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Abstract

Two important classes of quantum structures, namely ortitlutar posets and
orthomodular lattices, can be characterized in a classimaiext, using notions
like partial information and points of view. Using the forlisen of representation
systems, we show that these quantum structures can beabtairxpressing con-
ditions on the existence of particular points of view, oftgaar ways to observe
a system.
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1 Introduction

The study of quantum structures such as orthomodular pasdtsrthomodular lattices
constitutes an important part of the efforts to understaedelationship that exists be-
tween the guantum world and the classical, newtonian onetrallitional approach to
this kind of study relies on the decomposition of an orthomadstructure into blocks,
that is into maximal boolean subalgebras (one can refeitéd [@hd Pulmannova, 1991],
[Hughes, 1989],[[Svozil, 1998], of [Dalla Chiara and Giant2001]).

We present another approach, based on the decompositiom ofttomodular
structure into complete boolean subalgebras. To this céspe introduce represen-
tation systems which are an algebraic structure aimed athiagl partial knowledge
about a system with an explicit notion of “point of view”: ihe considers a way to
observe a system in a classical manner, it is natural to ed¢edo this point of view
a finite (or more generally, complete) boolean algebra wiedseents correspond to
partial knowledge about the state of the system, this p&riavledge following from
information obtained from the considered point of view. &mtcular, the consideration
of partial knowledge provides an intuitive justificatiorr flecomposing an orthomod-
ular structure into complete boolean subalgebras.

We started this study ir] [Brunet, 2004b] and in the presetitley we show that
under some conditions about the existence of particulartpaif view and about the




way they relate to each other, the set of all partial degorigtof the system, regardless
of their originating point of view, constitutes an orthonutal poset or an orthomodular
lattice. This way, we provide a characterization of thesangum structures by means
of purely classical notions such as that of point of view opaitial information.

In the next section, we introduce representation systentgen,Twe focus on a
restriction of these structures by demanding that eacht pdiwiew is associated to
a boolean algebra. In section 4, we show that our formalismbeaused to define
quantum structures by imposing conditions on the existehadequate points of view.
Finally, in section 5, we show that every orthomodular p@set orthomodular lattice
can be obtained in this way.

2 Representation Systems

Representation systenjs [Brunet, 2002, Brunet, 4q04ag8raf04p] are an algebraic
structure whose purpose is to model partial knowledge absystem. They are based
on two important related notions: points of view and paritibrmation. A point of
view corresponds to a way to “observe” the system (the vbderves used here with
its general meaning and not with its quantum acception) ama ioformation about
its state. In particular, it might not be possible from a giymint of view to totally
describe the observed system. As a consequence, the itfonrhas to be considered
in general as partial (i.e. is not sufficient to totally claesize the state of the system)
in this context.

To each of these points of view, one can associate a posetwlfaments represent
partial descriptions of the state of the system, thesegbaltiscriptions corresponding
to information obtainable from the considered point of vidis means in particular
that a partial description associated to one point of viemno&in general be associ-
ated to another point of view. However, we assume that krsgdeabout the general
structure of the system allows us to translate partial detsens from one point of view
to another, with the restriction that some information caridst in the process. This
assumption is formalized by what we calinsformation functiong our formalism.

A detailled presentation of these structures can be fouffeirimet, 2004a] and in
[Brunet, 2004p].

Definition 1 (Representation System)

A representation systers a tupleS = <I, {Pi. <Vbier Uit jes
a set of indices, where for eveiyin I, (P;,<;) is a poset, and where the func-
tions{ Jij Py — Pi}i calledtransformation functionsverify the following three

> wherel is

' Jel’
properties:
Viel, fi=id; Identity (1)
Vi, j eI, Va,y € Py,x <;y= fi,(x) <i fi;(y) Monotony  (2)
Vi, j, k€ I,V € Py, fiix(x) <i fij o fik(z) Composition  (3)



Example

Consider an experiment with a firefly trapped in a box. This tsodivided into 4
sectors (numbered from 1 to 4 in the figure below, on the laft) has an opaque
division between sectors 2 and 4. At a given moment, two eeser(X and Y) tell
whether they see the light of the firefly, and in that case, irckvhalf of the box they
see it.

This situation can be modelled by means of a representatgiara with two points
of view X andY, corresponding to the two observers. The correspondingtpos
are depicted below on the right. For instance, the eleméritseaX -poset are T”
(an information-less description), “Not seen”, “Seen”gft” and “Right”, depending
whether the light of the firefly has been seen or not, and ind¢khersl case, in which
half of the box it has been seen.

