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SOME PARABOLIC PDES WHOSE DRIFT IS AN
IRREGULAR RANDOM NOISE IN SPACE

By Francesco Russo and Gerald Trutnau

Université Paris 13 and Universität Bielefeld

A new class of random partial differential equations of parabolic
type is considered, where the stochastic term consists of an irregular
noisy drift, not necessarily Gaussian, for which a suitable interpreta-
tion is provided. After freezing a realization of the drift (stochastic
process), we study existence and uniqueness (in some appropriate
sense) of the associated parabolic equation and a probabilistic inter-
pretation is investigated.

1. Introduction. This paper focuses on a random partial differential equa-
tion consisting of a parabolic PDE with irregular noise in the drift. Formula-
tion, existence (with uniqueness in a certain sense) and double probabilistic
representation are discussed. The equation itself is motivated by random
irregular media models.

Let T > 0, σ :R → R be a continuous function and η̇(x) a generalized
random field playing the role of a noise. Let u0 :R → R, λ : [0, T ]×R → R be
continuous. Consider the problem

− ∂tv(t, x) +
σ2(x)

2
∂2
xx
v(t, x) + η̇(x)∂xv(t, x) = λ(T − t, x),

(1.1)
v(0, x) = u0(x),

where η̇ is the derivative in the sense of distributions of a continuous pro-
cess. Among examples of possible η, we have in mind not only different
possibilities of continuous processes as classical Wiener process and (multi)
fractional Brownian motion, but also non-Gaussian processes. The derivative
in the sense of distributions η̇(x) will be the associated noise. (1.1) is a new
type of SPDE, not yet studied in any real depth even when η is a classical
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2 F. RUSSO AND G. TRUTNAU

Brownian motion. For the situation where η̇(x) is replaced by a space-time
white noise η̇(t, x), some relevant work was done by Nualart and Viens (see,
e.g., [17]). In this article, time dependence is useful for the corresponding
stochastic integration.

Equation (1.1) is equivalent to the following dual problem:

∂tu(t, x) +
σ2(x)

2
∂2
xx
u(t, x) + η̇(x)∂xu(t, x) = λ(t, x),

(1.2)
u(T,x) = u0(x).

Formally speaking, setting u(t, x) = v(T − t, x), v solves (1.1) if and only if
u solves (1.2). This is rigorously confirmed in Section 9 so that at this stage,
the choice of whether to work with equation (1.1) or (1.2) is arbitrary. We
have decided to concentrate on equation (1.2) because it corresponds to the
standard form for probabilistic representation.

The idea of this paper is to first freeze the realization ω, to set b(x) =
η(x)(ω) and then to consider the deterministic Cauchy problem associated
with (1.2),

∂tu(t, x) +
σ2(x)

2
∂2
xx
u(t, x) + b′(x)∂xu(t, x) = λ(t, x),

(1.3)
u(T,x) = u0(x),

where b′ is the derivative of the continuous function b.
Since the product of a distribution and a continuous function is not defined

in the theory of Schwarz distributions, we must develop some substitution
tools. Ideally, we would like to represent the parabolic PDE probabilisti-
cally through a diffusion which is the solution of the stochastic differential
equation (SDE)

dXt = σ(Xt)dWt + b′(Xt)dt(1.4)

with generalized drift. We will give a meaning to (1.4) at three different
levels:

• the level of a martingale problem;
• the level of a stochastic differential equation in the sense of probability

laws;
• the level of a stochastic differential equation in the strong sense.

For each of these levels, we shall provide conditions for equation (1.4), with
given initial data, to be well posed. Later, the notion of a C0

b -solution to the
generalized parabolic PDE (1.3) will be defined; related to this, existence,
uniqueness and probabilistic representation will be shown.

When η is a strong finite cubic variation process and σ = 1, the solutions
to (1.3) obtained for b= η(ω) provide solutions to the SPDE (1.1). This is
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shown in the last part of the paper. A typical example of a strong zero cubic
variation process is the fractional Brownian motion with Hurst index H ≥ 1

3 .
Equation (1.3) will be understood in some weak distributional sense that we
can formally reconstruct as follows. We freeze b= η(ω) as a realization and
formally integrate equation (1.1) from 0 to t in time against a smooth test
function α with compact support in space. The result is

−
∫

R

dxα(x)u(t, x) +

∫

R

dxα(x)u0(x)−
∫ t

0
ds 1

2

∫

R

dxα′(x)∂xu(s,x)

+

∫ t

0
ds

∫

R

b(dx)α(x)∂xu(s,x)(1.5)

=

∫ t

0
ds

∫

R

dxα(x)λ(T − s,x).

The integral
∫

R
α(x)∂xu(s,x)b(dx) needs interpretation since b is not gen-

erally of bounded variation and it involves the product of the distribution
b′ and the function ∂xu(s, ·); in general, this function is, unfortunately, only
continuous. As expected this operation is deterministically undefined, unless
one uses a generalized functions theory. However, since b is a frozen real-
ization of a stochastic process η, we can hope to justify the integral in a
stochastic sense. Note that it cannot be of Itô type, even if η were a semi-
martingale, since ∂xu(s, ·) is not necessarily adapted to some corresponding
filtration. We will, in fact, interpret the stochastic integral element b(dx) or
η(dx) as a symmetric (Stratonovich) integral d0η of regularization type; see
Section 3.

Definition 1.1. A continuous random field (v(t, x), t ∈ [0, T ], x ∈ R),
a.s. in C0,1(]0, T [×R), is said to be a (weak) solution to the SPDE (1.1) if

−
∫

R

dxα(x)v(t, x) +

∫

R

dxα(x)v0(x)−
∫ t

0
ds 1

2

∫

R

dxα′(x)∂xv(s,x)

+

∫

R

d◦η(x)α(x)

(
∫ t

0
ds∂xv(s,x)

)

(1.6)

=

∫ t

0
ds

∫

R

dxα(x)λ(T − s,x)

for every smooth function with compact support α.

If we integrate equation (1.2) from t to T in time against a smooth test
function α with compact support in space, we are naturally led to the fol-
lowing.
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Definition 1.2. A continuous random field (u(t, x), t ∈ [0, T ], x ∈ R),
a.s. in C0,1(]0, T [×R), is said to be a (weak) solution to the SPDE (1.2) if

−
∫

R

dxα(x)u(t, x) +

∫

R

dxα(x)u0(x)−
∫ T

t
ds 1

2

∫

R

dxα′(x)∂xu(s,x)

+

∫

R

d◦η(x)α(x)

(
∫ T

t
ds∂xu(s,x)

)

(1.7)

=

∫ T

t
ds

∫

R

dxα(x)λ(s,x)

for every smooth function with compact support α.

We will show that the probabilistic solutions that we construct through
stochastic equation (1.4) will, in fact, solve (1.5).

Diffusions in the generalized sense were studied by several authors begin-
ning with (at least to our knowledge) [19]. Later, many authors considered
special cases of stochastic differential equations with generalized coefficients.
It is difficult to quote them all. In particular, we refer to the case when b is
a measure [7, 16, 18]. In all of these cases, solutions were semimartingales.
More recently, [8] considered special cases of nonsemimartingales solving
stochastic differential equations with generalized drift; those cases include
examples coming from Bessel processes.

[10] and [11] treated well-posedness of the martingale problem, Itô’s for-
mula under weak conditions, semimartingale characterization and the Lyons–
Zheng decomposition. The only assumption was the strict positivity of σ
and the existence of the function Σ(x) = 2

∫ x
0

b′

σ2 dy with appropriate reg-
ularizations. Bass and Chen [2] were also interested in (1.4) and provided
a well-stated framework when σ is 1

2 -Hölder continuous and b is γ-Hölder

continuous, γ > 1
2 .

Beside the martingale problem, in the present paper, we shall emphasize
the formulation of (1.4) as a stochastic differential equation which can be
solved by introducing more assumptions on the coefficients. Several examples
are provided for the case of weak and strong solutions of (1.4).

The paper is organized as follows. Section 2 is devoted to basic prelimi-
naries, including definitions and properties related to Young integrals. Sec-
tion 3 is devoted to some useful remainder in stochastic calculus via reg-
ularization. In Section 4, we introduce the formal elliptic operator L and
recall the concept of a C1-generalized solution of Lf = ℓ̇ for continuous
real functions ℓ̇. We further introduce a fundamental hypothesis on L for
the sequel, called Technical Assumption A(ν0), and we illustrate several
examples where it is verified. In Section 5, we discuss different notions of
martingale problems. Section 6 provides notions of solutions to stochastic
differential equations with distributional drift and their connections with
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martingale problems. The notion of solution is coupled with a property of
extended local time regularity. This concept of solution is new, even when the
drift is an ordinary function. Section 7 presents the notion of a C0

b -solution
for a parabolic equation Lu= λ, where λ is bounded and continuous with
L = ∂t + L. We also provide existence, uniqueness and probabilistic repre-
sentations of C0

b -solutions to Lu= λ. Section 8 discusses mild solutions to
the previous parabolic PDE and useful integrability properties for its solu-
tions. In Section 9, we finally show that the C0

b -solutions provide, in fact,
true weak solutions to the SPDE (1.1) if σ = 1.

2. Preliminaries. In this paper, T will be a fixed horizon time, unless
otherwise specified. A function f defined on [0, T ] (resp., R+) will be ex-
tended, without mention, by setting f(t) = f(0) for t≤ 0 and f(T ) for t≥ T

[resp., f(0) for t≤ 0].
C0(R) will indicate the set of continuous functions defined on R, Cp(R),

the space of real functions with differentiability class Cp. We denote by
C0

0 (R) [resp., C1
0(R)] the space of continuous (continuous differentiable)

functions vanishing at zero. When there is no confusion, we will also simply
use the symbols C0,Cp,C0

0 ,C
1
0 . We denote by C0

b ([0, T ] × R) the space of
real continuous bounded functions defined on [0, T ] × R. C0

b (R), or simply
C0

b , indicates the space of continuous bounded functions defined on R.
The vector spaces C0(R) and Cp(R) are topological Fréchet spaces, or

F-spaces, according to the terminology of [5], Chapter 1.2. They are equipped
with the following natural topology. A sequence fn belonging to C0(R) [resp.,
Cp(R)] is said to converge to f in the C0(R) [resp., Cp(R)] sense if fn (resp.,
fn and all derivatives up to order p) converges (resp., converge) to f (resp.,
to f and all its derivatives) uniformly on each compact of R.

