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Abstract

We study the problem of finding the minimal initial capital needed in order
to hedge without risk a barrier option when the vector of proportions of wealth
invested in each risky asset is constraint to lie in a closed convex domain. In
the context of a Brownian diffusion model, we provide a PDE characterization
of the super-hedging price. This extends the result of Broadie, Cvitanic and
Soner (1998) and Cvitanic, Pham and Touzi (1999) which was obtained for plain
vanilla options, and provides a natural numerical procedure for computing the
corresponding super-hedging price. As a by-product, we obtain a comparison
theorem for a class of parabolic PDE with relaxed Dirichet conditions involving

a constraint on the gradient.
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1 Introduction

The problem of super-hedging under portfolio constraints has attracted a lot of attention
since the seminal work of Cvitani¢ and Karatzas [5]. One of the original motivations
came from the hedging of plain vanilla options with discontinuous payoffs, such as digital
options. For such options the delta and gamma may take very large values when the

remaining maturity is small, which makes them difficult to delta-hedge.

Within diffusion models, the remarkable result of Broadie, Cvitani¢ and Soner [3] shows
that the optimal hedge under constraints is obtained by considering the Black-Scholes
type hedging strategy of some modified payoff. Thus, hedging the original claim under
constraints corresponds to hedging a modified one without constraints. This is the so-
called ’face-lifting’ procedure. Within the Black-Scholes model, this allows to explicit
the optimal hedge. In more general Markov diffusion models, an explicit solution may
not be available but the super-hedging price can still be characterized as the solution
of some Hamilton-Jacobi-Bellman equation, see Cvitani¢, Pham and Touzi [6] and the
review paper Soner and Touzi [12]. In the general semi-martingale case, no explicit so-
lution is available but a general dual formulation was obtained by Follmer and Kramkov
[7].

Similar problems may appear for path-dependent options such as barrier options. For
instance, the delta of knock-out barrier options may explode when the maturity is
small and the underlying asset is close to the barrier. This more difficult issue was
recently considered by Shreve, Schmock and Wystup [11]. In this paper, the authors
solve the problem of hedging a knock-out call option in a one dimensional Black-Scholes
model under a constraint on the short position, i.e. the proportion of wealth invested
in the risky asset is bounded from below. This result is obtained by extending the
dual formulation of Cvitani¢ and Karatzas [5] and by solving the associated stochastic

control problem.

The aim of the present paper is to provide a PDE characterisation of the super-hedging
price of barrier-type options. Our model is more general than the one studied in Shreve,
Schmock and Wystup [11] in two aspects. First, we consider general payoffs of the form
g(7, X;) where 7 is the first exit time of a d-dimensional price process X from a given

domain O. Secondly, our constraints on the proportions of wealth invested in the risky



assets is described by a rather general closed convex set.

Our derivation of the associated PDE relies on the dual formulation of Cvitanic and
Karatzas [5] as in Cvitani¢, Pham and Touzi [6]. Here, the main difficulty comes from
the boundary condition on 9O before maturity, a problem which does not appear in the
above paper. As in the vanilla option case, we have to consider as boundary condition
a ’face-lifted’ pay-off, but in the case of barrier options this is not sufficient. Indeed,
the example considered in Shreve, Schmock and Wystup [11] shows that the boundary
condition on [0,7") x 0O may not be assumed continuously by the value function, even
when the payoff is ’face-lifted’” (in their case g = 0 before T'). This implies that this

boundary condition has to be considered in a weak sense.

In this paper, we give an appropriate sense to the boundary condition and show that
the super-hedging price is a (discontinuous) viscosity solution of the corresponding
Hamilton-Jacobi-Bellman equation. We also show that it can actually be further char-
acterized as its smallest viscosity supersolution. Finally, under mild additional assump-
tions, we prove a comparison theorem for the associated PDE which ensures uniqueness
of the solution and opens the door to the implementation of a numerical scheme. Here,
the difficulty comes from the constraint on the gradient of the value function which also
appears in the relaxed boundary condition. To the best of our knowledge, this is the

first time that such an equation is considered.

The rest of the paper is organized as follows. The super-hedging problem and its dual
formulation are presented in Section 2. In Section 3, we describe the associated PDE
and state our main results. A numerical application is presented in Section 4. The

remaining sections contain the proofs.

Notations: All elements z = (z%);<4 of R? are identified with column vectors with
Euclydian norm | - | and transposed vector z’. The positive orthant of R? is denoted
by ]Ri and the set of d x d matrices by M¢. We write diag[z] to denote the diagonal
matrix of M? whose i-th diagonal element is z°. If y € R?, we write xy for (z'y");<q4, ¥¥
for [,< L)Y and weV for (z%e?")i<q, whenever it is well defined. The trace of M € M¢
is denoted by Tr[M] and | M| denotes its Euclydian norm when viewed as an element of

R%. Given a family (a”); j<q4 of real numbers, we denote by [¢”/], ; the matrix A whose



component (4,j) is given by a”. The closure of a set £ C R? is denoted by E, OF
stands for its boundary and int(E) for its interior. Given n > 0, B(x,n) denotes the
open ball of radius 7 centered on x.

Given a smooth function (t,z) € [0,7] x R? — ©(t,z) € R, we denote by Dy its
(partial) Jacobian matrix with respect to x and by D?p its (partial) Hessian matrix
with respect to x. All inequalities involving random variables have to be understood in

the IP — a.s. sense.

2 The super-hedging price under contraints and its

dual formulation

In all this paper, T' > 0 is a finite time horizon and W = (W,);<r is a d-dimensional
Brownian motion defined on a complete probability space (2, F,[P). We assume that
the P-augmented filtration generated by W, F = (F,);<r, satisfies Fy = {Q,0} and
Fr=2F.

2.1 The barrier option hedging problem

The financial market is composed by a non-risky asset B with price process normalized
to unity, i.e. B, = 1forallt < T, and d risky assets X = (X!, ..., X?) whose dynamics

is given by the stochastic differential equation
t
X(t) = Xo —|—/ diag [X (s)] o(s, X (s)dW, , t<T (2.1)
0
for some X, € (0,00)%. Here, o : [0,T] x R% — M is assumed to satisfy

(i) o is continuous, bounded and invertible with bounded inverse.
(ii) The map (¢,z) € [0,T] x RY +— diag[z]o(t,z) (2.2)

is Lipschitz continuous in z, uniformly in .

Remark 2.1 As usual there is no loss of generality in assuming that X is a local
martingale since, under mild assumptions on the original dynamics, we can always
reduce to this case by passing to an equivalent probability measure. The normalization

B = 1 means that we consider discounted processes, i.e. we take B as a numéraire.



A financial strategy is described by a d-dimensional predictable process 7 = (7%,...,7%)

satisfying the integrability condition
T
/ | ]2dt < oo P —as. (2.3)
0

where 7! is the proportion of wealth invested at time ¢ in the risky asset X*. To an initial
dotation y € R and a financial strategy m, we associate the induced wealth process YT
defined as the solution on [0, 7] of

t t
Y(t) = y+/ Y (s)rdiag [X (s)] " dX(s) = y+/ Y (s)mio(s, X (s))dW, , (2.4)
0 0
where ' stands for transposition.

Remark 2.2 Since in our model the financial strategies are described by the propor-
tions of total wealth invested in each risky asset, the no-bankruptcy condition always
holds provided that the initial dotation is non-negative. Indeed, it is clear from (2.4)
that for y > 0, the induced wealth process satisfies Yy”(t) > 0, for all t € [0,7], as.

The constraints on the portfolio strategy is described by a closed convex set K C R,
We say that a financial strategy m is admissible if it satisfies, in addition to the condition
(2.3), the constraint

me K dt xdP —a.e. (2.5)

and we denote by K the set of admissible financial strategies. All over this paper, we

shall assume that
0 € K# RY . (2.6)

The left hand-side condition just means that 0 € K while the inequality is natural since
otherwise there would be no constraint on the portfolio.
The barrier option is described by a map ¢ defined on [0, 7] x R‘i and an open domain

O of R? such that

g>0 onONRY and g¢g=0 on[0,7]x O, (2.7)



where O° := (0,00)?\ O. The buyer of the option receives the payment g(7, X (7)) at
the (stopping-) time 7 defined as the first time when X exists O if this occurs before T

and 7T otherwise:
7 = inf{t€[0,7] : X(t)¢ O}AT,

with the usual convention inf ) = co. The super-replication cost under constraint of
the claim g(7, X (7)) is thus defined as

v(0,Xp) = inf{yeRy : Y(r)>g(r,X(r)) forsomemweK} . (2.8)

Remark 2.3 The condition g = 0 on [0, 7] x O¢ can be seen as a convention. Indeed,
it is clear that v(0, Xy) does not depend on the value of g on this set when X, € O,
while for Xy, € O° the problem has no interest.