Moreover, in the same figure, the arrows depict the behawibitne transformation
functions. For instance, the arrow from “Right” to “Down”respond to the equality
fyx (“Right”) = “Down” and means that i’ sees the light of the right half of the
box, then the firefly is lit and is in sector 4, which corresparitbmY’s point of view,
to description “Down”. One can note that we have only resgmesd the meaningful
arrows, which are sufficient to entirely determine the tfamsation functions. Thus,
one hasfy | x (“Left") = “Seen” andfx |y ("Up”) =“T".

Up—| 1 | 2 /—\
Y

Down —

X Point of view X Point of view Y
Situation Representation system

Sum of a Representation System

Given a representation system, it is possible to merge thetp@ssociated to the dif-
ferent points of view into a single poset. This way, one oista structure containing
all the possible partial descriptions, regardless of tiseciated points of view.

Definition 2 (Pre-Sum of a Representation System)
LetS = (I,{Pi};c; { filj }Z jer be a representation system and define its pre-sum

as the paifS,, <.) where:

Se={{i,x) |ielandr € P;} (i,2) <& (,y) & fi:(2) <y



Proposition 1
The pre-suniS,., <,) of a representation systeshis a pre-ordered set, or equivalently
<, is a reflexive and transitive relation &4.

This pre-order induces an equivalence relatignon S, by defining:
(i,2) = (Joy) & (i,2) <« (J,y) and (j, y) <. (i,x)

Let (i, z). denote the equivalence class of an elenfént) € S, with regards ta-,.

Definition 3 (Sum of a Representation System)
LetS = (I,{Pi}tics> { fil j}i el be a representation system and define its sum as

the pair(S~, , <~,) where:
Sﬁ* = {<ia$>:* <Z,JJ> € S*} <ia$>:* Sﬁ* <37 y):* A <’L,$> S« <]ay>

Proposition 2
The sumS~., of a representation systesis a poset.

Proposition 3
Fori € I andz,y € P;, one has{i,r). <~ (i,y). & =<,y

It is possible to adapt the notion of point of view of a repreadon system to its
sum by defining special closure operators on the sum. Letstgdicall the definition
of an upper closure operator.

Definition 4 (Upper Closure Operator)
Given a posetP, <), anupper closure operaton P is a monotonic functiop : P —
‘P which verifies for alk::

Idempotence: p(p(z)) = p(x) Extension: x < p(x)
For everyi € I, define a functiom; : S~, — S~, by:
pi ((,2)., ) = <iafi|j(x)>z*
Proposition 4

Given a representation systeineveryp; is an upper closure operator 61, .

Proof Extensions shown as follows:

(i,2) <u (4, fj1i(2)) & fi1i(x) <5 f1:(2)
Idempotencés a consequence dxﬂentity(Eq.l].): fiji(z) = x andMonotonyof Com-
position(Eq.[3):
(i, 2) <i (4,9) = fi1i(%) <5y = fupi(@) <k fr);(y) U
Intuitively, an element. € S~, such thatu = p;(a) corresponds to information that

can be observed from point of vieivIn general, one has <._ p;(a), so thatonly a
part of the information correspondingdacan be observed from point of vieiv



3 Boolean Representation Systems

A natural constraint which can be added to the formalism pfegentation systems is
to assume that the poset associated to a given point of viemsfa boolean algebra.
This corresponds to the classical assumption of the “naamdmvorld (as opposed to
the quantum one) that knowledge behaves in the manner cicdéogic.

By moreover adding conditions on transformation functionsrder to take into
account operations of boolean algebras (in particulanoadmplementation and dis-
junction), we get the following definition:

Definition 5 (Boolean Representation System)
A representation syste@is booleanif and only if, using the usual notations:

1. Every poseP; is a boolean algebra
2. The transformation functions verify:

Vi, j € I, Va,y € Py, fij(x Vy) = fi;(x) V fi;(v) (4)
Vi, j €I,Va € Py, Vy € Py, fi; (@) <iy= fulyh) <;at (5)

The following propositions illustrate some propertiestt# sum of a boolean rep-
resentation system.

Proposition 5
Given a boolean representation systenfor every(i, ) and(j,y) in S., one has:

(o) <o (Gy) = (o) <u (i et

Proof This is a direct consequence of equalﬂ)n 5:

<7’7$> <« <]7y> = f]|1($) S] Yy = fz\j(yJ_) <i :EJ_ = <]ayj_> <« <i7xl_> U

Corollary 5.1
Given a boolean representation systénthe operationi, ).+ <i, xi>: is well-
defined and constitues an orthocomplementatiof.on

Proposition 6
Given a boolean representation sysiénfor everyi ¢ 7 andx,y € P;, the join of
(i,r). and(i,y). existsinS~, andisequaltgi,z V;y). .