We will consider functions u : [0, T ]×R → R which are bounded and con-
tinuous. A sequence (un) in C0

b ([0, T ] × R) will be said to converge in a
bounded way to u if:

• limn→∞ un(t, x) = u(t, x), ∀(t, x) ∈ [0, T ]×R;
• there exists a constant c > 0, independent of the sequence, such that

sup
t≤T,x∈R

|un(t, x)| ≤ c ∀n ∈ N.(2.1)

If the sequence (un) does not depend on t, we similarly define the conver-
gence of (un) ∈C0

b (R) to u ∈C0
b (R) in a bounded way.

Given two functions u1, u2 : [0, T ]×R → R, the composition notation u1 ◦
u2 means (u1 ◦ u2)(t, x) = u1(t, u2(t, x)).

For positive integers m,k, Cm,k will indicate functions in the correspond-
ing differentiability class. For instance, C1,2([0, T [×R) will be the space of
(t, x) 7→ u(t, x) functions which are C1 on [0, T [×R (i.e., once continuously
differentiable) and such that ∂2

xx
u exists and is continuous.
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C
m,k
b will indicate the set of functions Cm,k such that the partial deriva-

tives of all orders are bounded.
If I is a real compact interval and γ ∈ ]0,1[, we denote by Cγ(I) the vector

space of real functions defined on I which are Hölder with parameter γ. We
denote by Cγ(R), or simply Cγ , the space of locally Hölder functions, that
is, Hölder on each real compact interval.

Suppose I = [τ,T ], τ,T being two real numbers such that τ < T . Here,
T does not necessarily need to be positive. Recall that f : I 7→ R belongs to
Cγ(I) if

Nγ(f) := sup
τ≤s,t≤T

|f(t)− f(s)|
|t− s|γ <∞.

Clearly, f 7→ |f(τ)|+Nγ(f) defines a norm on Cγ(I) which makes it a Ba-
nach space. Cγ(R) is an F-space if equipped with the topology of convergence
related to Cγ(I) for each compact interval I . A sequence (fn) in Cγ(R) con-
verges to f if it converges according to Cγ(I) for every compact interval
I .

We will also provide some reminders about the so-called Young integrals
(see [27]) but will remain, however, in a simplified framework, as in [9] or
[23]. We recall the essential inequality, stated, for instance, in [9]:

Let γ,β > 0 be such that γ + β > 1. If f, g ∈C1(I), then
∣

∣

∣

∣

∫ b

a
(f(x)− f(a))dg(x)

∣

∣

∣

∣

≤Cρ(b− a)1+ρNγ(f)Nβ(g)(2.2)

for any [a, b] ⊂ I and ρ ∈ ]0, γ + β − 1[, where Cρ is a constant not depend-
ing on f, g. The bilinear map sending (f, g) to

∫

·

0 f dg can be continuously
extended to Cγ(I)×Cβ(I) with values in C0(I). By definition, that object
will be called the Young integral of f with respect to g on I . We also denote
it

∫

·

τ f d
(y)g.

By additivity, we set, for a, b ∈ [τ,T ],
∫ b

a
f d(y)g =

∫ b

τ
f d(y)g−

∫ a

τ
f d(y)g.

Moreover, the bilinear map defined on C1(R)×C1(R) by (f, g) →
∫

·

0 f dg

extends continuously to Cγ(R) × Cβ(R) onto C0(R). Again, that object,
defined on the whole real line, will be called Young integral of f with respect
to g and will again be denoted by

∫

·

0 f d
(y)g.

Remark 2.1. Inequality (2.2) remains true for f ∈Cγ(I), g ∈Cβ(I). In
particular, t 7→

∫ t
τ f d

(y)g belongs to Cβ(I). In fact,
∣

∣

∣

∣

∫ b

a
f dg

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ b

a
(f − f(a))dg

∣

∣

∣

∣

+ |f(a)(g(b)− g(a))|.
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Through the extension of the bilinear operator sending (f, g) to
∫

·

0 f dg,
it is possible to get the following chain rule for Young integrals.

Proposition 2.2. Let f, g,F : I → R, I = [τ,T ]. We suppose that g ∈
Cβ(I), f ∈ Cγ(I), F ∈ Cδ(I) with γ + β > 1, δ + β > 1. We define G(t) =
∫ t
τ f d

(y)g. Then
∫ t

τ
F d(y)G=

∫ t

τ
Ff d(y)g.

Proof. If g ∈ C1(I), then the result is obvious. We remark that G ∈
Cγ(I). Repeatedly using inequality (2.2), one can show that the two lin-
ear maps g 7→

∫

·

τ F d
(y)G and g 7→

∫

·

τ Ff d
(y)g are continuous from Cδ(I) to

C0(I). This concludes the proof of the proposition. �

By a mollifier, we mean a function Φ ∈ S(R) (i.e., a C∞-function such
that itself and all its derivatives decrease to zero faster than any power of
|x|−1 as |x| →∞) with

∫

Φ(x)dx= 1. We set Φn(x) := nΦ(nx).
The result below shows that mollifications of a Hölder function f converge

to f with respect to the Hölder topology.

Proposition 2.3. Let Φ be a mollifier and let f ∈ Cγ′
(I). We write

fn = Φn ∗ f . Then fn → f in the Cγ(I) topology for any 0< γ < γ′.

Proof. We need to show that Nγ(f − fn) converges to zero. We set
∆n(t) = (f − fn)(t). Let a, b ∈ I . We will establish that

|∆n(b)−∆n(a)| ≤ const |b− a|γ
(

1

n

)γ′−γ

.(2.3)

Without loss of generality, we can suppose that a < b. We distinguish be-
tween two cases.

Case a < a+ 1
n < b.

We have

|∆n(b)−∆n(a)| ≤
∣

∣

∣

∣

∫
(

f

(

b− y

n

)

− f(b)

)

Φ(y)dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫
(

f

(

a− y

n

)

− f(a)

)

Φ(y)dy

∣

∣

∣

∣

≤ 2

∫
∣

∣

∣

∣

y

n

∣

∣

∣

∣

γ′

|Φ(y)|dy

≤ 2

∫

|Φ(y)||y|γ′

dy(b− a)γ
(

1

n

)γ′−γ

.
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Case a < b≤ a+ 1
n .

In this case, we have

|∆n(b)−∆n(a)|

≤
∫

|f(b)− f(a)||Φ(y)|dy +

∫
∣

∣

∣

∣

f

(

b+
y

n

)

− f

(

a+
y

n

)∣

∣

∣

∣

|Φ(y)|dy

≤ 2(b− a)γ
′
∫

|Φ(y)|dy ≤ 2

∫

|Φ(y)|dy(b− a)γ
(

1

n

)γ′−γ

.

Therefore, (2.3) is verified with const = 2
∫

|Φ(y)|(1 + |y|γ′
)dy. This im-

plies that

Nγ(f − fn) ≤ const

(

1

n

)γ′−γ

,

which allows us to conclude. �

For convenience, we introduce the topological vector space defined by

Dγ =
⋃

γ′>γ

Cγ′

(R).

It is also a vector algebra, that is, Dγ is a vector space and an algebra with
respect to the sum and product of functions.

The next corollary is a consequence of the definition of the Young integral
and Remark 2.1.

Corollary 2.4. Let f ∈Dγ , g ∈Dβ with γ+β ≥ 1. Then t 7→
∫ t
0 f d

(y)g

is well defined and belongs to Dβ .

Dγ is not a metric space, but an inductive limit of the F-spaces Cγ ; the
weak version of the Banach–Steinhaus theorem for F-spaces can be adapted.

In fact, a direct consequence of the Banach–Steinhaus theorem of [5],
Section 2.1, is the following.

Theorem 2.5. Let E =
⋃

nEn be an inductive limit of F-spaces En and
F another F-space. Let (Tn) be a sequence of continuous linear operators
Tn :E→ F . Suppose that Tf := limn→∞ Tnf exists for any f ∈ E. Then
T :E→ F is again a continuous (linear) operator.

3. Previous results in stochastic calculus via regularization. We recall
here a few notions related to stochastic calculus via regularization, a theory
which began with [21]. We refer to a recent survey paper [23].

The stochastic processes considered may be defined on [0, T ],R+ or R.
Let X = (Xt, t ∈ R) be a continuous process and Y = (Yt, t∈ R) be a process
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with paths in L1
loc. For the paths of process Y with parameter on [0, T ]

(resp., R+), we apply the same convention as was applied at the beginning of
previous section for functions. So we extend them without further mention,
setting Y0 for t≤ 0 and YT for t≥ T (resp., Y0 for t≤ 0). C will denote the
vector algebra of continuous processes. It is an F-space if equipped with the
topology of u.c.p. (uniform convergence in probability) convergence.

In the sequel, we recall the most useful rules of calculus; see, for instance,
[23] or [22].

The forward symmetric integrals and the covariation process are defined
by the following limits in the u.c.p. sense, whenever they exist:

∫ t

0
Y d−X := lim

ε→0+

∫ t

0
Ys
Xs+ε −Xs

ε
ds,(3.1)

∫ t

0
Ys d

◦Xs := lim
ε→0+

∫ t

0
Ys
Xs+ε −Xs−ε

2ε
ds,(3.2)

[X,Y ]t := lim
ε→0+

Cε(X,Y )t,(3.3)

where

Cε(X,Y )t :=
1

ε

∫ t

0
(Xs+ε −Xs)(Ys+ε − Ys)ds.

All stochastic integrals and covariation processes will of course be elements
of C. If [X,Y ], [X,X] and [Y,Y ] exist, we say that (X,Y ) has all of its
mutual covariations.

Remark 3.1. If X is (locally) of bounded variation, we have:

•
∫ t
0 X d−Y =

∫ t
0 Xs d

◦Ys =
∫ t
0 Xs dYs, where the third integral is meant in

the Lebesgue–Stieltjes sense;
• [X,Y ]≡ 0.

Remark 3.2. (a)
∫ t
0 Ys d

◦Xs =
∫ t
0 Ys d

−Xs + 1
2 [X,Y ] provided that two

of the three integrals or covariations exist.
(b) XtYt = X0Y0 +

∫ t
0 Ys d

−Xs +
∫ t
0 Xs d

−Ys + [X,Y ]t provided that two
of the three integrals or covariations exist.

(c) XtYt = X0Y0 +
∫ t
0 Y d

◦X +
∫ t
0 Xs d

◦Ys provided that one of the two
integrals exists.