Hereafter we present examples of barrier option which enter into our framework.

Example 2.1 Up-and-out call : Let d = 1. The pay-off of an up-and-out call on a

single asset X!, with strike price x and knock-out barrier B is equal to

(XY(T) - w)

"1

{maXOStSTXl(t)<B} :
In our framework this corresponds to: O = (—o0, B) and g(t,7) = (z — k)" Lji=r0<n)-
Example 2.2 Down-and-out basket put option : A basket option is an option whose

pay-off depends on a weighted average of a set of underlyings’ values. Let d = 2, we

consider the down-and-out barrier option whose payoff is given by

XYT) + XX(T)\ "
K — ]_ . 1 2 *
9 {mmogthX H+X (t)>23}

In our framework this correponds to O = {x € (0,00)? , ' +2* > 2B} and g(t,z) =

xl4a? +
k== 1{t:T,x1+x2>2B}-




2.2 The dual formulation

The dual formulation for hedging problems under general convex constraint was first
established by Cvitani¢ and Karatzas [5] in the diffusion case and then extended to the
semi-martingale case by Follmer and Kramkov [7], see also Karatzas and Shreve [9] and

the review paper Soner and Touzi [12].

To state the dual formulation, we first need the characterization of the closed convex

set K in terms of its support function §. For p € R set

8(p) =supy'p > 0, (2.9)

yeK

where the last inequality follows from the left hand-side of (2.6), and define
K:={peR?: §(p) < oo},

the domain of . Observe that the right hand-side of (2.6) implies that K # {0}.
Moreover, it is a standard result of convex analysis, see e.g. [10], that K can be
characterized in terms of

Ki={peK : |p|=1}

by

yeEK & H(l,7) >0 and ~v€int(K) & H(1,7) >0 (2.10)
where

H(u,p) := inf{6(p)u — p'p, p € K;} for (u,p) e RxR?.

Remark 2.4 Assume for a while that 0 € int(K). Then, there is cx > 0 such that
B(0,cx) C K. Thus, for all p € K1, cxp € K and therefore

(5(,0) > cxg>0.

The dual formulation is constructed as follows. Let us denote by K the set of bounded
adapted processes ¥ taking values in K. To such a process, we associate the martingale
M? defined on [0, T] as the solution of

t
M, = 1+/ M, (o(s, X (s))710,) dw,
0

7



recall (2.2). We then define the P-equivalent probability measure Q” by

dQ”

= M2,
dP T

It follows from Girsanov’s Theorem that the process W9 defined by
W) = W, — /t o(s, X (s)) Weds t < T,
0
is a Brownian motion under Q”. In the following, we shall denote by E” the expectation
operator associated to (Q)ﬁ.
To ¥ € K, we finally associate the process £ defined by

) = e hd0s <

Theorem 2.1 The following holds.

v(0, Xo) = supI[Ef9 [E2g (1, X(7))] . (2.11)
9ek

Proof. The above result is a direct consequence of Theorem 6.2 and Remark 6.11 in
[9]. For the convenience of the reader, we provide here its short proof.
1. First observe that

v(0,Xo) = inf{yeRy : YJ(T)>g(r,X(r)) forsomer ek} .

Indeed, it follows from (2.4) and condition (2.3) that, for all y € Ry and 7 € K,
the process Y[ is a non-negative local P-martingale on [t,T]. Hence it is a super-
martingale and, by taking conditional expectation, Y, (T') > g(7, X (7)) implies Y,7(7) >
g(7, X (7)). From this we deduce the first inequality :

v(0,Xo) < inf{yeRy : YJ(T) > g(r,X(r)) forsomenecK} .

For the converse inequality, notice that if Y,7(7) > g(7, X (7)), then Y;f’ﬁ > g(, X (7))
where 7 = 71, ;] belongs to K.
2. Since g > 0, see (2.7), it follows from Theorem 6.2 and Remark 6.11 in [9] that

v(0, Xo) = qsgug]Eﬁ [Elg (1. X(1))]



Observe that the process £” is positive, non-increasing in time and recall that g > 0,
then the last equality leads to (2.11). O

In order to derive the PDE characterization of the super-hedging price, we shall use a
standard dynamic programming principle for the dual formulation of Theorem 2.1.
Before to state it, we need to extend the definition of v to general initial condi-
tions (¢t,z) € [0,7] x (0,00)¢. For (t,z) € [0,T] x (0,00)¢, y € Ry and 7 € K,

we define (X;,,Y/, ) as the solution of (2.1)-(2.4) on [t,T] with initial condition

(Xia(t), Y, (1) = (2, 9).
The value function v is then defined on [0, 7] x (0, 00)? by

o(t,z) = inf{yeRy : V7 (1,.) > g(7,,,Xis(r,,)) forsomen e} , (2.12)
where

1, = Inf{se[t,T] : X;.(s)¢ O} AT .

t,x

Remark 2.5 Observe that for (¢, z) € ([0, T]x00)U({T}xO), we have v(t,z) = g(t, x)

by construction.

In the sequel, we shall denote by 7; r the set of all stopping times with values in [t, 7.
Given ¥ € K and ¢t < T, we also set

EW = £9/ fors>t.
The following result is a consequence of Proposition 6.5 in [9].

Proposition 2.1 For all (t,z) € [0,T) x O and 0 € T, r,

o(t,z) = supE’ [557% (8, X00(8)) Loar, . + €57 g (7, X0a(7,.)) Lozr, } . (2.13)
vek ’ * ’ o

Proof. It follows from Proposition 6.5 in [9] that

v(t,x) = sup E? [55’;\1 U(QAT”,Xt@(Q/\th))} .
9ek e ’ 7

where by definition of v, see Remark 2.5, v (7,,, X;.(7,.)) = 9(7,., X¢2(7,.)). This

provides the required result. O



3 The PDE characterization

Our main result consists in a PDE characterization of the value function v. Before to
state it, we describe the PDE associated to v and explain in which sense it has to be

considered.

3.1 The associated PDE

Set O* = O N (0,00)¢. In view of [6] and [13], it is natural to expect that the value

function v is a viscosity solution on
D = [0,T)x O
of the partial differential equation
min {—Lv, Hv} = 0, (3.1)

where for a smooth function ¢ on [0,7] x RZ, we set

Heo(t,x) = inf {(5(p)g0(t,m) — p'diag [x] Do(t, ), p € f(l} ,

Lo(t,x) = %(p(t, T) + %Tr la(t,z)D*p(t, )]
with a defined on [0,7] x R% by

a(t,z) = diaglz]o(t,z)o(t, z) diag[z] .

The first part of the equation corresponds to the usual Black-Scholes equation, while
the second part is due to the portfolio constraint. Indeed, assuming that v is smooth,
positive, and writing formally that the hedging portfolio satisfies Y;"(t) = v(t, X (¢)), we
deduce from It6’s Lemma that 7, must coincide with diag [X ()] Dv(t, X (t))/v(t, X (t)).
Since it has to belong to K, the characterization of K given by (2.10) implies that H (1,
diag [X ()] Dv(t, X (t))/ v(t, X (t))), or equivalently H (v(t, X (t)),diag [X ()] Dv(t, X (t))),

must be non-negative.

In order to provide a full characterization of v, it remains to define the boundary
conditions on 9,D* := [0,T) x 90* and 9y D* := {T} x O* where

00" :=00nN(0,00)* and O :=0nN(0,00)".

10



It is known from [6], see also [12] and [13], that the boundary condition on drD* has

to be written
vo= g (3.2)
where, for x € (0,00),
§(T,2) = supeOg(T,ze?)
pEK
This corresponds to the ‘face-lifting’ procedure which was already observed by [3]. This

‘face-lifting’ is due to the portfolio constraint, g being the smallest function above g

which, in a sense, satisfies Dg/g € K.
Remark 3.1 Observe that (2.7) allows to define §(7',-) on (0,00)¢ as
§(T,x) = sup e *Wg(T, ze), (3.3)
peK (2,0)

with the convention sup® = 0 and

K(z,E) = {pe_f( ; xepeE} for ECO. (3.4)
The fact that v satisfy (3.1)-(3.2) in the viscosity sense can be shown by following the

arguments of [6] and is not difficult.

The difficulty comes from the boundary condition on 0, D*. In this paper, we shall show
that g has also to be modified on 9,D*, i.e. replaced by § defined on [0, T") x (0, 00)? by

g(t,x) = sup e °WPg(t, zer) (3.5)
peK (2,00)

with the convention sup® = 0. This result is expected and will be obtained under a
smoothness condition on O, see Hp below.

