R,
AttriT™ (R) = Attr{(R) U {u € Vo | Jv,u = v, v € Attri(R)}
U{u€e Vi | Vo,u—v=veAttri(R)},
Attro(R) = U;en Attri(R) .

As the degree of the game graph is finite, an induction on w is sufficient. Accord-
ing to this definition, we adopt the convention that if the play is in a deadlock
(before reaching R), the Player who should play has lost.

Our task is to transform a given automaton /g recognizing R into an au-
tomaton o744 (r) recognizing Attro(R). Without loss of generality, we can assume
that there is no transition in &g leading to an initial state (a state of P).

Algorithm 1 (saturation procedure)

Input: o PDS &, a &-automaton &/r that recognizes the goal set R, without
transition to the initial states.

Output: a P-automaton oay(r) that recognizes Attro(R).

Let @py4(r) := @R Transitions are added to &4 (R) according to the following
saturation procedure.
repeat



(Player 0) if p € Po, py = qu and ¢ =5« S in Hyy(r), then add a new
transition p 25 S.

Py = @
(Player 1) ifpe P1, are all the moves (rules) starting from
PY < qnUn
q1 S Sl
py and < . in Saw(R), then add a new transition p 1 |J; S;.
Qn 225 Sp

until no new transition can be added.

Note that @744 (r) has exactly the same state space as @/g. The algorithm even-
tually stops because there are only finitely many possible new transitions, and
the “saturation” consists in adding as many transitions as possible. The idea
of adding a new transition p-2+S for p € Py is that, if qv € Attro(R), and
Py < qu, then py € Attro(R) too, and then py should have the same behav-
ior as gqu in the automaton. For p € Py, Attro(R) is defined by a conjunction,
expressed in @44 (r) by the AND-transition. The algorithm and the proof is a
generalization of [2,7] from nondeterministic automata (for simple reachability)
to alternating automata (for game reachability). In [2], one deals with the case
P = Py, and the “winning region” is the set of “predecessors” of R, denoted
pre*(R). In [1], alternating (pushdown) automata were already considered, but
they were not used to solve a game, and winning strategies were not treated.

Theorem 2 The automaton &ay(g) constructed by Algorithm 1 recognizes the
set Attro(R), if &R recognizes R.

The algorithm runs in time O(|4] 2¢1Q”) where |A| is the sum of the lengths
of the rules in A. An implementation of Algorithm 1 was developed in [4].

We have chosen a regular goal set R, and proved that Attrg(R) is also regular.
If we consider a context free goal set R, the situation diverges for the cases of
simple reachability and game reachability:

Proposition 3 If the goal set R is a context free language, then pre*(R) is also
contert free, but Attro(R) is not necessarily context free.

The first part can be deduced from [3]. For the proof of the second part, we just
remark that the intersection of two context free languages may not be context
free. If Ry and Ry are two context free languages over {a,b,c} and the first
move of Player 1 goes from pu to qiu or gau, u € {a,b,c}*, and if the goal set is
¢1R1 U g2 R, then the winning region is p(R; N R2) U ¢1 R1 U ¢2R>.

2.3 Determining Membership in the Attractor

In [8] and [12], for a given initial position of the game, an EXPTIME procedure
determines if it is in the winning region Wy of Player 0. In contrast our solution



is uniform: after a single EXPTIME procedure, we can determine in linear time if
any given configuration is in the winning region Wj.

To determine whether a given configuration belongs to Attre(R), we can use
a polynomial time algorithm, that searches backwards all the accepting runs of
the automaton @44 (g) (from now on, we skip corresponding claims for Player 1).
We repeat here the classical algorithm because variants of it will be used in the
next section. The correctness proof is easy and omitted here.

Algorithm 4 (Membership)

Input: an alternating & -automaton B = (I,Q, —, P, F') recognizing
Attro(R) = L(%), a configuration pw € PI'™*, w =a; ...a,.

Output: Answer whether pw € L(%) or pw & L(B).

Let S := F;
fori:=ndowntoldo S:={s€ Q|3 (s> X)in #,X CS} end for
If pe S, answer “pw € L(B)” else answer “pw ¢ L(HB)”

The space complexity of Algorithm 4 is O(|@]), the time complexity is O(nm|Q|)
where m is the number of transitions of &%, and n is the length of the input
configuration.

3 Winning Strategy for Player 0

A strategy for Player 0 is a function which associates to a prefix momy -- -7, €
V*Vp of a play a “next move” 7,41 such that 7, < mp41.

3.1 Preparation

A move of Player 0 consists in a choice of a PDS-Rule. Given a configuration
pw € Attro(R), our aim is to extract such a choice from an accepting run of
A ppe(r) on pw. In Algorithm 1, a new transition p 3 S of @44 (g) is generated
by a (unique) rule py — qu of the PDS under consideration, if p € Py. We
extend now the algorithm so that it computes the partial function Rule from
— to A. This function remembers the link between a new transition of the
finite automaton for Attro(R) and the rule of the Pushdown Graph that was
used to construct it. We shall write in the algorithm Rule(p 3 S) := py < qu.
For transitions p X5 S of the original automaton &, Rule(p -1+ S) is undefined.