Remark 3.3. (a) If [X,X] exists, then it is always an increasing process
and X is called a finite quadratic variation process. If [X,X] = 0, then X is
said to be a zero quadratic variation process.
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(b) Let X , Y be continuous processes such that (X,Y ) has all of its
mutual covariations. Then [X,Y ] has locally bounded variation. If f, g ∈C1,
then

[f(X), g(Y )]t =

∫ t

0
f ′(X)g′(Y )d[X,Y ].

(c) If A is a zero quadratic variation process and X is a finite quadratic
variation process, then [X,A] ≡ 0.

(d) A bounded variation process is a zero quadratic variation process.
(e) (Classical Itô formula.) If f ∈ C2, then

∫

·

0 f
′(X)d−X exists and is

equal to

f(X)− f(X0)− 1
2

∫

·

0
f ′′(X)d[X,X].

(f) If g ∈ C1 and f ∈ C2, then the forward integral
∫

·

0 g(X)d−f(X) is
well defined.

In this paper, all filtrations are supposed to fulfill the usual conditions.
If F = (Ft)t∈[0,T ] is a filtration, X an F-semimartingale and Y is an F-

adapted cadlag process, then
∫

·

0 Y d
−X is the usual Itô integral. If Y is an

F-semimartingale, then
∫

·

0 Y d
◦X is the classical Fisk–Stratonovich integral

and [X,Y ] is the usual covariation process 〈X,Y 〉.
We now introduce the notion of Dirichlet process, which was essentially

introduced by Föllmer [12] and has been considered by many authors; see,
for instance, [3, 24] for classical properties.

In the present section, (Wt) will denote a classical (Ft)-Brownian motion.

Definition 3.4. An (Ft)-adapted (continuous) process is said to be a
(Ft)-Dirichlet process if it is the sum of an (Ft)-local martingale M and
a zero quadratic variation process A. For simplicity, we will suppose that
A0 = 0 a.s.

Remark 3.5. (i) Process (At) in the previous decomposition is an
(Ft)-adapted process.

(ii) An (Ft)-semimartingale is an (Ft)-Dirichlet process.
(iii) The decomposition M +A is unique.
(iv) Let f :R → R be of class C1 and let X be an (Ft)-Dirichlet process.

Then f(X) is again an (Ft)-Dirichlet process with local martingale part

M
f
t = f(X0) +

∫ t
0 f

′(X)dM .

The class of semimartingales with respect to a given filtration is known
to be stable with respect to C2 transformations. Remark 3.3(b) says that
finite quadratic variation processes are stable through C1 transformations.
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The last point of the previous remark states that C1 stability also holds for
Dirichlet processes.

Young integrals introduced in Section 2 can be connected with the forward
and symmetric integrals via the regularization appearing before Remark 3.1.
The next proposition was proven in [23].

Proposition 3.6. Let X,Y be processes whose paths are respectively in
Cγ and Cβ, with γ > 0, β > 0 and γ + β > 1.

For any symbol ⋆ ∈ {−,◦}, the integral
∫

·

0 Y d
⋆X coincides with the Young

integral
∫

·

0 Y d
(y)X.

Remark 3.7. Suppose that X and Y satisfy the conditions of Proposi-
tion 3.6. Then Remark 3.2(a) implies that [X,Y ] = 0.

We need an extension of stochastic calculus via regularization in the direc-
tion of higher n-variation. The properties concerning variation higher than
2 can be found, for instance, in [6].

We set

[X,X,X]εt =
1

ε

∫ t

0
(Xs+ε −Xs)

3 ds.

We also define

‖[X,X,X]ε‖t =
1

ε

∫ t

0
|Xs+ε −Xs|3 ds.

If the limit in probability of [X,X,X]εt when ε→ 0 exists for any t, we denote
it by [X,X,X]t. If the limiting process [X,X,X] has a continuous version,
we say that X is a finite cubic variation process.

If, moreover, there is a positive sequence (εn)n∈N converging to zero such
that

sup
εn

‖[X,X,X]εn‖T <+∞,(3.4)

then we say that X is a (strong) finite cubic variation process. If X is a
(strong) finite cubic variation process such that [X,X,X] = 0, then X will
be said to be a (strong) zero finite cubic variation process.

For instance, if X =BH , a fractional Brownian motion with Hurst index
H , then X is a finite quadratic variation process if and only if H ≥ 1

2 ; see

[22]. It is a strong zero cubic variation process if and only if H ≥ 1
3 ; see [6].

On the other hand, BH is a zero cubic variation process if and only if H > 1
6 ;

see [13].
It is clear that a finite quadratic variation process is a strong zero cubic

variation process. On the other hand, processes whose paths are Hölder
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continuous with parameter greater than 1
3 are strong zero cubic variation

processes.
As for finite quadratic variation and Dirichlet processes, the C1-stability

also holds for finite cubic variation processes. The next proposition is a
particular case of a result contained in [6].

Proposition 3.8. Let X be a strong finite cubic variation process, V
a locally bounded variation process and f :R × R → R of class C1. Then
Z = f(V,X) is again a strong finite cubic variation process and

[Z,Z,Z]t =

∫ t

0
∂xf(Vs,Xs)

3 d[X,X,X]s.

Moreover, an Itô chain rule property holds, as follows.

Proposition 3.9. Let X be a strong finite cubic variation process, V
a bounded variation process and Y a cadlag process. Let f :R×R → R be of
class C1,3. Then

∫ t

0
Y d◦f(V,X) =

∫ t

0
Y ∂vf(Vs,Xs)dVs +

∫ t

0
Y ∂xf(Vs,Xs)d

◦Xs

− 1
12

∫ t

0
Y ∂3

xxx
f(Vs,Xs)d[X,X,X]s.

We deduce, in particular, that a C1 transformation of a strong zero cubic
variation process is again a strong zero cubic variation process.

We conclude the section by introducing a concept of definite integral via
regularization. If processes X,Y are indexed by the whole real line, a.s. with
compact support, we define

∫

R

Y d−X := lim
ε→0+

∫

R

Ys
Xs+ε −Xs

ε
ds,(3.5)

∫

R

Ys d
◦Xs := lim

ε→0+

∫

R

Ys
Xs+ε −Xs−ε

2ε
ds,(3.6)

where the limit is understood in probability. Integration by parts
[Remark 3.2(c)], Proposition 3.6 and the chain rule property (Proposition 3.9)
can all be immediately adapted to these definite integrals.

4. The PDE operator L. Let σ, b ∈C0(R) be such that σ > 0. Without
loss of generality, we will suppose that b(0) = 0.

We consider a formal PDE operator of the following type:

Lg =
σ2

2
g′′ + b′g′.(4.1)



SOME PARABOLIC PDES 13

If b is of class C1, so that b′ is continuous, we will say that L is a classical
PDE operator.

For a given mollifier Φ, we denote

σ2
n := (σ2 ∧ n) ∗Φn, bn := (−n∧ (b∨ n)) ∗Φn.

We then consider

Lng =
σ2

n

2
g′′ + b′ng

′ for g ∈C2(R),

(4.2)
Lnu= ∂tu+Lnu for u ∈C1,2([0, T [×R),

where Ln acts on x. A priori, σ2
n, bn and the operator Ln depend on the

mollifier Φ.
Previous definitions are slightly different from those in papers [10, 11],

but a considerable part of the analysis of L and the study of the martingale
problem can be adapted. In those papers, there was only regularization but
no truncation; here, truncation is used to study the associated parabolic
equations.

Definition 4.1. A function f ∈ C1(R) is said to be a C1-generalized
solution to

Lf = ℓ̇,(4.3)

where ℓ̇ ∈C0 if for any mollifier Φ, there are sequences (fn) in C2 and (ℓ̇n)
in C0 such that

Lnfn = ℓ̇n, fn → f in C1, ℓ̇n → ℓ̇ in C0.(4.4)

Proposition 4.2. There is a solution h ∈C1 to Lh= 0 such that h′(x) 6=
0 for every x ∈ R if and only if

Σ(x) := lim
n→∞

2

∫ x

0

b′n
σ2

n

(y)dy

exists in C0, independently of the mollifier. Moreover, in this case, any so-
lution f to Lf = 0 fulfills

f ′(x) = e−Σ(x)f ′(0).(4.5)

Proof. This result follows in a very similar way to the proof of Propo-
sition 2.3 in [10]—first at the level of regularization and then passing to the
limit. �

For the remainder of this paper, we will suppose the existence of this
function Σ. We will consider h ∈C1 such that

h′(x) := exp(−Σ(x)), h(0) = 0.(4.6)
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In particular, h′(0) = 1 holds. Even though we discuss the general case with
related nonexplosion conditions in [10], here, in order to ensure conserva-
tiveness, we suppose that

∫ 0

−∞

e−Σ(x) dx=

∫ ∞

0
e−Σ(x) dx= +∞,

(4.7)
∫ 0

−∞

eΣ(x)

σ2
dx=

∫ ∞

0

eΣ(x)

σ2
dx= +∞.

Previous assumptions are of course satisfied if σ is lower bounded by a
positive constant and b is constant outside a compact interval.

Condition (4.7) implies that the image set of h is R.

Remark 4.3. Proposition 4.2 implies uniqueness of the problem

Lf = ℓ̇, f ∈C1, f(0) = x0, f ′(0) = x1(4.8)

for every ℓ̇ ∈C0, x0, x1 ∈ R.

Remark 4.4. We present four important examples where Σ exists:

(a) If b(x) = α(σ2(x)
2 − σ2(0)

2 ) for some α ∈ ]0,1], then

Σ(x) = α log

(

σ2(x)

σ2(0)

)

and

h′(x) =
σ2α(0)

σ2α(x)
.

If α = 1, the operator L can be formally expressed in divergence form as

Lf = (σ2

2 f
′)′.

(b) Suppose that b is locally of bounded variation. We then get

∫ x

0

b′n
σ2

n

(y)dy =

∫ x

0

dbn(y)

σ2
n(y)

→
∫ x

0

db

σ2

since dbn → db in the weak-∗ topology and 1
σ2 is continuous.

(c) If σ has bounded variation, then we have

Σ(x) =−2

∫ x

0
b d

(

1

σ2

)

+
2b

σ2
(x)− 2b

σ2
(0).

In particular, this example contains the case where σ = 1 for any b.
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(d) Suppose that σ is locally Hölder continuous with parameter γ and
that b is locally Hölder continuous with parameter β such that β + γ > 1.
Since σ is locally bounded, σ2 is also locally Hölder continuous with param-
eter γ. Proposition 2.3 implies that σ2

n → σ2 in Cγ′
and bn → b in Cβ′

for
every γ′ < γ and β′ < β. Since σ is strictly positive on each compact, 1

σ2
n

→ 1
σ2

in Cγ′
. By Remark 2.1, Σ is well defined and locally Hölder continuous with

parameter β′.