But this is only a first step in the derivation of the appropriate boundary condition.
Actually, [11] provides an example of super-hedging price for up-and-out call option
for which g(t,z) = 0 for t < T and v(t',2’) does not converge to 0 when (¢,2') € D
goes to (t,x) € 0, D*. This shows that the constraint on the portfolio may prevent the
value function to assume the boundary condition continuously and leads to the natural

formulation of a relaxed boundary condition on 9, D*
min{v—g¢, Hv} = 0. (3.6)

11



However, we shall see in Remark 6.1 below that the above equation has to be corrected
in order to admit a viscosity supersolution and therefore have a sense. Given a smooth

function ¢, we therefore define

Haplt,x) = inf {0(p)p(t, ) — pdiag [r] De(t, ), p € K(2,0) } |
where, for z € E C O,
Ki(z,E) := {p €Ky : 3N>0st. A\pe K(z, E)for all A € [0, )\O]} . (3.7)

To sum up, we introduce the following operators

min{—Ly , He} on D

By = min{p — g, He} on 0,D*
Y—4g on OrD*
By on DUOIrD*
Bap = . . ,
min (g~ §. Hag) on 9,0

and we say that a locally bounded function w on D is a discontinuous viscosity solution
of

Bip = 0 (3.8)

on D* := DN ([0,T] x (0,00)9) if w, and w* defined on D as

wi(t,z) == _ liminf w(t,z) and w*(t,z) = limsup  w(t, )
(t,E)ED, (¢,3)—(t,x) (t,z)eD, (1,7)—(t.x)

are respectively viscosity super- and subsolution of Byg = 0 and By = 0 on D*.

More generally, we shall say that w is a (discontinuous) viscosity supersolution (resp.

subsolution) of By = 0 on D* if w, is a supersolution of By = 0 (resp. subsolution of

By = 0) on D*.

Remark 3.2 Assume that the conditions of Theorem 3.1 below hold. Let us write
Bo(t, x) as B(t,z, o(t, ), Zo(t,z), Do(t,x), D*p(t, x)) and Bap(t, ) similarly. Then,
one easily checks that the upper-semicontinuous envelope of By as a map on D* x R x
R x RY x M is given by

(Ba).(t, z, 0t 7), %¢(t,x),D¢(t,$),D2¢(t,x))) = max{Bap(t, x),
min {—Lp(t, z), Ho(t, z)} } |

12



and that its lower-semicontinuous envelope is

(Bd)*@a Z, Sp(tv m)? %90(t7 .’17), D(p(t, $>7 DQSO(tv %’))) = min {‘890@7 'r) ) _ﬁw(tv l’) } :

From the arguments of the proof of Proposition 6.3 and Proposition 6.6 below, we
deduce that (Bg)+p = 0 (resp. (Ba)-¢ = 0) has the same supersolutions as Bgp = 0
(resp. subsolutions that By = 0) on D U 9,D*, for the terminal condition ¢ = §
at T. In other words, By can be viewed as being upper-semicontinuous with lower-
semicontinuous envelope given by B. This justifies the above definition of a viscosity
solution of Byy = 0, and shows that it is in accordance with Definition 7.4 in [4]. This
remark will be used in the example section to prove the convergence of the discretization

scheme we shall consider for a particular example.

3.2 Main results

In order to establish that v is a discontinuous viscosity solution of (3.8), we shall appeal

to the following additional assumptions.

Our first condition concerns the convex set K describing the portfolio constraints. It is
stated in terms of K (z,0), recall (3.4).

H:: (i) Forallze O, pec K(z,0) implies \p € K(z,0) for all A € [0,1).
(ii) For all z € O, the closure of K (z,0) is equal to K (z, O).
(iif) If (), is a sequence in O such that z, — = € 9O and p € K(z,O)
then there exists a sequence p,, — p such that, up to a subsequence,
pn € K(2,,0) ¥ n>1.

Remark 3.3 The conditions (i) and (i) of H; are automatically satisfied whenever
the set In(O) = {(In(z"))i<4, = € O} is convex. Indeed, we easily check that in this case,
for all z € O, K(x, ) is convex, and since 0 € K (, ©), this provides (7). The convexity
of In(©) also implies that if p € K (x,0) and j € K (x, 0), then Ap+(1-\)p € K(z,O)
for all A € (0,1). Since 0 € K, this shows that for all z € O the closure of f((x, 0)

contains K (x, ©), while the converse inclusion is obvious.

13



We shall also impose some regularity assumptions on g:

H,: (i) g is lower semi-continuous on [0,7] x O* and on {T'} x O*.

(ii) 3C,>0andye KNRL s.t. |g(-,2)| <Cy(1427)Vz € O,

(iii) g is upper semi-continuous on [0,7] x (0,00)? and has linear growth.

Under Hy and (i)-(ii) of H,, one can already derive the following qualitative properties

of v.

Proposition 3.1 Assume that Hy and (i)-(i) of Hy, hold. Then, for all (t,x) € D,

we have
v(t,z) > 0, (3.9)

and there is a constant C' > 0, independent of (t,x), such that

lo(t,z)] <C(1+27) . (3.10)
Moreover, for all (t,z) € D,
v(t,x) = sup e Py, (L, ze’) . (3.11)
peK (2,0)

The proof will be provided in Section 5.

In order to derive the appropriate boundary condition on 9, D*, we shall also need some

regularity on the domain O.

Hp : There exists a map d : (0,00)% — R such that
(i) {z € (0,00)% : d(z) >0} = O*.
(ii) {z € (0,00)¢ : d(x) =0} = 00* .
(iii)V z € 00*, ,3r > 0 s.t. d € C*(B(z,r)) .

This essentially amongs to say that O is C?, see [8].

Using Hi, H; and Hp, we can already characterize v not only as a discontinuous

solution of (3.8) but also as its smallest supersolution.

14



Theorem 3.1 Assume that Hi, H, and Ho hold. Then,
(i) v is a discontinuous viscosity solution of (3.8),
(il) v is lower-continuous on D,

(i) v, is the smallest supersolution of (3.8) in the class of locally bounded functions
satisfying (3.10).

Finally, under the additional assumptions

H': (i) Either O is bounded or 3 9 > 1s.t. ¢y € KN (0,00)%,
(i) int(K) # 0 and either 0 € int(K) or O NIRL = 0,
(iii) Vo €00* 3 p € K, s.t. Dd(x) diaglz]p > 0,

we will be able in Section 7 to provide a comparison theorem for (3.8). It will imply
our last result which characterizes v as the unique solution of (3.8) in a suitable class

of functions.

Theorem 3.2 Let the conditions of Theorem 3.1 hold and assume further that H' is
satisfied. Then,

(i) v, =v* on D*,

(il) v is continuous on D,

(i) v s the unique discontinuous viscosity solution of (3.8) in the class of locally

bounded function satisfying (3.10).

Remark 3.4 Recall the examples of barrier options of Section 2.

1. If we hedge the up-and-out call of the Example 2.1 with shortsales constaints, i.e.

K = [—a,+00), with a > 0, then it is easy to verify that all of the conditions Hy, H,

Hy and H’ hold true.

2. These conditions are also satisfied when we henge the down-and-out basket put of

the Example 2.2 with bounded portfolio, i.e K = H[—oz_i, o], o, ai > 0 for i = 1,2.
i=1

Remark 3.5 To conclude this section, let us comment the assumption H'. As already

mentioned, Theorem 3.2 is based on a comparison result for (3.8) stated in Theorem 7.1

below. A first difficulty in proving this theorem comes from the growth condition (3.10)

which is non-standard. In the case where O is not bounded, the second assumption

in (i) is used to construct a suitable penalty function which allows us to reduce to a
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bounded domain. The second difficulty comes from the term Hyp appearing in Bep.
It is handled by using the first assertion of (i) under which we can construct a strict
super-solution of Hy = 0. A third difficulty is due to the fact that the equation in
written only on O N (0,00)% In the case where O NIR%L + ), we need to introduce an
other penalty function which permits to reduce the analysis to (0, 00)?. We then appeal
to the second assertion of (ii). Finally, a major difficulty comes from the boundary
condition on d, D* which is written in a weak sense. It is treated by using the condition
(iii) which allows to “avoid” this boundary. We refer to step 4. of the proof of Theorem

7.1 below for a more detailed discussion of these assumptions (i) and (ii).

4 A numerical application

In this section, we study a numerical scheme for the resolution of Byy = 0 in the
simple example considered in [11] : superhedging of a knock-out call with a short-sale
constraint. The general case will be discussed in the companion paper [2].