Proof First, one hagi,z) <. (i,zV;y) and a similar inequality fo(i, y). Con-
versely, suppose that one hész) <, (j,z) and (i,y) <. (4,z). In that case,
fii(z) <; z and f;;(y) <; z so that as a consequence of equaﬁlon 4, one has
f51i(x Vy) <; zwhich is equivalent tqi, = Vv y) <, (j, 2). O

For the following proposition, letl (resp. T) denote the least (resp. greatest)
element of a boolean algebra.



Proposition 7
Given a boolean representation syst§mits sumS.., is bounded and the least and
greatest elements are given respectivelyiby )., and(i, T). foranyi € T.

These results can be summarized in the following propesitio

Proposition 8
Given aboolean representation systémits sumS.., is a bounded orthoposet.

In terms of closure operators Sfis a boolean representation system then:far €
S~, andi € I, it follows directly from propositionf]5 ang 6 thatif = p;(z), then
xt = pi(xt) andifz = p;(x) andy = p;(y) thenz V y exists and verifies vV y =
pi(z V y).

4 Boolean Representation Systems and
Quantum Structures
In the previous section, we have introduced boolean reptasen systems and shown

that their sum is an orthoposet. We now study some conditibosit the existence of
appropriate points of view and characterize their sum.

Orthomodular Posets

The first condition we introduce states that two elemersdb such that: < b can
be observed from a single point of view.

Proposition 9
LetS be a boolean representation system such that:

Va,be S~,, (a<~, b= (i€ I:a=pi(a)andb = p;(b))) (6)

ThenS.., is an orthomodular poset.

Proof This results from the fact that with the above condition, elements verifying
a <~, bbelong to a boolean subalgebraf, . As a consequence,v b+ exists, and
oneha® =aV (bAat). O

Orthomodular Lattices

The second condition we wish to study states that given temehtsa andb, there
exists a “preferred” point of view from whicha is observable and such that one can
get as much information abobigs possible:

pila) = aandvyj, (p;(a) = a = pi(b) < p; (b))

But before this, we introduce a characterization of orthduar lattices as ortho-
modular poset equipped with a particular binary operatiofwdich can be shown to
correspond to the Sasaki projection):



Proposition 10
LetP be an orthomodular poset equipped with a binary operdtiovhich verifies:

Ve, 20,y €P,xy <z = o1 &y<zo&y &-Monotony (7
Ve,yePa&ky<y &-Reduction (8)
Ve,yeP,a<y=>z&y==x &-Orthomodularity 9
Vao,y,z€Pa&ky<z=z &y <zt &-Galois (10)

ThenP is an orthomodular lattice.

Proof SinceP is an orthomodular poset, one only needs to show that it & als
lattice. For this, define a binary operatiorasz Ay = (acL & y)L & y and let us show
thatx A y is the meet ofc andy. First, it is clear from &-Reduction that A y < y.
Moreover, one has A y < x sincez &y < z* &y implies (z* &y)L &y <z
using &-Galois.

Finally, letz be in? such that < x andz < y. One has:

z<uw Hypothesis
= z&y<ax Hypothesis and &-Orthomodularity
=zt &y <zt &-Galois
= 2z < (xl‘ & y)L
= 2&y< (2t & y)L &y &-Monotony
= 2z < (xL & y)L &y Hypothesis and &-Orthomodularity

This means that is < x andz < y, thenz < z Ay, and finishes the proof thatA y
is the meet ofr andy. O

Proposition 11
LetS be a boolean representation system such that eqLﬂation $ dnudbthat one has:

a = p;(a) and
Vj, (a = pj(a) = pi(b) <=, p;(b))

ThenS.., is an orthomodular lattice.

Va,be S~,,diel: { (12)

This condition corresponds to the fact that given two elesweandb, there exists
a least element compatible witha such thab < c.