Again, the following lemma can be proven at the level of regularizations;
see also Lemma 2.6 in [10].

Lemma 4.5. The unique solution to problem (4.8) is given by

f(0) = x0,

f ′(x) = h′(x)

(

2

∫ x

0

ℓ̇(y)

(σ2h′)(y)
dy + x1

)

.

Remark 4.6. If b′ ∈ C0(R) and f ∈ C2(R) is a classical solution to
Lf = ℓ̇, then f is clearly also a C1-generalized solution.

Remark 4.7. Given ℓ ∈C1, we denote by Tℓ the unique C1-generalized
solution f to problem (4.8) with ℓ̇= ℓ′, x0 = 0, x1 = 0. The unique solution
to the general problem (4.8) is given by

f = x0 + x1h+ Tℓ.

We write T x1ℓ= Tℓ+ x1h, that is, the solution with x0 = 0.

Remark 4.8. Let f ∈C1. There is at most one ℓ̇ ∈C0 such that Lf = ℓ̇.
In fact, to see this, it is enough to suppose that f = 0. Lemma 4.5 implies
that

2

∫ x

0

ℓ̇

σ2h′
(y)dy ≡ 0.

Consequently, ℓ̇ is forced to be zero.

This consideration allows us to define without ambiguity L :DL → C0,
where DL is the set of all f ∈ C1(R) which are C1-generalized solution to
Lf = ℓ̇ for some ℓ̇ ∈C0. In particular, Tℓ∈DL.

A direct consequence of Lemma 4.5 is the following useful result.

Lemma 4.9. DL is the set of f ∈C1 such that there exists ψ ∈C1 with
f ′ = e−Σψ.
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In particular, it gives us the following density proposition.

Proposition 4.10. DL is dense in C1.

Proof. It is enough to show that every C2-function is the C1-limit of
a sequence of functions in DL. Let (ψn) be a sequence in C1 converging to
f ′eΣ in C0. It follows that

fn(x) := f(0) +

∫ x

0
e−Σ(y)ψn(y)dy, x∈ R,

converges to f ∈C1 and fn ∈DL. �

We must now discuss technical aspects of the way L and its domain DL

are transformed by h. We recall that Lh= 0 and that h′ is strictly positive.
Condition (4.7) implies that the image set of h is R.

Let L0 be the classical PDE operator

L0φ=
σ̃2

h

2
φ′′, φ ∈C2,(4.9)

where

σ̃h(y) = (σ̃h′)(h−1(y)), y ∈ R.

L0 is a classical PDE map; however, we can also consider it at the formal
level and introduce DL0 .

Proposition 4.11. (a) h2 ∈DL, Lh2 = h′2σ2.
(b) DL0 =C2.
(c) φ ∈DL0 holds if and only if φ ◦ h ∈DL. Moreover, we have

L(φ ◦ h) = (L0φ) ◦ h(4.10)

for every φ ∈C2.

Proof. This follows similarly as for Proposition 2.13 of [10]. �

We will now discuss another operator related to L. Given a function f ,
we need to provide a suitable definition of f 7→

∫ x
0 Lf(y)dy, that is, some

primitive of Lf .

• One possibility is to define that map, through previous expression, for
f ∈DL.
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• Otherwise, we try to define it as linear map on C2. For this, first suppose
that b′ is continuous. Then integrating by parts, we obtain

∫ x

0
Lf(y)dy =

∫ x

0

(

σ2

2
− b

)

f ′′(y)dy + (bf ′)(x)− (bf ′)(0).(4.11)

We remark that the right-hand side of this expression makes sense for any
f ∈C2 and continuous b. We will thus define L̂ :C2 →C0

0 as follows:

L̂f :=

∫ x

0

(

σ2

2
− b

)

f ′′(y)dy + (bf ′)(x)− (bf ′)(0).(4.12)

One may ask if, in the general case, the two definitions f →
∫ x
0 Lf(y)dy

on DL and L̂ on C2 are compatible. We will later see that under Assump-
tion A(ν0), this will be the case. However, in general, DL∩C2 may be empty.

Thus far, we have learned how to eliminate the first-order term in a formal
PDE operator through the transformation h introduced at (4.6); when L is
classical, this was performed by Zvonkin (see [28]). We would now like to
introduce a transformation which puts the PDE operator in a divergence
form.

Let L be a PDE operator which is formally of type (4.1):

Lg =
σ2

2
g′′ + b′g′.

We consider a function of class C1, namely k :R → R such that

k(0) = 0 and k′(x) = σ−2(x) exp(Σ(x)).(4.13)

According to assumptions (4.7), k is bijective on R.

Remark 4.12. If there is no drift term, that is, b = 0, then we have
k′(x) = σ−2(x).

Lemma 4.13. We consider the formal PDE operator given by

L1g =
σ̄2

k

2
g′′ +

(

σ̄2
k

2

)′

g′ =

(

σ̄2
k

2
g′

)′

,(4.14)

where

σ̄k(z) = (σk′) ◦ k−1(z), z ∈ R.

Then:

(i) g ∈DL1 if and only if g ◦ k ∈DL;
(ii) for every g ∈DL1 , we have L1g =L(g ◦ k) ◦ k−1.
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Proof. It is practically the same as in Lemma 2.16 of [10]. �

We now give a lemma whose proof can be easily established by investiga-
tion. Suppose that L is a classical PDE operator. Then L = ∂t + L is well
defined for C1,2([0, T [×R) functions where L acts on the second variable.
Given a function ϕ ∈C([0, T ]×R), we will hereafter set ϕ̃ : [0, T ]×R −→ R

by ϕ̃(t, y) = ϕ(t, h−1(y)).

Lemma 4.14. Let us suppose that h ∈C2(R). We set σh = σh′.
We define the PDE operator L0 by L0ϕ= ∂tϕ+L0ϕ, where L0 is a clas-

sical operator acting on the space variable x and

L0f =
σ̃2

h

2
f ′′.

If f ∈C1,2([0, T [×R) and Lf = γ in the classical sense, then L0f̃ = γ̃.

We will now formulate a supplementary assumption which will be useful
when we study singular stochastic differential equations in the proper sense
and not only in the form of a martingale problem.

Technical Assumption A(ν0). Let ν0 be a topological F-space which
is a linear topological subspace of C0(R) (or, eventually, an inductive limit of
sub-F-spaces). The ν0-convergence implies convergence in C0 and, therefore,
pointwise convergence.

We say that L fulfills Assumption A(ν0) if the following conditions hold:

(i) C1 ⊂ ν0, which is dense.
(ii) For every g ∈ C1(R), the multiplicative operator φ→ gφ maps ν0

into itself.
(iii) Let T :C1(R)⊂ ν0 →C1(R) as defined in Lemma 4.5, that is, f = Tℓ

is such that

f(0) = 0,

f ′(x) = e−Σ(x)

(

2

∫ x

0

eΣ(y)ℓ′(y)

σ2(y)
dy

)

.

We recall that f = Tℓ solves problem Lf = ℓ′ with f(0) = f ′(0) = 0. We
suppose that T admits a continuous extension to ν0.

(iv) Let x1 ∈ R. For every f ∈ C2 with f(0) = 0 and f ′(0) = x1 so that

]L̂f = ℓ, we have ℓ ∈ ν0 and T x1ℓ = f , where T x1 denotes the continuous
extension of T x1 (see Remark 4.7) to ν0, which exists by (iii).

(v) The set L̂C2 is dense in {ℓ ∈ ν0|ℓ(0) = 0}.

Remark 4.15. Let x1 ∈ R.
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(i) Remark 4.7 and point (iii) above together imply that T x1 :C1(R) ⊂
ν0 →C1(R) extends continuously to ν0. Moreover,

{f ∈C2|f(0) = 0, f ′(0) = x1} ⊂ ImT x1.

(ii) Point (iv) above shows that b ∈ ν0 and T 1b= id, where id(x) = x; in

fact, id(0) = 0, id′(1) = 1 and (4.12) implies that L̂id= b.
(iii) Point (i) above is satisfied if, for instance, the map T is closable as

a map from C0 to C1. In that case, ν0 may be defined as the domain of the
closure of C1, equipped with the graph topology related to C0 ×C1.

Below, we give some sufficient conditions for points (iv) and (v) of the
Technical Assumption to be satisfied.

We define by C1
ν0

the vector space of functions f ∈C1 such that f ′ ∈ ν0.
This will be an F-space if equipped with the following topology. A sequence
(fn) will be said to converge to f in C1

ν0
if fn(0) → f(0) and (f ′n) converges to

f ′ in ν0. In particular, a sequence converging according to C1
ν0

also converges
with respect to C1. On the other hand, C2 ⊂C1

ν0
and a sequence converging

in C2 also converges with respect to C1
ν0

. Moreover, C2 is dense in C1
ν0

because C1 is dense in ν0.

Lemma 4.16. Suppose that points (i) to (iii) of the Technical Assump-
tion are fulfilled. We suppose, moreover, that:

(a) h ∈C1
ν0

.

(b) For every f ∈ C2, f(0) = 0, f ′(0) = 0, L̂f = ℓ, we have ℓ ∈ ν0 and
Tℓ= f .

(c) L̂ :C2 → ν0 is well defined and has a continuous extension to C1
ν0

,

still denoted by L̂, such that L̂h= 0.
(d) ImT ⊂C1

ν0
.

(e) L̂T is the identity map on {ℓ ∈ ν0|ℓ(0) = 0}.
Then T,T x1 for every x1 ∈ R are injective and points (iv) and (v) of the

Technical Assumption are satisfied.

Proof. The injectivity of T follows from point (e). The injectivity of
T x1 is a consequence of Remark 4.7.

We prove point (iv). Point (c) says that L̂h= 0. We set f̂ = f − x1h, f ∈
C2, where f(0) = 0, f ′(0) = x1. Clearly, L̂f̂ = L̂f = ℓ and f̂(0) = 0, f̂ ′(0) =

0. Point (b) implies that Tℓ = f̂ . Hence, T x1ℓ = Tℓ + x1h = f and (iv) is
satisfied.

Concerning point (v), let ℓ ∈ ν0 with ℓ(0) = 0 and set f = Tℓ. Since f
belongs to C1

ν0
by (c), f ′ belongs to ν0. Point (i) of the technical assumption

implies that there exists a sequence (f ′n) of C1 functions converging to f ′ in
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the ν0 sense and thus also in C0. Let (fn) be the sequence of primitives of
(f ′n) (which are of class C2) such that fn(0) = 0. In particular, we have that
(fn) converges to f in the C1

ν0
-sense. By (c), there exists λ in ν0 which is

the limit of L̂fn in the ν0-sense. Observe that because of (b), T (L̂fn) = fn.
On the other hand, limn→+∞ fn = f in C1. Applying T and using (iii) of
the Technical Assumption, we obtain

Tλ= lim
n→+∞

T (L̂fn) = lim
n→+∞

fn = f = Tℓ.