The model corresponds to our general framework with d = 1, o(t,z) = 0 > 0, a fixed
constant, O = (—o0, B), K = [—«a,00) and g(t,z) = [ — k] 1y=1, z<py, With a > 0,
B > k> 0. In this case K = (—00,0], the function j(t,z) is equal to

g(t,xr) = e @[z~ _ K71, with 6(z) = [~ In(B/z)]",

and all the assumptions of Theorem 3.2 are satisfied.
In order to solve numerically the equation Byp = 0, we propose the following dis-
cretization. We fix a regular grid m, = {t; := (ir,)) AT, 0 < i < I,} of [0,7] and
= = {x; := (th) A B, 0 < i < N} of [0,B]. Here, h > 0 is a fixed parameter,
N, :=inf{k € N : k> B/h} and I;, ;= inf{k € N : k > T/r,} with r, = h?. The
approximation v" of v is defined as follows.
1. For i = I, we use the boundary condition at ¢ = T to set : v"(t1,,z;) = §(t1,,2;),
j=0,...,Ny.
2. Forv=1,—1,...,0, we use the following procedure :
2.a. We initialize : v"(¢;,0) = 0.
2.b. Then, we solve on 7 =1,..., N, the system

() = { max {A"(v",i,7) ; B"(v",i,5)} ifj# Ny

’ max {0 ; B" (v, i,j)} otherwise
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with

(Th)fll}h(tZ#l, l‘j) + (2h2)*102x§(vh(ti, .Z’j+1) + Uh(ti, .23];1))

Ar(h i) =
(U ,17]) (Th>71 _,_(hg),lo_gx?

x; h= ol (t, 25 1)
Bt i) = i ir g
(U 7/L j) a+.’I/’] h_1 Y

The initialization of step 2.a. is justified by the continuity of v at 0 which is easily
checked in this simple model by using the dual formulation of Theorem 2.1. The system

given in 2.b. follows from the approximation of H = Hy; and L by

’Uh<ti, I'J) — ’Uh(ti, 117]'_1)

Hh(ti’xﬁvh(tiax]')?Uh) = Oévh(tiyxj)+$j A ,
VPt ) — v (t, x5
‘Ch(tivxj7vh(tiaxj)7vh) = ( +1 ]lh ( ])
o Lt @) + 0"t i) = 200 (k)
2 J 12 .

Observing that v" is non-negative and uniformly bounded from above by B, the con-
vergence of the scheme easily follows from Remark 3.2, Theorem 3.2, Remark 7.1 below
and [1].

Figure 1:
10 - 12% .
Estimated values N Relative error
1%
Q
10%2
8 9% 12
7 < 8% i
\\223'1 7% 15 © a=0.1
6 \ =10 6% 12 oot
________ A a=10
5 \\ Payoff R 59 %g
. Rt - 4%
/’ 3%—=&
3 A rl %
e 5
2 - 1%
Z
1 / 0%]
/ 1%
0 2%
5 75 10 12,5 15 17,5 20 5 75 10 12,5 15 17,5 20

In Figure 1, we plot the estimation of v obtained with this scheme for o = 0.3, k = 10,
B =20, T =1 and for « € {0.1,1,10}. The relative error is computed by using
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the closed form solution obtained in [11]. We took N, = 200. We observe that the
estimation is very sharp with a relative error less than 1% in absolute value, except for

small values of X for which v is almost equal to 0.

5 Growth and monotonicity properties

In this section, we provide the proof of Proposition 3.1.

Proof of (3.9)-(3.10). The lower bound of (3.9) is an immediate consequence of the
assumption g > 0 and the dual formulation (2.11). We now prove (3.10). Let 7 € K be
defined by m, = 7 for all ¢ < T. Since o is bounded, see (2.2), one easily checks from
the dynamics of the processes X, , and Y/, ; that

d
1+ H(ng(u))w < C (1 + H ) Vi (u)  forall wel0,T], P—as.,
i=1

where C' > 0 depends only on |7| and the bound on |o|. Then, after possibly changing
the value of the constant C', H,-(ii) implies

gu, Xio(u) < C(1+27)Y7 (u) forall uel0,T], P—as.,

and since yY/, | = Y[, for y > 0, we deduce from the last inequality that v(t,r) <
C(1+27). O

Proof of (3.11). Since 0 € K (z,O), we only have to show that

vo(t,x) > sup e o, (t,ze’) .
peK (z,0)

1. We first consider the case where (t,2) € D. Since by lower-semicontinuity of v, and

(ii) of Hf(

sup e o, (t,ze?) =  sup e 0Py, (¢, zer) |
pEK (2,0) pEK (2,0)

it suffices to show that

v.(t,x) > sup e 0Py, (t,ze) . (5.1)
pEK (x,0)
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Fix p € K(z,0) and consider the sequence of processes 9" in K defined on [t,T] by
V" = nply,,) with ¢, ==t +n~' for n large enough so that t, < T. By Proposition 2.1

U(t, x) 2 Eﬁn [e—n5(p)(n—lA(Tzvz_t)) (U (tn7 Xt,:r (tn)) lt”<Tt . -+ g (Tt,za Xt,z(Tt,m)) ]-thTt z>:| .
(5.2)
Let X™ be the solution on [t,T] of
X"(s) = z+ / diag [ X" (r)] Uy dr + / diag [ X" (r)] o(r, X" (r))dW,
¢

t

so that X" (s) = B2H™ with
d S

(HY = & (Z / o (r, X"(r))dW,?> and 7 = pel R
j=1"t

where € denotes the Doleans-Dade exponential. By Girsanov’s theorem, (5.2) can be

rewritten as
o(t, @) 2 B [ 00N (0 (1, X7 (1) Liyar, + 9 (7 X (1) Liyzn) | (5:3)
where
T, = inf{se[t,T] : X"(s)¢ O} AT .

Since ¢ is bounded, see (2.2), H} ,, — (1,...,1) P — a.s., after possibly passing to a
subsequence. Also observe that

mn

= geplnmtAL

By H; and the assumption p € K(z,0), it follows that, P — a.s., X" ,, € O and

therefore t,, < 7, for large values of n. In particular,
(X" (tn), 1y, <in) — (2€”,1) P — a.s.

Thus, passing to the limit in (5.3) and applying Fatou’s Lemma shows the required
result, recall (3.9).

2. We now consider the case where (t,2) € 9D. Let (t,,x,), be a sequence in D that
converges to (¢, ) such that v(t,,z,) — v.(t,z). Fix p € K(z,0). By Hg, there is
a sequence (py,), with values in K (z,,®) such that p, — p. Using 1., we deduce that
V(tp, 1) > e3Py, (t,, x,ePr). Passing to the limit shows that v, (¢, ) > e Py, (¢, ze?)

by lower-semicontinuity of wv,. O
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Remark 5.1 Fix (t,z) € D* and assume that (Ao, po) € Ry x K are such that ze*om €
O. By (i) Hg, the map A € [0, Ao] = e 20y, (¢, ze*0) is well defined and it follows

from (3.11) that it is non-increasing.

6 The viscosity solution property

In this section, we provide the proof of Theorem 3.1. We start with the supersolution
and subsolution properties. Then, we use an approximation argument combined with

a comparison theorem to prove that v, is the smallest supersolution of (3.8).

6.1 Supersolution property

In this section, we show that v, is a supersolution of (3.8) on D*. This is a consequence
of Proposition 6.1, 6.2, 6.3 and 6.4 below.

Proposition 6.1 Assume that Hz-H, hold. Let (ty, o) € D* and ¢ € C*(D*) be such

that (to, zo) is a local minimum on D* of v, — ¢ satisfying (v. — ©)(to, ro) = 0. Then,
Hap(to, o) > 0.
Proof. By (3.11), for all p € K(z,0) and A > 0 small enough, we must have
O(to, z0) = vu(to, zg) > e P, (tg, 20e™) > e P p(ty, 1oe™) .
Thus, dividing by A and sending A to 0 leads to the required result. O

Remark 6.1 Assume that Hep holds and that for all (¢, zo) € D* and ¢ as in Propo-

sition 6.1, we have
H@(to,l’o) Z 0.

Let (tg, xo) and ¢ be as in Proposition 6.1 with 2o € 0O*. Recall from Hp the definition
of the function d and observe that (¢y, ) is also a local minimum of (v, — ¢)(t,z) +

e7'd(z) on D* for all € > 0. Thus, if the above assertion is true, ¢ — e~'d must satisfy

3(p)vs(to, wo) — pdiag o] (Dp(to, 7o) — ' Dd(x)) > 0 forall pe K, .
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Now observe that for p € K \ K 1(zg, O), there is a sequence of positive parameters
A, — 0 such that d(zge?) < 0 = d(x¢) for all n, recall (3.7). This implies that
p'diag [xo] Dd(x¢) < 0. Hence, sending ¢ — 0 in the above inequality leads to a contra-
diction if K7\ K;(zo, O) # 0.