Now, given a configuration pyw € Vy accepted by @44 (r), with a run
{p} LS «T (and if pyw & R), a first idea would be to choose the move
Rule(p—25S) = py < qu, hoping to get closer to R. Unfortunately this does
not, in general, define a winning strategy. Still it ensures that we remain in the
winning region. The following example illustrates this situation.

Example 5 LetI' = {a}, P = Py = {p}, P = 0 and A = {pa = p,pa — paa}.

It is clear that Player 0 can add and remove as many a’s as he wants. Let
R = {pa®} (R is regular), then the winning region is Attro(R) = pa*, as shown
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2,.,.28,., 8%  Rule((l))=pa—p
2 a Rule((2)) = pa < paa
0 }a Rule((3)) = pa < paa p < pa S paa 3 [paaal - - -

Figure 1. Automaton from Algorithm 1 and Example 5, game graph

by the automaton in Figure 1, from Algorithm 1. There are two different runs of
a4 (r) that accept paa: through transitions (1)(3), or through (2). The strategy
associated to (1)(3) plays to pa, and therefore is not successful. To define a
winning strategy using finite automaton @44 (r), we need to select the most
suitable run on a given configuration, or to remember information about an
accepting run, to play coherently the following moves. We give two solutions:
the first one, a positional strategy, associates a cost to each transition added
while constructing &4 (g), in order to compute the distance to R. The second
one, a pushdown strategy, uses a stack to remember how @44 (g) accepts the
current configuration.

3.2 Positional Min-rank Strategy

The rank of a configuration pw is the smallest i such that pw € Attri(R) (it is
oo if pw & Attro(R) = Wy). It is the “distance” of the configuration pw to R. In
the following we consider only configurations in Wy. Then Player 0 will be able,
from a configuration in Attry(R), to move to Attry '(R), and Player 1 does this
with each possible move. In order to implement this, during the construction of
A pw(ry We will attribute to each /44 (g)-transition 7 a cost Cost(7). Initially,
each transition of @/g has the cost 0 (with these transitions @44 () recognizes
configurations that are already in R).

The function Cost from the transition relation — of @44 (g) to N is ex-
tended to a function Cost* from the run DAGs to N. Given a fixed run {g} 25« S
of the automaton 7 (obtained at step ¢ in the construction of /44 (g)), its cost
Cost*({q} 5+ S) is the maximal sum of the costs of the transitions along a
single path (branch) of the run DAG {q} %« S. Inductively Cost* is defined by
the following clauses:

Cost*({g} —=+{q}) =0
COSt*({q} i) {q17 e ;qn} —rx Ui Sz) =

Cost(q—{q1," - ,qn}) + 1rggxn(008t*({qi} 5 5;)) -

When adding a new transition p 5 S to &, to obtain &7 1, its cost is computed
by an extension of Algorithm 1, using the costs of the existing transitions. In
the main loop of Algorithm 1, we add the following assignments:

-ifpe Ry ..., let Cost(p-—25S) : =1+ Cost*({q} 2+ S),

-ifpe Py ..., let Cost(p-—2 |J; Si) := 1+ max;(Cost*({g;} 55+ Sj))-



The significance of Cost* follows clearly from next proposition:

Proposition 6 For any configuration pw € Attro(R),
rank(pw) = min{Cost* ({p} 3+ S) | {p} *«S C F in Ay gy} -

In the Example 5, one gets Cost((1)) = 1, Cost((2)) = 1, Cost((3)) = 2. So
using the transitions (1) and (3) is not the best way to accept paa, and transition
(2) is taken. We are now able to define the desired strategy.

Min-rank Strategy for Player 0

Input: alternating automaton o744 (g) for Attro(R), functions Rule and
Cost (as computed from Algorithm 1 from PDS &), configuration pw €
Attro(R), p € P.

Output: “next move” from configuration pw.

Find an accepting run {p} *5+S C F of &/44r) with minimal cost
Cost({p} 2+ .5).

If the cost is 0, pw € R and the play is won, else decompose this run:
w=nyw', {p} LT w4, S, and choose the rule Rule(p -2 T).

Theorem 7 The min-rank strategy is positional, winning from all configurations
of the winning region Wy of Player 0. It can be computed in time O(n) in the
length n of the input configuration.

Algorithm 4 can be easily extended to compute the distance to R and the strat-
egy. By Proposition 6, the min-rank strategy is optimal in the sense that it finds
a shortest path to R. It reevaluates its choices at each step of the game (partic-
ularly if Player 1 goes much “closer” to R than needed). We will present in the
next subsection a strategy that is not necessarily optimal but easier to compute.