The injectivity of T allows us to conclude that ℓ= λ. �

Remark 4.17. Under the assumptions of Lemma 4.16, we have:

• DL ⊂C1
ν0

;

• L̂f =
∫ x
0 Lf(y)dy, f ∈DL.

In fact, let f ∈DL. Without loss of generality, we can suppose that f(0) =

0. Let x1 = f ′(0) and set f̂ = f+x1h so that f̂(0) = f̂ ′(0) = 0. Setting ℓ̇= Lf̂,

Lemma 4.5 implies that f̂ = Tℓ, where ℓ =
∫ x
0 ℓ̇(y)dy. So f̂ ∈ ImT ⊂ C1

ν0
.

Since h ∈C1
ν0

, it follows that f ∈C1
ν0

, by additivity.
On the other hand,

Lf = Lf̂ + x1Lh= L̂f = ℓ̇,

L̂f = L̂f̂ + x1L̂h= L̂T ℓ= ℓ,

by point (e) of Lemma 4.16.

Example 4.18. We provide here a series of four significant examples
when Technical Assumption A(ν0) is verified. We only comment on the
points which are not easy to verify.

(i) The first example is simple. It concerns the case when the drift b′ is
continuous. This problem, to be studied later, corresponds to an ordinary
SDE where

ν0 =C1, C1
ν0

=C2, L̂f =

∫

·

0
Lf(y)dy.

(ii) L is close to divergence type, that is, b= σ2−σ2(0)
2 + β and where β

is a locally bounded variation function vanishing at zero. The operator is of
divergence type with an additional Radon measure term, that is, we have
Σ = lnσ2 + 2

∫ x
0

dβ
σ2 . In this case, we have ν0 = C0. Points (i) and (ii) of the

Technical Assumption are trivial.
We have, in fact,

h′(x) = e−Σ =
1

σ2(x)
exp

(

−2

∫ x

0

dβ

σ2

)

.
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T defined at point (iii) of the Technical Assumption is such that Tℓ = f ,
where f(0) = 0 and

f ′(x) =
2σ2(0)

σ2(x)
exp

(

−2

∫ x

0

dβ

σ2

)
∫ x

0
ℓ′(y) exp

(

2

∫ y

0

dβ

σ2

)

dy.(4.15)

Consequently, the extension of T to ν0 = C0, always still denoted by the
same letter T , is given by f = Tℓ with f(0) = 0 and

f ′(x) =
2

σ2(x)

{

ℓ(x)− 2exp

(

−2

∫ x

0

dβ

σ2

)

(4.16)

×
(

ℓ(0) +

∫ x

0
ℓ(y) exp

(

2

∫ y

0

dβ

σ2

)

1

σ2(y)
dβ(y)

)}

.

Points (iv) and (v) are seen to be satisfied via Lemma 4.16. We have C1
ν0

=
C1. Point (a) is obvious since h′ ∈ C0 and so h ∈ C1

ν0
. Let f ∈ C2. Using

Lebesgue–Stieltjes calculus, we can easily show that

ℓ(x) = L̂f(x) =
σ2(x)

2
f ′(x)− σ2(0)

2
f ′(0) +

∫ x

0
f ′ dβ.(4.17)

This shows that ℓ ∈ C0 = ν0 and therefore the first part of (b). We remark

that we can, in fact, consider L̂ :C2 → ν0 because

L̂f = L̂(f − x1h) + x1L̂h= L̂(f − x1h) ∈ ν0.

The expression of L̂f extends continuously to f ∈C1, which yields the first
part of point (c). Moreover, inserting the expression for h′ into f ′ in (4.17),

one shows that L̂h= 0.
Suppose, now, that in expression (4.17), f ∈ C2, f(0) = 0, f ′(0) = 0. A

simple investigation shows that Tℓ= f , so the second part of point (b) is
fulfilled; point (d) is also clear because of (4.16). Finally point (d) holds

because one can prove by inspection that L̂T is the identity on C0
0 .

(iii) We recall the notation Dγ(R) which indicates the topological vector
space of locally Hölder continuous functions defined on R with parameter
α > γ. We recall that Dγ(R) is a vector algebra.

Suppose that σ ∈ D1/2 and b ∈ C1/2 (or σ ∈ C1/2 and b ∈ D1/2). Re-
mark 4.4(d) implies that Σ also belongs to D1/2. We set ν0 =D1/2.

Technical Assumption A(ν0) is verified for the following reasons.
Since Σ ∈D1/2, h′ = e−Σ belongs to the same space.
Point (i) follows because of Proposition 2.3 and point (ii) follows because

D1/2 is an algebra. Corollary 2.4 yields that for every ℓ ∈D1/2, the function

f ′(x) = e−Σ(x)
∫ x

0
2
eΣ

σ2
(y)d(y)ℓ(y)(4.18)
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is well defined and belongs to D1/2. This shows that T can be continuously
extended to ν0 and point (iii) is established.

Concerning points (iv) and (v), we again use Lemma 4.16. We observe
that

C1
ν0

= {f ∈C1|f ′ ∈D1/2}.

Point (a) is obvious since h′ = e−Σ ∈D1/2. Let f ∈ C2. Considering b as a

deterministic process and recalling the definition of L̂ as in (4.12), integration
by parts in Remark 3.2(c) and Proposition 3.6 together imply that

ℓ(x) =

∫ x

0

σ2

2
d0f ′ +

∫ x

0
f ′ d◦b,(4.19)

ℓ(x) =

∫ x

0

σ2

2
d(y)f ′ +

∫ x

0
f ′ d(y)b.(4.20)

The first part of point (b) follows because of Proposition 2.2. Of course, the
previous expression can be extended to f ∈C1

ν0
and this shows the first part

of point (c).
Showing that the second part of point (c) of Lemma 4.16 holds consists

of verifying that L̂h= 0. Substituting h′ = e−Σ into the previous expression,
through Proposition 2.2, we obtain

ℓ(x) =−
∫ x

0

σ2

2
e−Σ d(y)Σ +

∫ x

0
e−Σ d(y)b= 0.

Concerning the second part of point (b), let f ∈C2 so that f(0) = f ′(0) = 0.
We want to show that ϕ= Tℓ coincides with f .

Since ϕ(0) = 0, it remains to check that ϕ′ = f ′. We recall that

ϕ′(x) = e−Σ(x)

(

2

∫ x

0

eΣ

σ2
(y)d(y)ℓ(y)

)

.

Twice applying the chain rule of Proposition 2.2 and using (4.19), the fact
that

eΣ(x) =

∫ x

0
eΣ

2d(y)b

σ2
+ 1

and integration by parts, we obtain

ϕ′(x) = e−Σ(x)

{
∫ x

0
eΣ d0f ′ +

∫ x

0
2
eΣ

σ2
f ′ d(y)b

}

= e−Σ(x)

{
∫ x

0
eΣ d0f ′ +

∫ x

0
f ′ d(y)eΣ

}

= e−Σ(x)

{
∫ x

0
eΣ d0f ′ +

∫ x

0
f ′ d0eΣ

}
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= e−Σ(x){(f ′eΣ)(x)− (f ′eΣ)(0)}
= f ′(x).

Point (b) is therefore completely established.
Point (d) follows because in (4.18), when ℓ ∈ ν0, it follows that f ′ ∈ ν0.
Clearly, as for the previous example, ImT ⊂C1

ν0
. It remains to show that

L̂T is the identity map {f ∈D1/2|f(0) = 0}.
For this, we first remark that

L̂f(x) =

∫ x

0

σ2

2
e−Σ d(y)(f ′eΣ).(4.21)

In fact, by Proposition 3.6 and integration by parts contained in Remark 3.2(c),
we obtain

f ′(x)eΣ(x) = f ′(0) +

∫ x

0
eΣ d(y)f ′ +

∫ x

0
f ′ d(y)eΣ.

By the chain rule of Proposition 2.2, we obtain the right-hand side of (4.21).
At this point, by definition, if f = Tℓ, we have

f ′(x)eΣ(x) =

∫ x

0
2
eΣ

σ2
d(y)ℓ.

Therefore, (4.21) and Proposition 2.2 allow us to conclude that

L̂f(x) =

∫ x

0

σ2

2
e−Σ2

eΣ

σ2
d(y)ℓ= ℓ(x)− ℓ(0).

(iv) Suppose b is locally with bounded variation. Then the Technical As-
sumption is satisfied for ν0 = BV , where BV is the space of continuous real
functions, locally with bounded variation v, equipped with the following
topology. A sequence (vn) in BV converges to v if

vn(0) → v(0),

dvn → dv in the weak- ∗ topology.

The arguments for proving that the Technical Assumption is satisfied are
similar, but easier, than those for the previous point. Young-type calculus
is replaced by classical Lebesgue–Stieltjes calculus.

5. Martingale problem. In this section, we consider a PDE operator sat-
isfying the same properties as in previous section, that is,

Lg =
σ2

2
g′′ + b′g′,(5.1)

where σ > 0 and b are continuous. In particular, we assume that

Σ(x) = lim
n→∞

2

∫ x

0

b′n
σ2

n

(y)dy(5.2)
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exists in C0, independently of the chosen mollifier. Then h defined by h′(x) :=
exp(−Σ(x)) and h(0) = 0 is a solution to Lh= 0 with h′ 6= 0.

Here, we aim to introduce different notions of martingale problem, trying,
when possible, to also clarify the classical notion. For the next two defini-
tions, we consider the following convention. Let (Ω,F , P ) equipped with a
filtration (Ft)t≥0 fulfill the usual conditions; see, for instance, [14], Definition
2.25, Chapter 1.

Definition 5.1. A process X is said to solve the martingale problem
related to L (with respect to the aforementioned filtered probability space)
with initial condition X0 = x0, x0 ∈ R, if

f(Xt)− f(x0)−
∫ t

0
Lf(Xs)ds

is an (Ft)t≥s-local martingale for f ∈DL and X0 = x0.
More generally, for s≥ 0, x∈ R, we say that (Xs,x

t , t≥ 0) solves the mar-
tingale problem related to L with initial value x at time s if for every f ∈DL,

f(Xs,x
t )− f(x)−

∫ t

s
Lf(Xs,x

r )dr, t≥ s,

is an (Ft)t≥s-local martingale.