Proposition 6.2 Let (tg,70) € D and ¢ € C*(D*) be such that (ty, 7o) is a local
minimum on D* of v, — ¢ satisfying (v. — ©)(te, xo) = 0. Then,

—Lp(to,z9) > 0. (6.1)

Proof. The proof is standard. Let V' be a bounded open neighborhood of (g, o)
such that (tg, 7o) is a minimum on V N D* of v, — ¢ and let (t,,x,), be a sequence in
V' N D such that (t,,x,) — (to, o) and v(t,, x,) — v.(to, x¢). For ease of notations we
write (7, X™) = (T4, 20 Xtn.a ). Given a sequence (n,), of positive numbers such that

t, +n, < T for all n, we set
0, = inf{selt,,T] : (s,X"(s)) ¢ VAD}A(t,+n,) .

Since 0 € K, (2.13), the assumption g > 0, see (2.7), and the inequality v, > ¢ on V
imply that

v(ty,x,) > E [cp (Hn,X;‘n) 19n<7n} )

Set €, := v(tn, Tn) — @(tn, T,) and observe that €, converges to 0 as n goes to infinity.

Moreover, it follows from It6’s Lemma that

€ > E{ /:nﬁgo(s,X”(s))ds 19n<m} . (6.2)

Using standard estimates, we then observe that

On
liminf E [nnl Lp(s, X"(s))ds 19n<7n] > Lp(to, xo) ,
¢

n—oo
n

whenever 7, — 0. Thus, choosing (7,,), such that €,/n, — 0 and using (6.2) leads to
the required result. O

Proposition 6.3 Assume that Hz-Hy holds. Then, v, > g on 0,D*.
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Proof. 1. We first prove that for all (o, 2) € 9,D* and ¢ € C*(D*) such that

0 = (vi—¢)(to,z0) = min (strict)(v. — @),
D*

we have

max {v.(to, xo) — g(to, o) ; — Lo(to,z0)} > 0. (6.3)
Assume to the contrary that

max {¢(to, zo) — g(to, x0) ; — Lp(to,x0)} < —2¢ (6.4)
for some € > 0. Let (t,,,), be a sequence in D converging to (to, zo) such that

V(ty, Tn) — vi(to, o) -
By (2.2) and Hy, there is an open ball B centered on (%o, zo) such that
—Lp<0 onBND* and ¢—¢g<—c onBNo,D*. (6.5)

Obviously, we can assume that (t,,2,) € B. Set (7,, X™) = (T4, 2, Xt,, 2, ) and let 6, be
the first exit time of (X"(s))s>s, from B. Observing that £ := mingpnp(ve — ¢) > 0,
using It6’s Lemma and (6.5) one obtains

O(tn, ) < Elo(mh AbOp, X" (1" AN O™))]
< (N +E[g (T, X"(17))) <o, + v (00, X(07)) 15,50, ] -

Since (p(tn, Zn) — v(tn, 2,)) — 0 and 0 € K, this leads to a contradiction to (2.13) for

n large enough.

2. We now prove that v,(to, o) > g(to,xo) for all (tg,x¢) € 9,D*. To see this, we

assume to the contrary that

vs(to, o) < g(to, o) (6.6)

for some (to, ) € 9,D* and work toward a contradiction to (6.3). Let ¢ € C?(D*) be
such that

0 = (v —)(to,x0) = n%)i*n (strict)(ve — @) .
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For € > 0, define ¢° on D* by

#(ta) = it~ (o) - L)

€

where d is defined in Hp. Since d(x) — d(%)z > 0 when 0 < d(z) < ¢, it follows that
(to, o) is a strict local minimum of (v, — ¢°) for each ¢ > 0. By (6.3) and (6.6), we

must therefore have
1
—Lp(to, xo) + T [alto, 1) D?d(z0)] — gTr [a(to, xo)Dd(xo)Dd(x0)'] > 0,

which leads to a contradiction to (2.2) when & tends to 0.
3. In view of 2. and the definition of ¢ in (3.5), (3.11) concludes the proof. O

Proposition 6.4 Assume that Hz-H, holds. Then, v.(T,-) > §(T,-) on O*.

Proof. Fix zy € O* and let (t,,2,), be a sequence in D converging to (T, z) such
that v(t,, z,) — v (T, z0). Set (Tn, X™) = (Tt wn» Xtn.wn)- Since o is bounded, see (i) of
(2.2), one easily checks that (7, X"(7,)) — (T, z9) P — a.s., after possibly passing to a
subsequence. In view of Hy, it follows that

lim inf (g(7, X" (7)) 17, <r + 9(T, X"(T))17,=1) = g(T,x0)-

n—oo

Since g > 0 by assumption and 0 € K, it follows from Fatou’s Lemma and (2.11) that
V(T 9) > g(T, x). The proof is concluded by using (3.11) and recalling the definition
of g(T,-) in (3.3). O

6.2 Subsolution property

In view of Proposition 6.1, 6.2, 6.3 and 6.4, we already know that v, is a supersolution
of By = 0 on D*. To conclude the proof of (i) of Theorem 3.1, it remains to show that
v* is a subsolution of By = 0 on D*. This is a consequence of Proposition 6.5, 6.6 and
6.7 below.

Proposition 6.5 Let (tg,79) € D and ¢ € C?(D*) be such that (ty, 7o) is a local

mazimum on D* of v* — ¢ satisfying (v* — ©)(to,v0) = 0. Then,

min {—Lp(to, z0) ; He(to,xo)} < 0. (6.7)
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Proof. The proof is standard. We assume that

G(to, z0) = in}f{{—ﬁg@(to,mg) +d(p)p(to, xo) — p'diag [xo] Do(to, z0)} >0, (6.8)
pE

and work towards a contradiction. If (6.8) holds, then it follows from (i) of (2.2) that

there exists some o > 0 such that
G(t,x) > 0 forall (t,z) € By := B(tg,a) x B(xg,a) C D . (6.9)

Let (t,,Zn)n>0 be a sequence in By such that (¢,,x,) — (to,x0) and v(t,,x,) —
v*(to, o). Observe that (5, := ¢(tn, xn) — v(tn, z,) — 0. Set X™ = X;, ., and define
the stopping times

0, = TAinf{s€[tn,T] : (5,X"(s)) & Bo} .

Let 9,8 = [to, to + a] x dB(xg, @) U {tg+ a} x B(xy, ) denote the parabolic boundary
of By and observe that

0> —C = sup (@ —9)(tx).
(t,z)eapB()

Then, we deduce from It6’s Lemma applied on ¢, (6.9), Girsanov’s Theorem, see the

discussion in Section 2.2, and the above assertion that

V(tn, ) + By > ¢+ supE’ [5;@(0”,)(”(9”))} .
9ek

Since by construction 6,, < 7, ., and (3, — 0, we obtain a contradiction to (2.13). O

Proposition 6.6 Assume that Ho-H, holds. Let (ty,7) € 0,D* and p € C*(D*) be
such that (to,xq) is a local mazimum on D* of v, — ¢ satisfying (v. — ©)(to,7¢) = 0.
Then,

min {v* (¢, z0) — §(to, z0) ; He(to,z0)} < 0.

Proof. 1. By using similar arguments as in the proof of Proposition 6.5, we first obtain
that

min {v*(to, z0) — g(to, z0) ; — Lo(to, x0) ; He(te,xo)} < 0. (6.10)
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2. We now proceed by contradiction as in 2. of the proof of Proposition 6.3 to show
that

min {v*(to, z0) — g(to, z0) ; He(to,x0)} < 0.

As usual, we can assume that (g, ) is a strict local maximum of v* —¢ on D*. Assume

that for some n > 0,
min {U*(tm%) — g(to, o) ; inff d(p)v*(to, wo) — p'diag [xo] Dep(to, 900)} > n.
pEL]
Let A > 0 be a fixed parameter to be chosen later and for € > 0 set on D*

& (x)

°(t,x) = @(t,x)+ Md(z) — .

where d is defined in Hp. For x € O* such that d(r) < e\ we have \d(x) — @ > 0.

It follows that (¢, zo) is a local maximum of v* — ¢°. Moreover,

min {v*(tg,xo) — g(to, zo) ; infg d(p)v*(to, xo) — p'diag [z D¢E(t0,xo)} > 0,
pPEK]

for A > 0 small enough since d(xg) = 0 and therefore D¢®(tg,xo) = Dp(to, o) +
ADd(zo) — 2Dd(xo)d(xo)/e = Dp(to, o) + ADd(xg). Thus, it follows from 1. that we

must have
1
—L(p(to, xo) + Ad(x0)) + ETT [a(to, 20) Dd(x0) Dd(x0)'] < 0.
Sending ¢ — 0 leads to a contradiction to (i) of (2.2). O

Proposition 6.7 Assume that H, holds. Then, v*(T,-) < §(T,-) on O*.