3.3 Pushdown Strategy

A pushdown strategy, as defined in [12] is a deterministic pushdown automaton
with input and output. It “reads” the moves of Player 1 and outputs the moves
(choices) of Player 0, like a pushdown transducer. For simplicity, we will restrict
our presentation to the following form of pushdown strategy:

Definition 8 Given a PDS (P, I, A), P = PyW Py, where A; is the set of transi-
tion rules in A departing from Player i configurations, a pushdown strategy for
Player 0 in this game is o deterministic pushdown automaton & = (P, A,IT),
where A =T x X, X is any alphabet, [ C ((P1 X Ax A1) X (Px A*))U((Po x
A) x (P x A* x Ag)) is a finite set of transition rules.

A transition of . either reads a move of Player 1 or outputs a move for Player 0,
in both cases updating its stack. We will now define a pushdown strategy, starting
from the automaton @44 (). Given a configuration pw € Attro(R), there is an
accepting run {p} 5« S of Fps(r):

Qo=1{p}22Q1 2> Qn>S,  wW=77%"""Vn-



Our aim is to store in the stack of the strategy the description of this run. The
corresponding configuration of . is p(7o, 00) - - - (Vn, opn)- We fix for the alphabet
X the set & (see Section 2.1).

At the beginning of the play, if the initial configuration pw is in Attre(R),
we have to initialize the stack of . with the description of an accepting run
of @au(r) (not necessarily the cheapest according to the costs defined above).
Algorithm 4 can initialize the stack at the same time when searching an ac-
cepting run (in linear time). We define now the unique transition rule of IT
from (p, (70, 00)) or (p, (y0,00),01) (with 61 € A1). By construction oo (p) is the
“good” transition 7 = p 1% @1 used in the run of @y (r).

— If p € Py then output the move Rule(oo(p)) = pyo < qu that corresponds to
7. Remove the first letter of the stack. Push on the stack the description of
the run {g} %+ Q1 used in Algorithm 1) to generate 7. Go to control state

q.

— If p € P, and Player 1 chooses the transition d; = pyy < qv in Ay, by
construction of the automaton sy (r), ¢ =S, and S is a subset Q1. Go
to control state g, remove the first letter of the stack, push the description
of the run {g} -2+« S used in Algorithm 1) to generate 7.

For Example 5 (Figure 1), we can see that the pushdown strategy is winning
even if the initialization is not optimal. The configuration paa is in the winning
region and an accepting run is coded on the stack of the strategy:

p(a, {(p,1)})(a, {(»,3)}) -

According to the strategy, the following play is generated (the symbol “—” de-
notes a value that is not relevant):

(by Rule((1)) =pa < p) proceed to  p(a,{(p,3)})
(by Rule((3)) = pa < paa) proceed to  p(a,{(p,2)})(a,-)
(by Rule((2)) = pa — paa) proceed to p(a,—)(a,—)(a,—) .

Theorem 9 One can construct effectively a pushdown strategy that is winning
from each node of the winning region of a pushdown reachability game. Its transi-
tion function is defined uniformly for the whole winning region. The initialization
of the stack is possible in linear time in the length of the initial game position,
and the computation of the “next move” is in constant time (for fixed A).

Although there is no need to compute costs to define this strategy, it is useful
to refer to the costs of the previous subsection for the correctness proof. The
strategy for Player 1 in this “safety game” is much easier to define and compute:
he just has to stay in V\ Attro(R).

3.4 Discussion

The stack of the pushdown strategy needs to be initialized at the beginning of
a play (in linear time in the length of the configuration); then the computation



of the “next move” is done in constant time (execution of one transition of the
strategy). In contrast, the min-rank strategy needs for each move a computation
in linear time in the length of the configuration. So we can say that in the case
of pushdown graphs a positional strategy can be more expensive than a strategy
with memory. This effect does not appear over finite-state game graphs.

4 Bichi Condition

Given & and R as in the preceding sections, the (Biichi) winning condition is
now the following;:

Player 0 wins a play iff it meets infinitely often the goal set R, or ends in a
deadlock for Player 1.

To determine the winning region of this game one defines Attrg inductively,
similarly to Attrg: for T C V, let

XO(T) = @ )
Xir1(T) =Xi(T)U{ueVo | v,u—=v, veTUX;(T)}
U{ue Vi | Yo,u—sv=veTUX;(T)} ,
Attrd (T) = Uiso Xi(T) (the degree of the game graph is bounded).

Following the approach as in [11] (where the definition of the X;’s needs adjust-
ment) the following claims are easy:

Proposition 10 Attr (T) is the set of nodes from which Player 0 can join T
in at least one mowve, whatever Player 1 does.

Proposition 11 Let Yo =V, and Vi > 0,Y;41 = Attrd (Y: N R), then the fized
point Y° = ﬂi;o Y; is the winning region of the Biichi game with goal set R.

In the case of finite graphs, this induction can be effectively carried out: the
sequence (Y;);>o is strictly decreasing until it reaches a fixed point. For pushdown
graphs, the regular languages Y; are also smaller and smaller, but the question
of convergence is nontrivial. Following the symbolic approach, we will construct
finite automata that are strictly “decreasing” until they reach a fixed point.