We remark that Xs,x solves the martingale problem at time s if and only
if Xt :=X

s,x
t+s solves the martingale problem at time 0.

Definition 5.2. Let (Wt) be an (Ft)-classical Wiener process. An
(Ft)-progressively measurable process X = (Xt) is said to solve the sharp
martingale problem related to L (on the given filtered probability space)
with initial condition X0 = x0, x0 ∈ R, if

f(Xt)− f(x0)−
∫ t

0
Lf(Xr)dr =

∫ t

0
f ′(Xr)σ(Xr)dWr

for every f ∈DL.
More generally, for s≥ 0, x ∈ R, we say that (Xs,x

t , t≥ s) solves the sharp
martingale problem related to L with initial value x at time s if for every
f ∈DL,

f(Xs,x
t )− f(x)−

∫ t

s
Lf(Xs,x

r )dr =

∫ t

s
f ′(Xs,x

r )σ(Xs,x
r )dWr, t≥ s.

Remark 5.3. Let (Wt) be an (Ft)-Wiener process. If b′ is continuous,
then a process X solves the (corresponding) sharp martingale problem with
respect to L if and only if it is a classical solution of the SDE

Xt = x0 +

∫ t

0
b′(Xr)dr+

∫ t

0
σ(Xr)dWr.
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For this, a simple application of the classical Itô formula gives the result.

Remark 5.4. (i) In general, f(x) = x does not belong to DL, otherwise
a solution to the martingale problem with respect to L would be a semi-
martingale. According to Remark 5.18, this is generally not the case. In [11],
we gave necessary and sufficient conditions on b so that X is a semimartin-
gale.

(ii) Given a solution X to the martingale problem related to L, we are
interested in the operators

A :DL →C, given by A(f) =

∫

·

0
Lf(Xs)ds,

and

A :C1 →C, given by A(ℓ) =

∫

·

0
ℓ′(Xs)ds,

where C is the vector algebra of continuous processes.
We may ask whether A and A are closable in C1 and C0, respectively.

We will see that A admits a continuous extension to C1. However, A can be
extended continuously to some topological vector subspace ν0 of C0, where
ν0 includes the drift, only when Assumption A(ν0) is satisfied.

Similarly, as in the case of classical stochastic differential equations, it is
possible to distinguish two types of existence and uniqueness for the mar-
tingale problem. Even if we could treat initial conditions which are random
F0-measurable solutions, here we will only discuss deterministic ones. We
will denote by MP(L,x0) [resp. MP(L,x0)] the martingale problem (resp.
sharp martingale problem) related to L with initial condition x0. The no-
tions will only be formulated with respect to the initial condition at time 0.

Definition 5.5 (Strong existence). We will say that SMP(L,x0) admits
strong existence if the following holds. Given any probability space (Ω,F , P ),
a filtration (Ft)t≥0 and an (Ft)t≥0-Brownian motion (Wt)t≥0, x0 ∈ R, there
is a process (Xt)t≥0 which solves the sharp martingale problem with respect
to L and initial condition x0.

Definition 5.6 (Pathwise uniqueness). We will say that SMP(L,x0)
admits pathwise uniqueness if the following property is fulfilled.

Let (Ω,F , P ) be a probability space with filtration (Ft)t≥0 and

(Ft)t≥0-Brownian motion (Wt)t≥0. If two processes X,X̃ are two solutions of

the sharp martingale problem with respect to L and x0, such that X0 = X̃0

a.s., then X and X̃ coincide.
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Definition 5.7 (Existence in law or weak existence). We will say that
MP(L;x0) admits weak existence if there is a probability space (Ω,F , P ),
a filtration (Ft)t≥0 and a process (Xt)t≥0 which is a solution of the corre-
sponding martingale problem.

We say that MP(L) admits weak existence if MP(L;x0) admits weak
existence for every x0.

Definition 5.8 (Uniqueness in law). We say that MP(L;x0) has a
unique solution in law if the following holds. We consider an arbitrary prob-
ability space (Ω,F , P ) with a filtration (Ft)t≥0 and a solution X of the cor-
responding martingale problem. We also consider another probability space
(Ω̃, F̃ , P̃ ) equipped with another filtration (F̃t)t≥0 and a solution X̃ . We

suppose that X0 = x0, P -a.s. and X̃0 = x0, P̃ -a.s. Then X and X̃ must have
the same law as a r.v.’s with values in E =C(R+) (or C[0, T ]).

Remark 5.9. Let us suppose b′ to be a continuous function. We do not
suppose σ to be strictly positive (only continuous).

(i) The SMP(L,x0) then admits strong existence and pathwise unique-
ness if the corresponding classical SDE

Xt = x0 +

∫ t

0
σ(Xs)dWs +

∫ t

0
b′(Xs)ds

admits strong existence and pathwise uniqueness. In this case, DL =C2 and
to establish this, it is enough to use the classical Itô formula.

(ii) It is well known (see [14, 26]) that weak existence (resp., uniqueness
in law) of the martingale problem is equivalent to weak existence (resp.,
uniqueness in law) of the corresponding SDE.

For the rest of the section let s ∈ [0, T ], x0 ∈ R. Moreover, let (Ω, (Ft), P )
be a fixed filtered probability space fulfilling the usual conditions.

The first result concerning solutions to the martingale problem related to
L is the following.

Proposition 5.10. Let y0 = h(x0).

(i) A process X solves the martingale problem related to L with initial
condition x at time s if and only if Y = h(X) is a local martingale which
solves, on the same probability space,

Yt = y0 +

∫ t

s
σ̃h(Ys)dWs,(5.3)

where σ̃h(y) = (σh′)(h−1(y)) and where (Wt) is an (Ft)-classical Brownian
motion.
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(ii) Let (Wt) be an (Ft)-classical Brownian motion. If Y is a solution
to equation (5.3), then X = h−1(Y ) is a solution to the sharp martingale
problem with respect to L with initial condition x at time s.

Remark 5.11. Let X be a solution to the martingale problem with
respect to L and set Y = h(X) as in point (i) above. Since Y is a local
martingale, we know from Remark 3.5(iv) that X = h−1(Y ) is an (Ft)-
Dirichlet process with martingale part

MX
t =

∫ t

0
(h−1)′(Ys)dYs.

In particular, X is a finite quadratic variation process with

[X,X] = [MX ,MX ]t =

∫ t

0
σ2(Xs)ds.

Proof of Proposition 5.10. For simplicity, we will set s= 0.
First, let X be a solution to the martingale problem related to L. Since

h ∈DL and Lh= 0, we know that Y = h(X) is an (Ft)-local martingale. In
order to calculate its bracket, we recall that h2 ∈DL and Lh2 = σ2(h′)2 hold
by Proposition 4.11(a). Thus,

h2(Xt)−
∫ t

0
(σh′)2(Xs)ds

is an (Ft)-local martingale. This implies that

[Y,Y ]t =

∫ t

0
(σh′)2(h−1(Ys))ds=

∫ t

0
σ̃2

h(Ys)ds.

Finally, Y is a solution to the SDE (5.3) with respect to the standard FY -
Brownian motion W given by

Wt =

∫ t

0

1

σ̃h(Ys)
dYs,

where FY is the canonical filtration generated by Y .
Now, let Y = h(X) be a solution to (5.3) and let f ∈DL. Proposition 4.11(c)

says that φ := f ◦ h−1 ∈DL0 ≡C2, where

L0φ=
σ̃2

h

2
φ′′ = (Lf) ◦ h−1.(5.4)

We can therefore apply Itô’s formula to evaluate φ(Y ), which coincides with
f(X). This gives

φ(Yt) = φ(Y0) +

∫ t

0
φ′(Ys)dYs + 1

2

∫ t

0
φ′′(Ys)d[Y,Y ]s.
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Using d[Y,Y ]s = σ̃2
h(Ys)ds and taking into account (5.4), we conclude that

f(Xt) = f(X0) +

∫ t

0
(f ′σ)(Xs)dWs +

∫ t

0
Lf(Xs)ds.(5.5)

This establishes the proposition. �

Remark 5.12. From Proposition 5.10 in particular, we have the follow-
ing.

Let (Ω, (Ft), P ) be a filtered probability space fulfilling the usual condi-
tions. Let x0 ∈ R and X be a solution to the martingale problem related to
L with initial condition x0. Then there exists a classical Brownian motion
(Wt) such that X is a solution to the sharp martingale problem related to
L with initial condition x0.

Corollary 5.13. Let X be a solution to the martingale problem related
to L with initial condition x0. Then map A admits a continuous extension
from DL to C1 with values in C which we will again denote by A. Moreover,
A(f) is a zero quadratic variation process for every f ∈C1.

Proof. A has a continuous extension because of (5.5). A(f) is a zero
quadratic variation process because X is a Dirichlet process with martingale
part

∫

·

0 σ(Xs)dWs and because of Remark 3.5. �

Remark 5.14. The extension of (5.5) to C1 gives

f(Xt) = f(X0) +

∫ t

0
(f ′σ)(Xs)dWs +A(f).(5.6)

Choosing f = id in (5.6), we get

Xt =X0 +

∫ t

0
σ(Xs)dWs +A(id).

We will see that if there is a subspace ν0 of C0 such that Technical As-
sumption A(ν0) is verified, then the operator A will be extended to ν0. If

b is an element of that space, then it will be possible to write L̂id= b and
A(id) =A(b). In that case, we will be able to indicate that X is a solution
of the generalized SDE with diffusion coefficient σ and distributional drift
b′.

A similar result to Proposition 5.10 can be deduced for the case of a trans-
formation through function k and the divergence-type operator introduced
at (4.13).
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Proposition 5.15. We consider the transformation k and the PDE
operator L1 introduced at (4.13) and in Lemma 4.13, respectively.

A process X solves the martingale problem related to L with initial con-
dition x0 at time s if and only if Z = k(X) solves the martingale problem
related to L1 with initial condition k(x0) at time s.

Proof. This is an easy consequence of Lemma 4.13. �

Let x0 ∈ R, y0 = h(x0). Let σ, b,Σ, h be as in Section 4.
We set σ̃h = (σe−Σ) ◦ h−1.
From Proposition 5.10, we have the following.