Proof Since equatiorﬂ6 holdsS~., is an orthomodular poset, as it follows from
proposition|P. As a consequence, it suffices to exhibit arigimperation as& in
proposition 1. For this, givemandb in S~ , we definex & b asp;(a) A b with i such
that:

pi(b) =b and Vjel, (p;(b) =b= pi(a) <~, pj(a))

We show that this operator verifies the properties given iratigng J7F10.



e For &-Monotony(Eq[l7), leti1, az be inS~, suchthat; <., as, and let; and
jbeinI suchthat, &b = p;(ai) Abandas & b = p;(az) Ab. Fromthe choice
of ¢ and the monotony of;, one hasp;(a1) <~, p;(a1) <~, p;(az) so that

aq &b S as & 0.
e For &-Reduction (Eq[|8), it is obvious that&; b < b from its definition.

e For &-Orthomodularity(EqI]Q), it. <., b, thenthere exists an indéx I such
thata = p;(a) andb = p;(b). As a consequence,oneha& b =a A b= a.

e Finally, for &Galois (Eq.[1D), suppose that b <., c. This means, with
a& b= p;(a) Ab,thatp;(a) Ab <~ c. Asaconsequencer <., (p;(a))*V
bt.

Now, following equatior 41, introducg € I such thaic™ &b = p;(ct) A b,

pi(ct) < pi(ct) andp;(b) = b. Sincep;(b) = bandp; ((pi(a))" Vo) =

(pi(a))* v bt itfollows thatp;(ct) <~, (pi(a))* Vv bt. Thus, one can write:
pi(e ) Ab < ((pila))* V) A < (pi(a)* Ab< (pi(a))* < a*

Thus, we have shown that. is both an orthomodular poset and a lattice. O

5 Representation of Quantum Structures

The results in the previous section show that orthomodwdaes and orthomodular
lattices arise naturally in a context of partial represtoteof knowledge, where there
exists a “rich” enough collection of points of view. We nowepent the converse re-
sult, which states that these structures can always beneltais the sum of boolean
representation systems.

Let P be a bounded orthoposet, and defipeas the set of complete boolean sub-
algebras ofP. Moreover, for allB € Ip, defineps : P — B as:

p(z) = N{yeB|z<y}
Finally, for B, B’ € Ip, let fg 5 denote the restriction ofis to B'.

Proposition 12
The tupleSp = <I’p, {BYper, - {f818' } 5 e IP> is a boolean representation system.

Proof One just needs to prove that the transformation functi{)fﬁlg/} actually
verify Monotony Idempotencand Composition Monotonyandldempotenceirectly



follow from their definition. Concernin@ompositionone has:

{yEB‘PB’\B”(m)gy}:{?JEB‘/\{ZEBI“USZ}S?J}
ClyeBlz<y}

so that /\{yeB|x§y}§/\{yeB‘pB,‘B”(x)Sy}

The last inequality is equivalent sz (v) < pg|p © psr| (T). O

Proposition 13
The sumSp),. is isomorphic toP.

Proof Let(B,,x)and(B,,y) be two elements ofSp), . If (B,,z) <. (B,,y), then
ps, (r) < y which implies thatr < y. Thus, the elements ¢6p)_. are of the form
{(B,z) | B € Ip,z € B} and can be put in a one-to-one correspondenceaith

It is easy to verify that this bijection preserves both theiphorder relation and

the orthocomplementation. O

Proposition 14
All bounded orthoposets are isomorphic to the sum of a boaglgaresentation system.

The notion of compatibility in the field of orthomodular sttures can be eas-
ily expressed in our approach: two elemeat$ in P are compatible if and only if
dBe€lp: {a,b} C B.

Proposition 15
Every orthomodular poset is isomorphic to the sum of a baolepresentation system
which verifies:

Va,beS~,,a<~, b=3Jicl:a=p;(a)andb= p;b)
Proof Two comparable elements< b of an orthomodular poset are compatiblg.

It should be remarked that the condition in this propositoexactly equatioE|6
used in propositiofi9.

Proposition 16
Every orthomodular lattice is isomorphic to the sum of a baalrepresentation system
which verifies:

Va,be S~,,a<~, b=3iel:a=p;(a)andb= p;b)

a = p;(a) and

Va,be S~ ,Jiel: .
“ e 2 { Vi, (a=pj(a) = pi(b) <~, p;(b))



Proof The second condition comes from the fact thand (a Vv b) A (a Vv b*) are
compatible, and that any elemantompatible witha and such thab < ¢ verifies
(aVb)A(aVbt) <e. O

The second condition here is exactly equafign 11 used ingsitipn[1].

6 Conclusion

In this article, we have presented the notion of represiemtatystem and of boolean
representation system which is designed to model partialvledge about a system
using several points of view, in such a way that each pointi@fi\corresponds to
a classical observation of the system. By expressing dondibout the existence of
particular points of view, we have shown that it is possiblettaracterize and represent
quantum structures such as orthomodular posets and orthdandattices using these
structures which are based on classical notions only.
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