In the following we will proceed in two steps: firstly Algorithm 12 computes
an automaton that recognizes Y; for a given i, secondly Algorithm 14 computes
directly an automaton for Y°°. The first algorithm helps to understand the
second, but is not a pre-computation.

Remark 1. In this section we will consider a simple goal set of the form R = FI™
for some F' C P (it only depends on the control state). This is not an essential
restriction: given a PDS & = (P, I, A) that defines the original game and a
regular set R of configurations, we can reduce to the case of simple goal sets by
proceeding to a new PDS & x D, where D is a finite automaton recognizing R.



So from now on we consider a simple goal set R = FI'™ for some F C
P. Of course it is regular. Algorithm 1 is modified (by new steps involving e-
transitions) to compute Attry (R). The intersection with R is easy to compute,
and Algorithm 12 determines successively Y7,Y5, Y3 ...

Algorithm 12 (computation of Yj)

Input: PDS & = (P,I,A), j > 1 and F C P that defines the goal set
R=FTI*.

Output: a Z-automaton %B; that recognizes Y.

Initialization: the state space of %; is {f} U (P x [1,j]), and f is the unique
final state (we write (p,i) as p'). For ally € I',f 2 f. For all p € P, p° is
set to be f.
fori:=1toj do
(compute generation i, consider now the p'’s as initial states.)
Add an e-transition from p' to p*~! for each p € F (only). (If i = 1, p° is
1)
Add new transitions to %; according to Algorithm 1:
repeat
(Player 0) if p € Py, py = qw and ¢' <25« S in the current automaton,
then add a new transition p' 15 S.
(Player 1) if p € P1, {py — quw1,--- ,py < quwy} are all the moves
(rules) starting from py and Vk, qi 2.Sy in the current automaton,
then add a new transition p* X5 |J, Sk.
until no new transition can be added
remove the e-transitions. (generation number i is done)
end for

Example of execution where j = 4. We con-
col. 4 col. 3 col. 2 col. 1 co.C  gider A = {pa = p}, R = pI'"* (F = {p}),

/Ei\@/ja\@/@\@ a P = Py, = {p,q}, Pr = 0. The i-th genera-
£ e RS tion is given by the states of column 7. The
Ja Ua Ua

Ua a-edges from p® are added in the construction
U of generation i, since pa — p and p' —»«p',

r={a} i_e i1

Pt =t

Figure 2. Automaton from Algorithm 12

Proposition 13 Algorithm 12 constructs a &7-automaton 9%8; that recognizes
ezactly Y; (using the states p’ as initial states).

The sequence (Y;) might be strictly decreasing, so that the previous algorithm
can not reach a fixed point: for the example above one gets Y; = pa’I™, Vi > 0.
But on the symbolic level we can modify Algorithm 12 to obtain an automaton
for Y*° directly. As a preparation one defines a function ¢ which is the translation



one column to the right of the elements of S in the figure above, with the
convention that f stays f. For all finite sets S C P x N let

_[{d¢ | ¢t eStu{f}iffeSor3gtes
o) = {10 e Puin il

We also use the projection 7¢(S) of the states in P x [1,i] to the i-th column
(except for f). For all i > 0 and sets S C P x [1,i]U {f}, let

m(8)={¢" | I >k >0,¢"* € SYU{f | feS}.

Algorithm 14 (computation of Y°°)
Input: PDS &, F C P that defines the goal set R = FI'™
Output: a Z-automaton € that recognizes Y

Initialization: the state space of € is a subset of (P x N) U{f}, where (p,i) is
denoted by p* and f is the unique final state. For all y€ I, f 2 f in €. By
convention p° is f for allp € F.
1:=0.
repeat

i:=i+ 1 (consider now the p'’s as initial states.)

Add an e-transition from p' to p*~! for each p € F (only)

Add new transitions to € according to Algorithm 1 (see inner loop of Algo-

rithm 12). Remove the e-transitions.

Replace each transition p* X5 S by p* L5 w¢(S)
until i > 1 and the outgoing transitions from the p'’s are “the same” as from
the p*—1’s:

PSS ept Le(8) .

Applying the algorithm to the simple example above, we see that the e-transitions
and the a-transitions from p? to p! and from p* to p? are deleted (by the pro-
jection), and that only three generations are created.

Theorem 15 The automaton constructed by Algorithm 14 recognizes Y *°, the
winning region of the Biichi game given by the PDS & and goal set R.

The theorem implies that Y *° is regular. Similarly to Section 2 each execution
of the inner loop (saturation procedure) is done in time |A| 2°(Q) where
|Q| = 2|P| + 1. At each step of the outer loop, we “lose” at least one transition.
Since there are at most |I'| |P| 2/9' of them, the global time complexity of
the algorithm is O(|I"| |A| 2¢/F *). With an extension of the arguments of the
previous section we obtain corresponding winning strategies:

Theorem 16 For a Biichi game given by a PDS & and goal set R, one can
compute from the automaton constructed by Algorithm 14 a min-rank (positional)
winning strategy and a pushdown winning strategy, uniformly for the winning
region of Player 0.