Proof. 1. Let (t,,z,), be a sequence in D which converges to (T, xy) and such that
V(tn, ) — v (T, z0). Set (7, X™) = (T4, .20+ Xt,.2,)- By the dual formulation (2.11),
there is some 9" € K such that

v(ty,x,) < E” [e_ft;n 5(19?)“9(7-”,)("(7'”))} +nt.
Since K is a convex cone, § is sublinear and g > 0, it follows that

e I A0y, XN () < e U g(r, X (7)) < sup g (1 XM (e )

tn <t<T
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by definition of ¢ in (3.3)-(3.5). In view of the above inequalities and the definition of

(tn, ), it remains to show that

limsupEY" | sup g (¢, Z2"(t))| < (T, x0), (6.11)

n—o0 ty <t<T
where Zm := X"e™ i U39 solves on [t,, T]
az"(t) = diag[Z"(t)]o(t, X"(t))dW , Z"(t,) = =y, ,

and W™ is a standard Brownian motion under QV", recall the discussion of Section 2.2.
Using the boundedness assumption on o, see (2.2), we deduce from standard arguments
that there is a constant C' > 0 independent of n such that

E?" [ sup |Z"(t) — moq < C (| — @0l + (T — tn)l/z) :

t, <t<T

We shall prove in 2. that, for each £ > 0, there is a Lipschitz function W, such that
|G(T, x0) — Y (T,x0)| < e and V. > g. It follows that, for each &, we can find some
finite K. > 0 such that

lim sup E?" [ sup ¢ (t, Z"(t))} < limsup E”" [ sup V. (t,Z"(t))

n—00 tn <t<T n—00 tn <t<T

< W(T, o) + limsup K. (|2, — x| + (T — t,)"/?)

n—oo

= \IIS(T, IL'()) .

By definition of W, this implies that

lim sup BV [ sup g (¢, Z"(t))} < §(T,xp) + ¢,

n—00 tn <t<T

and the proof of (6.11) is concluded by sending € to 0.

2. We conclude this proof by constructing the sequence of functions (V.).s¢. For
(t,xz) € [0,T] x (0,00)¢, we define

Gulta) = s [is.2) k(s —fl+lz—ah] k1.
(s,2)€[0,T] % (0,00)¢

Clearly, G, > g and G}, is k-Lipschitz. Moreover, taking k large enough, it follows

from the linear growth and upper-semicontinuity assumptions on g, see Hy, that, for
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all (t,z) € [0,7] x (0,00)%, the maximum is attained in the above definition by some

(tr(t, ), zx(t, x)). In particular,
Gilt,r) = G(talt,2), mu(t,2) — K (|talt 2) — 1] + |t 2) —2l) > §(t,)

Using the linear growth of g again, we deduce that (¢x(¢,x), zx(t,x)) — (t,z) as k — oo
after possibly passing to a subsequence. Since ¢ is upper-semicontinuous, this also

implies that

Q(T7$O) Z hmsupg<tk<T7xO)v'rk(Tu'%‘O)) Z limsquk(T7$0> Z .g(T?xU)

k—o00 k—o00

We can then choose k. such that |Gy (T, x0) — §(T, z0)| < € and set V. := Gy, . O

6.3 Characterization of v, as the smallest supersolution

In this section, we prove that v = v, on D and that v, is the smallest supersolution of
(3.8).

To this end, we introduce a sequence of approximating control problems as follows. For
all n > 1, we define f(n as the set of elements p € K such that |p| < 7 and I@n as the
set of elements ¥ € K that take values in f(n. We then define on D*

wy(t,x) = sup E’ [E2%9 (7., Xi2(7..))] - (6.12)
9ek,

It is clear that w, is a non-decreasing sequence and it follows directly from Theorem

2.1 and the definition of K that

lim T w,(t,z) = o(t,z) forall (t,z) € D*. (6.13)

1—00

For nn > 1, let us introduce the operator G, defined for smooth functions by

Gnp(t,x) == min {—=Lo(t,z) + d(p)p(t, x) — p'diag [z] Dp(t,z)} .

peKy,

Proposition 6.8 Let the conditions Hy-He hold. Then, for alln > 1, wy is a viscosity

subsolution on D of
Gnp(to,xo) = 0. (6.14)
Moreover, w; < g on 0, D* U 0pD*.
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Proof. The proof is standard. Set ¢ € C?(D) and let (tg,z¢) be a strict global
maximizer of w} — ¢ on D* such that (w; — ¢)(to, z) = 0.

1. If (tg,x0) € D then the result follows from the same arguments as in the proof of
Proposition 6.5.

2. Arguing as in Proposition 6.5 again, we deduce that

min {w:;(to,l'o) — g(to, xo) , gngp(to,l’o)} < 0,

if (to, ) € 0,D*. The required result is then obtained by arguing as in 2. of the proof
of Proposition 6.6.
3. Since w;, < v*, the inequality w; (7)) < §(T, ) follows from Proposition 6.7. O

Proposition 6.9 Assume that Hy hold. Let u (resp. w) be a viscosity subsolution
(resp. supersolution) of (6.14) on D satisfying the growth condition (3.10). If u < w
on 0,D* U 0rD*, then u < w on D*.

Proof. 1. Given k > 0, we set u(t, ) = e"u(t,z) and w(t,x) = e™w(t, z) so that @

and v are respectively sub- and supersolutions of

Gop(t,x) = min {(s + 3(p))e(t,@) = Lo(t,2)} = 0,

where for p € K
LPp(t,x) = Lo(t,x)+ p'diag[z] De(t, x) .
Recall the definition of 4 in H, and set
y=2yeRL | 3=(2,...,2) € (0,00)". (6.15)
Define on D*
Bt,x) = T (142" +27)

Observing that

%ﬁ(t,x) = —7f4(t,x) , diag[z] DA(t,z) = ™ TP (x”v + x&ﬁ)

Tr [a(t, ) D*B(t, x)] = T <x7Tr (o0’ (t,2) M] + 27 Tx [aa'(t, x)MD
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with M = [v'(7" — 1)1=; + 777 1is)i; and M defined similarly, it follows from (i) of

(2.2) and the compactness of K, that we can find 7 > 0 such that
G,8(t,x) > 0 on D*.

2. We now argue by contradiction and assume that

sup (@ —w) > 0.

D*
2.1. In view of the growth condition on @, w and (6.15), we then have

0 < 2m:=sup (4 —wW—2af) < oo
D*

for a > 0 small enough. For x € D*, set

(6.16)

(6.17)

(6.18)

Combining the growth condition on 4, w with (6.15) and the definition of f implies

that, for each € > 0, the upper-semicontinuous function

O :=u—w—2(af +ef)

admits a maximum (¢.,z.) on D*. By (6.17), we can choose ¢ small enough so that

Q(t.,xz.) > m>0.

(6.19)

Let (t§, ) be a sequence in D such that ®°(¢j, x5) — 2m. By (6.17) and definition of

(te,x:), we have

lim_)iglf (2m —2ef(z.)) > liHLiglf (@ —w—2(af+cf))(t, xe)
>l (i~ @ — 208 + £f))(t5.25)

= 2m.

This shows that

d
limsup ef(z.) = limsup 52(1‘2)*2 = 0,
i=1

e—0 e—0
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which, by (i) of (2.2) and the compactness of K, implies

limsup sup & (|f(zc)| + |[L7f(ze)]) = 0. (6.20)

e—0 peKn
2.2. For (t,x) € [0,T] x R?, set G°(t,x) = |t — t.|* + |z — z|*. Given n > 0, it follows
from similar arguments as above that the map
- _ n
(I)fz(tv z, y) = U(t, ZL’) - w(ta y) - §|I' - y‘Q -« (ﬁ(tv $) + ﬁ(ta y))
— e(f(@)+fly) + G (t,2)) ,

also admits a maximum point (£, 25,y5) € D* which necessarily satisfies
O (tr, s, yr) > O (e, xe, ) = P (t,xz.) >m > 0. (6.21)

Using the growth assumption on w and w, (6.15) and the definition of f again, one
easily checks that this implies that the sequence (¢, x5, y% ), is bounded and therefore
converges, after possibly passing to a subsequence. Moreover, (6.21) implies that n|z —
ye|?+ef(x%) is bounded. Thus, there is (.,Z.) € D* such that (t5, 25, 4%) — (t., Z., Z.)
and, by definition of (¢, x.) and (6.21), we must have

O°(te,x.) > (¢, T.)