Corollary 5.16. (i) Strong existence (resp., pathwise uniqueness) holds
for SMP(L,x0) if and only if strong existence (resp., pathwise uniqueness)
holds for the SDE

dYt = σ̃h(Yr)dWr

with initial condition Y0 = h(x0).
(ii) An analogous equivalence holds for weak existence (resp., uniqueness

in law).

From Proposition 5.10, we can deduce two other corollaries concerning
the well-posedness of our martingale problem.

Corollary 5.17. Under the same assumptions as the previous corol-
lary, MP(L,x0) admits weak existence and uniqueness in law.

Proof. The statement follows from point (i) of Corollary 5.16 and from
the fact that the SDE (5.3) admits weak existence and uniqueness in law
because σ̃h > 0; see Theorem 5.7, Chapter 5 of [14], or [7]. �

Remark 5.18. By Corollary 5.11 of [11], it is immediate to see that
the solution is a semimartingale for each initial condition if and only if Σ is
locally of bounded variation.

If L is in divergence form [see Remark 4.4(a) with α = 1], then the so-
lution corresponds to the process constructed and studied by, for instance,
Stroock [25].

Corollary 5.19. Suppose that either (σ, b) ∈ (D1/2,C1/2) or (b, σ) ∈
(D1/2,C1/2) and, moreover, that (4.7) is satisfied. Then MP(L,x0) admits
strong existence and pathwise uniqueness.
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Proof. In this case, Σ is well defined [see Remark 4.4(d)] and σ belongs
to D1/2. Since h−1 is of class C1, σ̃h is Hölder continuous with parameter
1
2 . The SDE (5.3) admits pathwise uniqueness because of Theorem 3.5(ii) of
[20] and weak existence, again through Theorem 5.7 of [14]. The Yamada–
Watanabe theorem (see [14], Corollary 3.23, Chapter 5) also implies strong
existence for (5.3). The result follows from point (i) of Corollary 5.16. �

6. A significant stochastic differential equation with distributional drift.
In this section, we will discuss the case where the martingale problem is
equivalent to a stochastic differential equation to be specified. First, one
would need to give a precise sense to the generalized drift

∫

·

0 b
′(Xs)ds, b

being a continuous function.
We will introduce a property related to a general process X . First, we

consider the linear map AX : ℓ→
∫

·

0 ℓ
′(Xs)ds defined on C1(R) with values

in C.

Definition 6.1. Let ν1 be a topological F-space (or, eventually, an in-
ductive limit of F -spaces) which is a topological linear subspace of C0(R)
and such that ν1 ⊃C1(R). We will say that X has extended local time regu-
larity with respect to ν1 if:

• AX admits a continuous extension to ν1, which will still be denoted by
the same symbol;

•
∫

·

0 g(X)d−AX(ℓ) exists for every g ∈C2 and every ℓ ∈ ν1.

Remark 6.2. The terminology related to local time is natural in this
context. To illustrate this, we consider a general continuous processX having
a local time (Lt(a), t ∈ [0, T ], a ∈ R) with respect to Lebesgue measure, that
is, fulfilling the density occupation identity

∫ t

0
ϕ(Xs)ds=

∫

R

ϕ(a)Lt(a)da, t∈ [0, T ],

for every positive Borel function ϕ. X trivially has extended local time
regularity, at least with respect to ν1 =C1.

Let ℓ ∈C1. Suppose for a moment that (Lt(a)) is a semimartingale in a,
as is the case, for instance, if X is a classical Brownian motion. In that case,
one would have

∫ t

0
ℓ′(Xs)ds=

∫ t

0
ℓ′(a)Lt(a)da= −

∫

R

ℓ(a)Lt(da).

Clearly, the rightmost integral can be extended continuously in probability
to any ℓ ∈C0, which implies that X also has extended local time regularity
related to ν1 = C0. We remark that [4] gives general conditions on semi-
martingales X under which Lt(da) is a good integrator, even if (Lt(a)) is
not necessarily a semimartingale in a.
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Definition 6.3. Let (Ω, (Ft), P ) a filtered probability space, (Wt) a
classical (Ft)-Brownian motion and Z an F0-measurable random variable.
A process X will be called a ν1-solution of the SDE

dXt = b′(Xt)dt+ σ(Xt)dWt,

X0 = Z,

if:

• X has the extended local time regularity with respect to ν1;
• Xt = Z +

∫ t
0 σ(Xs)dWs +AX(b)t;

• X is a finite quadratic variation process.

Remark 6.4. Suppose that b ∈ ν1. If ν1 ⊂ ν ′1, then a ν ′1-solution is also
a ν1-solution.

The previous definition is also new in the classical case, that is, when b′ is
a continuous function. A ν1-solution with ν1 =C1 corresponds to a solution
to the SDE in the classical sense. On the other hand, a ν1-solution with ν1

strictly including C1 is a solution whose local time has a certain additional
regularity.

Even in this generalized framework, it is possible to introduce the notions
of strong ν1-existence, weak ν1-existence, pathwise ν1-uniqueness and ν1-
uniqueness in law. This can be done similarly as in Definition 5.8 according
to whether or not the filtered probability space with the classical Brownian
motion is fixed a priori.

Lemma 6.5. We suppose that Technical Assumption A(ν0) is satisfied.
If X is a solution to a martingale problem related to a PDE operator L, then
it has extended local time regularity with respect to ν1 = ν0.

Proof. Let ℓ ∈C1. Since X solves the martingale problem with respect
to L, setting f = Tℓ, it follows that

AX(ℓ)t =

∫ t

0
ℓ′(Xs)ds=

∫ t

0
Lf(Xs)ds

= f(Xt)− f(X0)−
∫ t

0
f ′(Xs)σ(Xs)dWs.

Continuity of T on ν0 implies that AX can be extended to ν0.
Now, let ℓ ∈ ν0 and f = Tℓ ∈ C1. Since f(X) equals a local martingale

plus AX(ℓ), it remains to show that
∫

·

0
g(X)d−f(X)(6.1)
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exists for any g ∈C2. Integrating by parts, the previous integral (6.1) equals

(gf)(X
·
)− (gf)(X0)−

∫

·

0
f(X)d−g(X)− [f(X), g(X)].

Remark 3.3(b), (f) shows that the rightmost term member is well defined.
�

Lemma 6.6. Let X be a process having extended local time regularity
with respect to some F -space (or inductive limit) ν1. Suppose that for fixed
g ∈ C1, the application ℓ→ gℓ is continuous from ν1 to ν1. Then for every
g ∈C2 and every ℓ∈ ν1, we have

∫

·

0
g(X)d−AX(ℓ) =AX(Φ(g, ℓ)),(6.2)

where

Φ(g, ℓ)(x) = (gℓ)(x)− (gℓ)(0) −
∫ x

0
(ℓg′)(y)dy.(6.3)

Proof. The Banach–Steinhaus-type Theorem 2.5 implies that for every
g ∈C2,

ℓ 7→
∫

·

0
g(X)d−AX(ℓ)(6.4)

is continuous from ν1 to C. In fact, expression (6.4) is the u.c.p. limit of

lim
ε→0+

∫

·

0
g(Xs)

AX(ℓ)s+ε −AX(ℓ)s
ε

ds.

Note that Φ is a continuous bilinear map from C1×ν1 to ν1. Since AX :ν1 →
C is continuous, the mapping ℓ→AX(Φ(g, ℓ)) is also continuous from ν1 to
C. In order to conclude the proof, we need to check identity (6.2) for ℓ ∈C1.
In that case, since

Φ(g, ℓ)(x) =

∫ x

0
(gℓ′)(y)dy,

both sides of (6.2) equal
∫

·

0
(gℓ′)(Xs)ds. �

We will now explore the relation between the martingale problem asso-
ciated with L and the stochastic differential equations with distributional
drift.
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Proposition 6.7. Let x0 ∈ R. Suppose that L fulfills Technical Assump-
tion A(ν0). Let (Ω, (Ft), P ) be a filtered probability space fulfilling the usual
conditions and let (Wt) be a classical (Ft)-Brownian motion.

If X solves the sharp martingale problem with respect to L with initial
condition x0, then X is a ν0-solution to the stochastic differential equation

dXt = b′(Xt)dt+ σ(Xt)dWt,
(6.5)

X0 = x0.

Remark 6.8. In particular, if L is close to divergence type, as in Ex-
ample 4.18(ii), then X is a C0-solution to the previous equation with b=
σ2

2 + β − σ2(0)
2 .

Proof. Let X be a solution to the martingale problem related to L.
We know, by Lemma 6.5, that X has extended local time regularity with
respect to ν1. On the other hand, by Remark 5.11, X is a finite quadratic
variation process. It remains to show that

Xt =X0 +

∫ t

0
σ(Xs)dWs +AX(b)t.(6.6)

Let ℓ ∈C1 and set f = T 1ℓ. By definition of a sharp martingale problem, we
have

T 1ℓ(Xt) = T 1ℓ(X0) +

∫ t

0
((T 1ℓ)′σ)(Xs)dWs +AX(ℓ)t.(6.7)

According to Remark 4.15(i) concerning the continuity of the map T 1 :ν0 →
C1, previous expression can be extended to any ℓ ∈ ν0.

By Remark 4.15(ii), ℓ= b ∈ ν0 and f = T 1ℓ= id. Replacing this in (6.7),
we obtain

Xt = x0 +

∫ t

0
σ(Xs)dWs +AX(b).

Since X0 = Z, the proof is complete. �

Corollary 6.9. Let x0 ∈ R. Suppose that L fulfills Technical Assump-
tion A(ν0). If MP(L,x0) [resp. SMP(L,x0)] admits weak (resp., strong)
existence, then the SDE (6.5) also admits weak (resp., strong) existence.

Proof. The statement concerning strong solutions is obvious. Concern-
ing weak solutions, let us admit the existence of a filtered probability space,
where there is a solution to the martingale problem with respect to L with
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initial condition x0. Then according to Remark 5.12, this solution is also a
solution to a sharp martingale problem and the result follows. �

If X is some ν1-solution to (6.6), is it a solution to the (sharp) martingale
problem related to some operator L? This is a delicate question. In the
following proposition, we only provide the converse of Proposition 6.7 as a
partial answer.

Proposition 6.10. Suppose that the PDE operator L fulfills Technical
Assumption A(ν0). Let (Ω, (Ft), P ) be a filtered probability space fulfilling
the usual conditions and let (Wt) be a classical (Ft)-Brownian motion. Let
X be a progressively measurable process.
X solves the sharp martingale problem related to L with respect to some

initial condition x0 if and only if it is a ν0-solution to the stochastic differ-
ential equation

dXt = b′(Xt)dt+ σ(Xt)dWt,
(6.8)

X0 = x0.