5 Conclusion

We developed a symbolic approach to solve pushdown games with reachability
and Biichi winning conditions. It allows to handle uniformly the whole winning
region (of a given player) and to define uniformly two types of winning strate-
gies, a positional one and a pushdown strategy. As an extension to the results
presented here, one could consider parity games on pushdown graphs, or more
general winning conditions. In this context it would be interesting to connect
the present symbolic approach in a tighter way with the work of Walukiewicz
[12]. Another generalization is to study games on prefix recognizable graphs.
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Appendix
We present here the proofs of the previous theorems and propositions.

Proof: Theorem 2
We consider the step-by-step construction of @44 (r):

MR:%) bela %27 ) MTn:MAtt(R)7

where Vi < m, “efi1 = o U {p-L+ S}, that is to say, exactly one transition
is added.
The set Attro(R) was defined by induction:
Attr) = R,
Attrgtt = Attri U {pw | p € By, 3 pw < qu, qu € Attr}}
U {pw |pe P, Vpw—qu, qu € Attra},
Attro(R) = ey Attrg.
We note L(4,) the language recognized by o7,.

First part: L(oy,) D Attro(R).
We use an induction on i to show that Vi > 0, L(%,) D Attri.

— for i =0, R = Attr) = L(a%) C L(4,y,), because the transitions of (&%) are
still present in o7,

— induction hypothesis: L(.4,) D Attr§ for some i,

— then consider pw € Attrit\ Attri.

- First case: p € B. '
By the definition of Attrgt?,

I pw = qu, qu € Attri C L(o%,) .

Thus there is a path ¢ —«S, S C F. We decompose the transition —: Iy €
I, w=~u, v="1v'u, py = qu'; and the path ¢—23+S:

425, S 3. S .
By definition of Algorithm 1,
g8 A py—= qv = 3 transition p—2 S’ in 7, .

As a consequence there is a path p 23, 5" %5+ S in &, and so p-“«S C F,
pw € L(%y,).

- Second case: p € P;. ' .

By the definition of Attré“, Y pw < qu, qu € Attr]. More precisely,
YU — q1u1u

: are all the arcs in ¢ starting from pyu and Vj, gjv;u € Attr§ C

PYu = gninu



L(y).
Thus there is paths ¢; 2%, S; C F, that we decompose into

q]' i)* S; sy Sj .
In the construction of &, a new transition p =5 |J; S; was added, and so
L JSj+|JSiCF = pyue L) .
J J
From the induction we can conclude that L(g,) D Attro(R).
Second part: L(<,,) C Attro(R).
This part of the proof is contained in those of Lemma 17, just forgetting all

about the notions of cost (Cost) and number of moves.
We repeat here only the sketch of the proof.

We can prove by induction on m that Vp € P, w € I'*, if p—%5« S in &, then
starting from pw, Player 0 can reach a configuration in the set

{p'w' €Pr* |35CS, p s'}

whatever Player 1 does (in between). That is to say the play starting from pw
will reach after some steps the given set if Player 0 wants to, but Player 0 can
not choose which element of this set will be reached (this is more or less the

choice of Player 1). We denote —>* the global transition relation of «%.
In particular if p—5«S C F'in .!277,“ then from pw Player 0 can reach

{pw |p s CSCF} C R,
which proves that he can win. l

For the proofs of Theorem 7 and Proposition 6 we need the following lemma:

Lemma 17 If a node pw is accepted by &ay(gr) with a run {p} *++S C F,
then from this node Player 0 can join R in at most Cost* ({p} 2« S) steps.

Proof:

This is also the second part of the proof of Theorem 2, if we forget all about
the notions of cost (Cost) and number of moves. We will prove by induction on
m that Vp € P, w € I'*, if there is a run {p} %« S in &, then starting from
pw, Player 0 can reach a configuration in the set

{p’w' ePr=|3s'cs,yp %;)* S'} after no more than Cost(p -2+« .S) moves,

whatever Player 1 does. We are counting the moves of both players.
In particular if there is a run {p} 2+ S C F in &, then from pw Player 0 can



win after no more than Cost*({p} %+« .S) moves.

Recall first that we have supposed that in 2% no transition is leading to an initial
state (a state of P C @), and so

P S, SNP#) = w=¢peS. 1)

We denote
—+* the global transition relation of 47,

—5** the global transition relation of &% = @/.

We write p %5« S for the existence of a run from p to S labelled by w, whereas
{p} 5>+ S denotes a fixed run.
Induction on m:

—Form=0, po=S <+ p%* S, and from pw Player 0 can guarantee
that pw is reached with 0 move. In fact Cost* ({p} 5*S) =0 > 0.