> limsup (@4(%,2.) — 3la5 — il — G (85, w5))
> (L., x.) .

This shows that, up to a subsequence,

(t;,x5) — (te,xe) € D*, & St as yn) — D (t,x.) and nlx — ny\Q —0 (6.22)

as n — 00.
3. Since the upper-semicontinuous function v — w is non-positive on 9,D* U OrD*,
it follows from (6.19) that (f.,z.) € D and that we may assume that (¢5,25,95) €
[0, T) x O? for each n > 0. Using Ishii’s Lemma and following standard arguments, see
Theorem 8.3 and the discussion after Theorem 3.2 in [4], we deduce from the viscosity
property of @ and w that for some p;, in the compact set f(n
NE ~ € € 8 1 15 € € € €
+ () diag [z}, =yl g, + {L7(aB +e[f + Gt n) ﬁ”"(aﬁ + €f)( vn) }
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where

G, = n(, = yy) (6.23)

and A°, B are two symmetric matrices satisfying

—3n<Id O)§<Ai ’ >§3n< L _Id>. (6.24)
0 I 0 —B° I I
Using (6.16), (6.21), (6.22), (6.23), (6.24) and (i) of (2.2), we then deduce that
0 < —m(rs+0(p,) +C nlas, —yal* — el +6(P)) {(f + G5, 25) + F(v7)}
+ e (L (f + GOt wn) + L7 f () }

for some C' > 0 independent of n. Sending n to oo, it follows from the compactness of
K, and (6.22) that

0 < —m(r+0(p%) + 26 {L" f(xe) = (5 +0(59)) f () }

for some p° € f(n. Sending ¢ to 0 and using (6.20) finally leads to a contradiction since
k,m >0 and § > 0 by (2.9). O

We now conclude the proof of Theorem 3.1.

Proof of (ii) and (iii) of Theorem 3.1. Observe that a supersolution u of Byp =0
on D* is also a supersolution of (6.14) on D, and, by Proposition 6.8, satisfies u > wy,
on 0, D* U 0rD* for all n > 1. In view of Proposition 6.9 and (6.13), it follows that
w > lim, o T w, = v on D whenever u satisfies (3.10). In particular, since v, is a
supersolution of (3.8) satisfying (3.10), see Proposition 3.1, we have v, > v so that

v, =v <wuon D and v, < u, on D*. O

7 A uniqueness result

We now proceed with the proof of Theorem 3.2. It is an immediate consequence of

Proposition 3.1, Theorem 3.1 and the following comparison result.

Theorem 7.1 Assume that the conditions of Theorem 3.2 hold. Let u be an upper-
semicontinuous viscosity subsolution of By = 0 on D*. Assume furthermore that u
satisfies the growth condition (3.10). Then, u < v, on D*.
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Remark 7.1 1. It will be clear from the proof that the above Theorem can be stated
as follows. Let u and w be respectively sub- and supersolution of By = 0 and Bgp = 0
on D U 0, D* satisfying the growth condition (3.10). Assume further that w satisfies

C:V (t,z) € DUJD* and p € Ki(x,0), 3 Xy > 0s.t. A€ [0, \] — w(t, ze*)e 290

is non-increasing.

Then, u < w on pD* implies u < w on D*.

2. One can actually show that any supersolution of Hqyp = 0 satisfies the condition C.
Since it is not useful for our main result, we do not provide the proof which is rather
long.

3. Combining the above assertions provides a general comparison result for super- and

subsolutions of, respectively, Bqp = 0 and By =0 on D U 0, D*.
In order to prove Theorem 7.1, we need the following intermediate Lemma.
Lemma 7.1 Assume that Hp holds. Fix xy € 00*. If p € K, satisfies
Do) diag o] p > 0,

then there exists some positive parameters ro and \g such that ze*? € O for all x €
B(z0,70) N O and X\ € (0, o).
Proof. Recall from Hp that the function d is C? on a neighbourhood of zy. Thus,
Dd(x) diag [z0] p > 0 implies that for some &y, 7 > 0

Dd(z) diag[z] p > &y for all T,z € B(wo, 7o) - (7.1)
Given that ze® — z = Mdiag[z] p + o()\), we can fix some )y > 0 such that, for all
x € B(xo,70/2) and A € (0, Ao)

Ao /2
1+ max |Dd(z)|

x€B(z0,70)

Let « be in B(zg,79/2) N O, so that d(z) > 0. Since d is C*, for each A € (0, \g) there

exists T € [z, ze*?] C B(xg,79) such that

[z, 2¢™] C B(wo,79) and |ze — 2 — Mdiag[z] p| < (7.2)

d(ze*?) = d(z)+ Dd(z) (ze*’ — )
= d(z)+ ADd(z)'diag [z] p + Dd(z)' [ze*? — x — Adiag [z] p]

0
> d(x)+A§0 > 0,
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where the last inequality follows from (7.1) and (7.2). This shows that ze*? € O. O

Proof of Theorem 7.1: In order to avoid too many complications, we make the proof

under the assumption

H": (i) Fo>1st oy KN(0,00)%
(i) 0 € int(K),
(iii) V2 €00* I p € K, s.t. Dd(z) diaglz]p > 0,

in place of H'. We shall explain in the last step how to adapt this proof when O is
bounded but (i) of H” does not hold, or 0 ¢ int(K) but O NIRE = () and int(K) # 0.

1. Given some positive parameter x, we introduce the functions u(t,z) := e"u(t, x),
0(t,x) == e, (t,x) and g(t,x) := e"g(t,x). One easily checks that the function @
(resp. ©) is a viscosity subsolution (resp. supersolution) of By = 0 (resp. Bap = 0),

where for a smooth function ¢

min {/jcp, ng} on D

By = min{y — g, He} on 0,D*
©—g on OrD*
~ By on DUOIrD*
Bap = . ~
min{p -5, Hap} on 0.D"
and
Lo = kp—Lp.
Let 0 € R be as in H”, i.e.
yi=0y€ KN(0,00)" and o>1. (7.3)

Since 0 € int(K) by H”, it follows from (2.9) and Remark 2.4 that the map defined by
B(t,z) = e (14 27) on D* satisfies

H (B(t,x),diag [x] DA(t,x)) > cx >0 for all (t,z) € D* . (7.4)

Moreover, by the same computations as in the proof of Proposition 6.9, one easily checks

that we can choose 7 large enough so that
LB >0 onD*. (7.5)
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2. We argue by contradiction. We assume that

sup (u —v,) > 0
D*

and work towards a contradiction.

2.1. In this step, we follow the same construction as in the proof of Proposition 6.9.

By the growth condition on @, ¢ and (7.3), we deduce that
0 < 2m:=sup (a—0—2af) < oo (7.6)
D:«
for v > 0 small enough. Fix ¢ > 0 and let f be defined as in (6.18). Arguing as in the
proof of Proposition 6.9, we obtain that

O :=u—v—2(af+ef)
admits a maximum (¢, 2.) on D*, which, for ¢ > 0 small enough, satisfies
O(t.,xz.) > m>0. (7.7)

Moreover, using the same arguments as in 2.1 of the proof of Proposition 6.9, we obtain
that

limsup sup e (|f(zc)| + |[diag [zc] Df(zc)| + [Lf(2)]) = 0. (7.8)

e—0 pEK,

Finally, since 3, f > 0 and v,(T,-) > w(T,-), (7.7) implies that t. < T, i.e.
(t.,x.) €[0,T) x O*. (7.9)
2.2. In the following, we fix p. € K such that

p- =0 if z. €O

. . (7.10)
Dd(x.) diag [zc] pe >0 if z.€ 00",
see (iii) of H”. By Lemma 7.1 and (3.11), we can fix r., \. > 0, such that
ze*” € O and e Mot xee) < Bt x) (7.11)

forallt € (t. —ro,t. +7r.)N[0,T), v € B. == B(x.,7.) N O and X € (0, \,) .
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For n > 1 and ¢ € (0,1), we then define the function ¥, . on [0,T] x (O*)* by

Sc(tmy) = Otz y) — e(F(@) + f() = C(lw = el + [t = tef?) = nlaenr — y[?,

where

Ot z,y) = a(t,z) —d(t,y) — a(Bt,z)+ Bt y)) .
It follows from (7.3) and the growth condition (3.10) satisfied by ¥ and @ that W7 -
attains its maximum at some (5, 25, y5) € [0, 7] x (O*)?. The inequality W, (5, x5, yn)
> ‘I’i,g(tsa xs,%e%pg) implies that

O(t525.05) 2 Olfeswe,zeet”) — e (f(x:) + [reei))
e So. € e c c - .

+ nPlafents —ynP (o, — 2Pt — ) e (f(a) + f(93)

which combined with the growth condition (3.10) and (7.3) shows that n?|z¢ cape _

ye|* + f(z%) is bounded in n so that, up to a subsequence,

(i) xie%pg, 28,y —— 25 € OF and t& —— £ € [0,7T] .

n—oo n—oo

Let n be large enough so that % < Xe. Recall from (7.11) that this implies that
o(te, er%pE) < o(te, xa)e%‘s(pg), which combined with the previous inequality yields
Ot 25,y5) > dlte, o) — B(te, 2)en) — o (ﬁ(ta,xa) +ﬁ(ta,x5e%ps))
— ¢ (f(xe) + f(eim))

+ onPlagents — g+ ¢ (ja — a1t — ) e (F(S) + F(5)) -

Sending n — oo and using the maximum property of (¢, z.), we get

0 > (5, 7°) — D°(¢., x.)
> limsup( 2|2 ene — vl + ¢ (Jag — x4+ |8, — ¢ )) .

n—oo

Recalling (7.7) and (7.9), this shows that
(i)  n?zs enbe — volP + ¢ (2 — x4+ |t — t)) — 0,
(iii) alty,z;) —o(t,y;) —— (@ — ) (te,xe) > m~+ 2a6(te, ) + 2 f(x.) ,

(iv) (t5,25) €[0,T) x O* for n large enough.

n? n
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3. From Theorem 8.3 in [4], we deduce that, for each n > 0, there are real coefficients
b€

in» U5, and symmetric matrices A" and V" such that

(b5 P, X27) € Ppalty,a;)  and  (=b5,,0,,Y5") € Poilth.un)

see [4] for the standard notations P} and P, where

P, = 2n2(xie%pf — yfb)e%"s +2((x;, — x.) + aDp(t, x5) + D f(x5)
@, = (e —yl) — aDB(E;, ui) — eDf () |
and b5 ,, b5, X" and Y7 satisfy
e 0 7.12
. < (454 BY) (A + B 1
0 =y
with
. 2n? diagle?nf<] + 2¢I; —2n?diaglen]
" —2n? diag[e%pﬁ] 2n%1,
b [ D) + D () 0
" 0 aD*B(ts,y5) +eD?f(y;) )
3.1. We now show that, up to a subsequence,
y, €O (7.13)

In view of (ii), this is clearly true when z. € O. In the case z. € 00, we deduce from
(ii) that

v = shesm +o(nl) = o + Sdiagle] pe + o(n )
n

This implies that, for some €, — 0,

¢
n

so that (7.13) is a consequence of (7.10), the continuity of Dd and (ii).

d(y,) = d(z}) + = (Dd(ay,) diag [27] p- + €n)

3.2. In this step, we show that there is a subsequence of (¢, z¢,y5) such that
25 € O and ka(ts, 25) — b5, — 3T [a(ts, 25) X5 <0 . (7.14)
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First observe that we can not have z, € 00* and u(t¢, 25) < g(t5, z5) for all n. In view
of (ii), this is obvious if . € O. If z. € JdO*, it follows from (7.9) and the viscosity
property of © that 0(t.,x.) > §(t.,x.). Since g is upper-semicontinuous, see H,, this
would imply that @(t5, 25) < 0(t5,y5) + m/2 for n large enough, see (ii), thus leading
to a contradiction to (iii) since 3, f > 0. By (iv) and the viscosity subsolution property
of 4, we then deduce that either (7.14) holds or

H (a(t, 25), diag[25] p) < 0. (7.15)

n? n)

Thus, it remains to prove that the above inequality leads to a contradiction. Using the

supersolution property of o, (7.13), (ii)-(iii) and (2.9), we observe that (7.15) implies

0 > H(a(t;, ), diag 2] p,) — H (9(t5,, y,,), diag [y;] ¢;,)
> of{H (B(t;,,x7,), diag [z7] DB(t5,, 27,)) + H (B(t;,, yy,), diag [y,] DB(t,, vn)) }
+ e{H (f(x;,), diag[z}] Df(27,)) + H (f(y,), diag [y;] Df(yy,))}
+ plenf15( p) Ot =5, yp) — € (f(25) + f(y5))]
— su}() [2n2p’diag [xfle%pf } ( € prpe yi) + 2¢p'diag [25] (x5 — xg)}
> plenf 5(p)(m/2) + 20cH (B(t., x.), diag [z.] DB(te, x.))

+ en+e{H (f(zc) diaglz] Df(z2)) + H (f(ye), diag [y-] Df(ye))}

where €, — 0 when n — oo, but depend on . Recalling (7.4) and (7.8), we get a

contradiction for ¢ small and n large enough. This concludes the proof of (7.14).

3.3. We can now provide the required contradiction and conclude the proof. Let ¢ be
defined on D by (¢, r) = diag[z] o(¢,x). By the viscosity supersolution property of o,
(7.13), (7.14) and (7.12), (¢, 25, y5) must satisfy

~ ' g ~ (1€ € & 1 3 € € 15
ratn, an) = 0t vn)) < Ui+ b3, + 5T (n, n)Xn” (tmyn)yn’"]
1
+ T[22, 00 (Ai + B, + n(Ai +B.)°)]

where

E(ts’ Z’yn)' ~ (1€ 1(4€ ~ (1€ 1(4€
U(tm n) (tnvyn) U(tnﬂyn>a (tnvyn)

( G(t5,05)5 (15, 25)  &(t5,y5)5" (£, @ n>)

37



is a non-negative symmetric matrix. Using (ii)-(iii), (7.5) and (7.8), it follows that for

¢ small and n large enough

<

rm/2 <k (alty, xy) = 0(th, v,) — (@B +ef)(ty, 73) — (b + ef)(t,, )
20(t,

1
te) + 5T [E(t5, 25, v2) (A5 + (A% + BL)?)| +6(e,m)

where (e, n) is independent of (7, () and satisfies

limsup limsup |f(e,n)] = 0. (7.16)

e—0 n—00

Sending 1 — 0 in the previous inequality provides

1
remf2 < 20(t —te) + ST [E(8, 25, yn) An] + 0(e, n)

so that

km/2 < 20(t, — te) + (Tr[5(t,, 7,)6" (¢, 27,)]

2
+ n?|diag [x;e%ps} o(ts, 25) — diag [yE] o (5, v5)

+0(e,n) .
Using (2.2), we now observe that

diag [xfle%pg] ( (ti,xnenpf) o(t:, ;))‘

< |diag [xfle%ps] o(t;,x enps) diag (] o(t:, 5)

n»*n n? n

+ |diag [xfle%"’e — xs] o(t,x)

n n»'n

¢
€ ,2Ps __ €
T,en z,

< C.
<(C.n',

and

2 ¢
€ 2P €
Tpen™ —y,

diag w5077 ot whet ™) — diag[yi) ot 05)| < C

where C. > 0 denotes a generic constant independent of n and (. Plugging this in the

previous inequality implies that there is some C. > 0 independent of n and { for which
Rmf2 < 20( — t) + (T (685, 25)5 (6, 25)] + C (G nlagen — yif?) + 0(em)
Finally, using (ii) and sending n to co and then ¢ to 0 in the last inequality implies

km/2 <limsupf(e,n),

n—oo
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which by (7.16) provides the required contradiction and concludes the proof.

4. We now explain how to adapt this proof to the alternative assumptions of H'.

4.1. Observe that the penalty function 3 is introduced in order to obtain a finite
supremum for 4 — 0 —2a/f3 and existence of an optimum for ¢ and W7, .. If O is bounded,
the introduction of such a penalty function is not required and we can reproduce the
same proof with 3 = 0 whenever 0 € int(K). Indeed, by Remark 2.4, inf _z (p) > 0
so that we still obtain a contradiction at the end of 3.2. The arguments of 3.3 also work
with = 0. The case where 0 ¢ int(K) is discussed below.

4.2. Similarly, the map f is introduced only to prevent the different maxima to take
values outside O*. If O N OR% = (), this penalty function is useless and can be fixed
to f = 0. In this case, one can also fix some 7y € int(K), if non-empty, and add
the term e™ =927 in the definition of 3. Thus, 8 becomes ™% (1 4+ z7 4+ 2) or
e™ ™1 (1 + 27) depending whether O is bounded or not, see 4.1. For fixed ¢ > 0, we
deduce from Remark 2.4 and the fact that v € int(K) that H(B(t, v), diag [z] DB(t, z))
> (0. Since f = 0, there is no ¢ to send to 0 at the end of 3.2 and 3.3, and we obtain

the same contradictions by simply sending n to oo and ¢ to O.
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