— Assume it is true for some m > 0,

— then we are considering 2%, 11:

mr = Tm U{t} t=po—5 S0,
Cost(t) is defined by the construction.

Let p nﬁ* S.

We are now using an induction on j, the number of times that ¢ is used in the
run {p} ﬁ* S.

- If j = 0, then p—+S. From the induction hypothesis on m, we get the result.
- Suppose it is true for some j > 0.

- Consider that ¢ is used j + 1 times in {p} nﬁ* S. Decompose w = uyv, such

that:

p} =T 3 T S (2)
po L So

with po € Ty, So C Ts, and t = (po 15 Sp) “is used” in Ty ﬁTQ, for the “first
time” in the run {p} Tﬁ{* S.
From the induction on m, {p} -+T1 =
pu guarantees {pivi | p1 %N T{CT}
with no more moves than Cost* ({p} —+T1). (3)

From (2) we have also

Ti\{po} = T - T5CS

N
T,



The new transition ¢ is used in the last formula (see m—ﬁr)l*) less often than in (2)

(less than j + 1 times), so from the induction hypothesis on j, we obtain:
from each configuration ¢;yv in (T1\{po})yv Player 0 can reach the set

{psws | ps =g+ T4 C Ts}

with no more moves than Cost* ({t;} - Ty ~ 3+ T4) - (4)

For the rest of the proof, we will distinguish two cases:

case 0: pg € Fy. By definition of &%,1,

PoY = qowo, ()
o —+ So
and Cost(t) =1+ Cost* ({go} 52+ So) . (6)

Together with (2) we get
{q0} 7+ So ,ﬁ{* UsCS
N
T,
The new transition ¢ is used in the last formula (see Tﬁﬁ*) less often than
in (2), so from the induction hypothesis on j, we obtain:
qowov guarantees {tomo | to —g* Do C Up}
with no more moves than Cost* ({go} - So 7 Uo) - (7
case 1: pg € P,. By definition of 27,1,

PoY — 1wt
: : are all the moves from poy and Vi g; —=S;, (8)
PoY = qnWn
So =U; S,
Cost(t) = 1 + max; (Cost* ({gi} =+ Si)) 9)

Together with (2) we get
Vi, {qi} o+ Si Ui €S
N
So
N
T,
The new transition ¢ is used less often than in (2), so we have (induction on
J):
Vi, giwyv guarantees {tiz; | t;—5D; C U;}

with no more moves than Cost* ({g;} a+Si i Us) - (10)

tm



Now we can put all together.

From (3), we have in particular puyv guarantees a configuration p;v;yv such that
2 %)* T{ C Ti, with no more than Cost* ({p} —=>+T1) moves. We distinguish
the two following cases

either the path {p:} %)* T C T; is not leading to any initial state of &, i.e.,
T/ N P =, then with (2) the path
P} T Ty s S

2 m+1
N
T T

uses only transitions that were already in % (the new transitions are always
starting from an initial state, of P C Q). It follows that

plvl(']‘f*slgs7

Note that Cost* ({p1} "5+ S') = 0 = Cost* ({pl}:;;:l* S’) i

or the path {p;} v_01>* T] C T is actually leading to an initial state of &% (in
T/ N P), then v; =€, p1 € T} (see (1)), and pyv1yv = p1yv.
We consider two sub-cases (a) and (3).
(o) If p1 € T1\{po}, then by (4),

Pp1Yv guarantees {p3w3 | ps %)* T;,CT;CS }

with no more moves than Cost* ({t;} =2 Ts' —3+T4) .

2 m+1
B) Epr=po (€T1NP)
case 0: pg € Py, Player 0 can choose, from poyv, to go to gowov (see
(5)), in one move and with (7),

Gowov guarantees {tomo | to zTO)* Dy CUy C S}

with no more moves than Cost* ({QO} %* So ﬁ* UO) ;

case 1: pg € P, Player 0 just can wait, but from poyv Player 1 can
only choose with one move one of the states ¢;w;v (see (8)), and with
(10), )
giw;v guarantees {t;z; | ¢; —o*D; CU; C S}
with no more moves than Cost* ({g;} -+ S; 7#* Ui) .

In every case puyv guarantees p;v;yv, that guarantees (or is already in)
{pv' |p 257 C s}
By transitivity of “guarantees”, we have

from puyv Player 0 can reach {p’w’ | p' %;)* S'C S} ,



with no more than (“either”)

Cost™ ({p} =+ T1)

", @)

respectively (“or’
Cost* ({p} e T1) + Cost* ({t1} = Ty = T4)
respectively (“or”, 83, case 0), see (6)
Cost* ({p} —e*T1) + 1 + Cost* ({go} 52+ So oy Uo)
= Cost* ({p} 7>+ T1) + Cost(t) + Cost* (So 5 Uo))

respectively (“or”, 3, case 1), see (9)

Cost”™ ({p} =+ T1) + 1 + Cost™ ({ai} >+ Si o Us)
= Cost* ({p} —=>+T1) + Cost(t) + Cost* (S; i+ Uy))

moves.

That is in every case no more than Cost*({p} Tﬁ* S) moves, by the definition
of the cost and by (2).

The property is proved for @, +1. From the induction we can conclude that it
is proved for each m > 0.

(One can simplify a little beat the end of the proof in the case where &% is a
finite automaton.) W

Proof: Theorem 7 According to the strategy, if p € Py, Player 0 has to find
the cheapest run on %,. Decompose this run: w = yw’,

{p} 2Ty, S

choose the transition Rule(p—2+T) = py — gv that were used to construct the
transition p 15T in @44 (g). After that the play is in the state quw’. We can
remark that

Cost* ({p} T 4, S) =1+ Cost* ({g} =T 4, 3) .

So the “distance” to R has decreased. It is the same if p € P; (for each possible
move of Player 1). The maximal number of steps needed to reach R is decreasing,
so the play will eventually reach R, see Lemma 17. (and it is possible, if Player 1
plays “badly”, that the number of steps decreases faster) Bl

The Theorem 7 has been proved without using the Proposition 6, with the
previous lemma, but the proposition states that the strategy is optimal.

Proof: Proposition 6 From the previous facts it follows that

rank(pw) < min{Cost*({p} *»+S) | {p} >+« S C F} .



For the converse inequality, it is easy to show by induction that for all ¢ > 0
rank(pw) =i = min{Cost*({p} +S) | {p} +«SCF} >i.
[ ]

Proof: Theorem 9 We consider a play according to the strategy: a path in the
transition graph of the strategy. This is a sequence g - - - T, of configurations of
the strategy such that the stack of m describes an accepting run of @44 (r)- By
definition of Algorithm 1 it is easy to show by induction on n that:

— the stack 7, describes also an accepting run of @44 (r),

— the cost of this run is strictly smaller than the cost of the run described in
mn—1 (each move of the strategy replaces the first segment of the run by a
“cheaper” run).

Proof: Remark 1

There is a deterministic (complete) finite automaton D = (I, Q, 6, qo, E) that
recognizes R backwards: reading words from right to left. We can simulate D in
anew PDS #Z xD=(PxQ,I"' x Q,A") where a configuration

PY0Yn

of & is associated, via the unique run of D

Qn+2(LCIn+1 &g dnqo

to the configuration of & x D

(p7 Qn+1)(707 qn) e (7n7 q0) -

Then we know that pyo---y, € R < 4d(qny1,p) € E. Let F = {(p,q) €
P x Q| 6(g,p) € E} and define the transitions of & x D to be

(P 0)(v @) = @,d) Vs tn) - (1, 0)) € A &

Py = P m) € A, giv1 = 6(gi5,7%), 4" = 0(qn,Tn) -

(if n =0, ¢ = ¢1) If the initialization is done correctly, the stack will contain
a correct run at every step, and the connected component of the graph of &
is isomorphic to the corresponding connected component of & x D, with the
property that R corresponds to R' = FI'*.

Proof: Proposition 13
By induction on j:
We note %; the automaton obtained after the j-th generation, with initial states

p’,peP.
- using the convention that p° is f for all p € P, the automaton %, recognizes



PIr*=v =Y,

- induction hypothesis: %; recognizes Y;

- then Y; N R is recognized on %; from the states p’,p € F, because of the simple
structure of R (i.e., pw € Y; N R if pw is accepted by #; and p € F).

By the help of the e-transitions, the automaton %;, recognizes exactly Y; N R
before the saturation procedure starts. The construction of #;41 from %; was
proved in Section 2 to compute the attractor: %;41 recognizes then Attro(Y;NR).
After we remove the e-transitions, it defines Attrg (Y; N R): the configurations of
Attro(Y; N R) such that after one move we are in Attro(Y; N R). In other words if
a configuration pw can be accepted by %;41 only by using an e-transition, then
it is in ¥; N R, but not in Attr§ (Y; N R). W

The next proposition states that there are less and less transitions in the higher
generations (we already know that Y;;; C Y; by monotonicity).

Proposition 18 In Algorithm 12, for allu € I',p € P,i > 1,
P .S = p 5 g(S)

Proof: Proposition 18

We proceed by induction on .

Tt is a direct consequence of the same property over the transitions (by induction
on the length of the word).

— For 4 = 1, we use another induction on the number of transitions starting
from p? added by the saturation procedure.
- At the beginning of the second iteration, one has no other transitions from
the ¢%’s than the ¢ —» {¢?}, and for all ¢ € F, ¢> < {¢'}. And from the
q'’s there may be paths ¢! 24+ S such that S C P x {1} U {f}, hence
o(S) = {f}.
Respectively, at the beginning of the first iteration, before the saturation
procedure starts, one had ¢* - {¢'}, if ¢ € F, then ¢' - {f}, and
vy, - {f}.
- as a new transition p? -2 S is added, it is through an existing path
¢*> 5+ S, by induction hypothesis one has also ¢* 23« ¢(S) during the sat-
uration procedure of the iteration one, so the transition p! X5 ¢(S) was
already added.

— induction hypothesis: VS, p! -2 S = pi~1 -2 ¢(S)

— the proof for ¢ 4+ 1 is similar to the case i =1

|

Note that in Algorithm 14 we can erase the p*~'’s and their transitions as soon
as the generation 4 is done. Similarly to the first algorithm, we have the following
property.

i—1>

Proposition 19 In Algorithm 14, for allue I'*,p e P,i > 1,

Pt 58 = pt 2y (S) .



Remark that because of the projection 7, the transitions p? -3+ S respect S C

{FYUP x{i}.

Proof: Proposition 19

The proof is similar to that of the first algorithm.

We proceed by induction on 1.

It is a direct consequence of the same property over the transitions (by induction
on the length of the word).

— For i = 1, we use another induction on the number of transitions starting
from p? added by the saturation procedure. Which means in this case, if a
transition p? -2y S is added, then its projection respect the property, that is

p' 5 ¢(n*(9))

because at the end of generation 2, we will have p? X5 72(9).
- At the beginning of the second iteration, one has no other transitions from
the ¢®’s than the ¢2 — {¢?}, and for all ¢ € F, ¢®> -+ {¢'}. We have to
check that ¢! = ¢(72(q')) = ¢(¢?) = ¢*, which is clear.
And from the ¢'’s there may be paths ¢! %3S such that S C Px {1}U{f}.
Hence from ¢? (only if g € F), we have
@ —5q' 5. S C P x {1}U{f} with
2(S) C P x {2}U{f}, 6(r2(8)) C P x {1}U{f}, and o(x*(S)) = .
So we have ¢! 2. ¢(72(9)).
- during the saturation procedure, as a new transition p? X3 S is added,
it is through an existing path ¢ 3+ S, by induction hypothesis one has
also g2 L5« 72(9) = ¢t L« p(72(9)) so the transition p! L5 ¢(72(S)) exists
since the projection of the first generation.

— induction hypothesis: VS, p! 2% S = pi~1 -2 ¢(S),

— the proof for ¢ + 1 is here exactly the same as the case i = 1.

Proof: Theorem 15

Proof of termination

Thanks to the projections 7%’s, the number of possible transitions from each row
of p¥’s is bounded. And thanks to Proposition 19, there is less and less transitions
until the algorithm reaches a fixed point.

Proof of correctness

We note Z; the language recognized by & from the initial states p’’s. We denote
n + 1 the last generation of the algorithm, which is such that Z, = Z,4+1, but
we still consider Z; = Z,, for all ¢ > n. One has to show that Z,, = Y*°.

First part: Z,, CY°.
We prove by induction on i that for all i, Z; C Y;.

— By construction, Z; = Y;.



— Induction hypothesis: Z; C Y;.
— The algorithm first determines the attractort of the language. By mono-

tonicity,
Zip1 = = Attr§ (Z; N R) C Attr§ YiNR) = Yiy1 -

After the projection of the transitions, the obtained language Z;,; is con-
tained in Z;1: Proposition 19 shows that an accepting path from a state p; 1
was possible before the projection (through the ¢*’s). So Z; 11 C Z;11 C Yiq1-

We conclude that Vi, Z, = Z,11 CY;, and so Z,, CY*°.

Second part: Y° C Z,.
We prove by induction on ¢ that for all 4, Y C Z;.

— By construction, Y*° CY; = Z;.
— Induction hypothesis: Y C Z;.
— Before the projection we have

= Attrf Y*®° NR) C Attr{ (ZiNR) = Ziy1

We proceed by induction on the number of transitions that are changed by

the projection, i.e., we consider the successive automata &%, - - , @, where
(%) = Zit1, L(y) = Zi41, and 41 is obtained from &7 by “project-

ing” one transition. We have to prove by induction on m that Y*° C L(#).

-Ifm = 0 Y™ C L(%) ,+1 Zz'+1.

- Induction hypothesis: Y C L(4y,).

- We suppose by absurd that there is a configuration pw € L(#,)\L(%n41)

such that pw € Y*°. We choose that of minimal length |pw|. For each accept-

ing path in 4, for pw, there is a decomposition pi+1 - S —{f} such

that w = uv, with ¢* € S, and in Fnyr: (¢ {f}) (the transition

that is projected was “leading” to ¢' in 7, and is now “leading” to ¢'*t1).

This means that qu € Z; and qu & L(%y41)-

If qu & L(%},), then gv ¢ Y*° (Induction hypothesis).

If qv € L()\L(m+1), then quv cannot be in Y*° by hypotheses: u # €

and |qu| < |pwl.

In both cases, pw should not be in Y*° (see Section 2), hence the contradic-

tion.

We conclude that Y C L(&p41)-

Proof: Theorem 16
By definition of Y and by Algorithm 14, Attrd (Y>° N R) = Y, and Player 0
can use the strategy associated to that attractor. B