Corollary 6.11. Let x0 ∈ R. Suppose that L fulfills Technical Assump-
tion A(ν0). Then weak existence and uniqueness in law (resp., strong exis-
tence and pathwise uniqueness) hold for equation (6.8) if and only if the
same holds for MP(L,x0) [resp. SMP(L,x0)].

Proof of Proposition 6.10. Suppose that X is a ν0-solution to (6.8).
Then it is a finite quadratic variation process. Let f ∈C3. SinceX solves (6.6)
and

∫

·

0 f
′(Xs)d

−Xs always exists by the classical Itô formula [see Remark 3.3(e)
of Section 1], we know that

∫

·

0 f
′(X)d−AX(b) also exists and is equal to

∫

·

0 f
′(X)d−X −

∫

·

0(f
′σ)(X)dW. Therefore, this Itô formula says that

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)σ(Xs)dWs +

∫ t

0
f ′(X)d−AX(b)

+ 1
2

∫ t

0
f ′′(Xs)σ

2(Xs)ds

holds.
By Lemma 6.6, the linearity of mapping AX and (4.12), we obtain

∫ t

0
f ′(X)d−AX(b) +

1

2

∫ t

0
(f ′′σ2)(Xs)ds

=AX(Φ(f ′, b))t +
1

2

∫ t

0
(f ′′σ2)(Xs)ds

=

∫ t

0

(

σ2

2
− b

)

(Xs)f
′′(Xs)ds+AX(bf ′) =AX(L̂f).
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This shows that

f(Xt)− f(X0)−
∫ t

0
(f ′σ)(Xs)dWs =AX(L̂f)(6.9)

for every f ∈C3. In reality, it is possible to show the previous equality for any
f ∈ C2. In fact, the left-hand side extends continuously to C2 and even to
C1. The right-hand side is also allowed to be extended to C2 for the following
reason. For f ∈C2, let (fn) be a sequence of functions in C3 converging to f
when n→∞, according to the C2 topology. In particular, the convergence
also holds in C1

ν0
. Since L̂ is continuous with respect to the C1

ν0
topology

with values in ν0, we have L̂fn → L̂f in ν0. Finally, AX(L̂fn) → AX(L̂f)
u.c.p. because of the extended local time regularity with respect to ν0.

We will, in fact, use the validity of (6.9) for f ∈ C2 with f(0) = 0 and

x1 = f ′(0) and ℓ = L̂f. According to Technical Assumption A(ν0)(iv), we
have f = T x1ℓ. Therefore, (6.9) gives

T x1ℓ(Xt) = T x1ℓ(X0) +

∫ t

0
((T x1ℓ)′σ)(Xs)dWs +AX(ℓ).

Again using extended local time regularity with respect to ν0 and the con-
tinuity of T x1 , we can state the validity of the previous expression for each
ℓ ∈ ν0 with ℓ(0) = 0, in particular, for ℓ ∈C1 with ℓ(0) = 0. But in this case,
for any f ∈DL with f(0) = 0 and ℓ′ = Lf , we obtain

f(Xt) = f(X0) +

∫ t

0
(f ′σ)(Xs)dWs +

∫ t

0
Lf(Xs)ds.

This shows the validity of the identity in Definition 5.2 for f ∈DL and that
f(0) = x0 and x0 = 0. If x0 6= 0, we replace f by f − x0 in the previous
identity and use the fact that L(f − x0) = Lf for any f ∈DL.

It follows that X fulfills a sharp martingale problem with respect to L.
This shows the reversed sense of the statement. The direct implication

was proven in Proposition 6.7. �

Corollary 6.12. We suppose that σ ∈D1/2 and b ∈C1/2, or σ ∈C1/2

and b ∈D1/2, with conditions (4.7). We set ν0 =D1/2.
Then equation (6.8) admits ν0-strong existence and pathwise uniqueness.

Proof. The result follows from Corollaries 6.11 and 5.19. �

7. About C
0

b
-generalized solutions of parabolic equations. In this sec-

tion, we want to discuss the related parabolic Cauchy problem with final
condition, which is associated with our stochastic differential equations with
distributional drift.

We will adopt the same assumptions and conventions as in Section 4. We
consider the formal operator L = ∂t + L, where L will hereafter act on the
second variable.
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Definition 7.1. Let λ be an element of C0
b ([0, T ] × R) and let u0 ∈

C0
b (R). A function u ∈ C0

b ([0, T ] × R) will be said to be a C0
b -generalized

solution to

Lu= λ,
(7.1)

u(T, ·) = u0,

if the following are satisfied:

(i) for any sequence (λn) in C0
b ([0, T ]×R) converging to λ in a bounded

way,
(ii) for any sequence (u0

n) in C0
b (R) converging in a bounded way to

u0,
(iii) such there are classical solutions (un) in C0

b ([0, T ] × R) of class
C1,2([0, T [×R) to Lnun = λn, un(T, ·) = u0

n,

then (un) converges in a bounded way to u.

Remark 7.2. (a) u is said to solve Lu = λ if there exists u0 ∈ C0
b (R)

such that (7.1) holds.
(b) The previous definition depends in principle on the mollifier, but it

could be easily adapted so as not to depend on it.
(c) The regularized problem admits a solution: if u0

n ∈ C3
b (R) and λn ∈

C
0,1
b ([0, T ]×R), then there is a classical solution un in C1,2([0, T ]×R) of

Lnv = λn,

v(T, ·) = u0
n.

For this, it suffices to apply Theorem 5.19 of [15].

We now state a result concerning the case when the operator L is classical.
Even if the next proposition could be stated when the drift b′ is a continuous
function, we will suppose it to be zero. In fact, it will later be applied to
L= L0.

Proposition 7.3. We suppose that b = 0. Let ϕ,ϕn ∈ C0
b (R), g, gn ∈

C0
b ([0, T ] × R), n ∈ N, such that ϕn −→ ϕ, gn −→ g in a bounded way on R

and [0, T ]×R.
Let σ be a strictly positive real continuous function.
Suppose that there exist un ∈C1,2([0, T [×R)∩C0

b ([0, T ]×R) such that

Lnun = gn,

un(T, ·) = ϕn.
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Then (un) will converge to u ∈ C0
b ([0, T ] × R) in a bounded way, where the

function u is defined by

u(s,x) = E

(

ϕ(Y s,x
T ) +

∫ T

s
g(r,Y r,x

T )dr

)

,(7.2)

where Y = Y s,x is the unique solution (in law) to

Yt = x+

∫ t

s
σ(Xr)dWr(7.3)

and where (Wt) is a classical Brownian motion on some suitable filtered
probability space.

Remark 7.4. Usual Itô calculus implies that

un(s,x) = E

(

ϕn(Y s,x
T (n)) +

∫ T

s
gn(r,Y r,x

T (n))dr

)

,(7.4)

where Y (n) = Y s,x(n) is the unique solution in law to the problem

Yt(n) = x+

∫ t

s
σn(Yr(n))dWr.(7.5)

Theorem 5.4 (Chapter 5 of [14]) affirms that it is possible to construct a
solution (unique in law) Y = Y s,x to the SDE (7.3) [resp., Y (n) = Y s,x(n)
to (7.5)].

Suppose that L is a classical PDE operator. Let u ∈ C1,2([0, T [×R) be
bounded and continuous on [0, T ]×R. Again, Itô calculus shows that u can
be represented by (7.2) and (7.3). In particular, a classical solution u to
Lu= g is also a C0

b -generalized solution.

Proof of Proposition 7.3. We fix s ∈ [0, T ], x∈ R. Using the Engelbert–
Schmidt construction (see, e.g., the proof of Theorem 5.4, Chapter 5 and
5.7 of [14]), it is possible to construct a solution Y = Y s,x of the SDE on
some fixed probability space which solves (7.3) with respect to some clas-
sical Wiener process (Wt). We set s= 0 for simplicity. The procedure is as
follows. We fix a standard Brownian motion (Bt) on some fixed probability
space one set

Rt :=

∫ t

0

du

σ2(x+Bu)
.

R is a.s. a homeomorphism on R+ and we define A as the inverse of R. A
solution Y will be then given by Yt = x+BAt

; in fact, it is possible to show
that the quadratic variation of the local martingale Y is

〈Y,Y 〉t =

∫ t

0
σ2(Ys)ds.
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The Brownian motion W is constructed a posteriori and is adapted to the
natural filtration of Y by setting Wt =

∫ t
0

dYs

σ(Ys) .

So, on the same probability space, we can set Yt(n) = x+ BAt(n), A(n)

being the inverse of R(n), where R(n)t :=
∫ t
0

du
σ2

n(x+Bu) .

Consequently, on the same probability space, we construct Yt(n) = x+
BAt(n), where A(n) is the inverse of R(n) and R(n)t :=

∫ t
0

du
σ2

n(x+Bu) . Y (n)

solves equation (7.5) with respect to a Brownian motion depending on n.
By construction, the family Y s,x

T (n) converges a.s. to Y s,x
T . Using Lebesgue

dominated convergence theorems and the bounded convergence of (ϕn) and
(gn), we can take the limit when n→∞ in expression (7.4) and obtain the
desired result. �

Remark 7.5. In particular, the corresponding laws of random variables
(Y s,x(n)) are tight.

Again, we will adopt the same conventions as in Section 4.
We set σh = σh′. L0 is the classical operator defined at (4.9). Let us

consider L0 = ∂t +L0 as a formal operator.

Corollary 7.6. Let g ∈C0
b ([0, T ]×R), ϕ ∈C0

b (R). There is a C0
b -gene-

ralized solution u to L0u= g, u(T, ·) = ϕ. This solution is unique and is given
by (7.2).

We now return to the original PDE operator L with distributional drift.
We again denote by h the same application defined in Section 5 and discuss
existence and uniqueness of C0

b -generalized solutions of related parabolic
Cauchy problems.

A useful consequence of Proposition 7.3 is the following.

Theorem 7.7. For ϕ ∈ C0([0, T ] × R) or C0(R), we again set ϕ̃= ϕ ◦
h−1 according to the conventions of Section 2. Again, we consider L0 =
∂t +L0 as a formal operator.

Let λ ∈C0
b ([0, T ]×R), u0 ∈C0

b (R).
There is a unique solution u ∈C0

b ([0, T ]× R) to

Lu= λ,
(7.6)

u(T, ·) = u0.

Moreover, ũ solves

L0ũ= λ̃,
(7.7)

ũ(T, ·) = ũ0.
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Proof. In accordance with Section 4, let (hn)n∈N be an approximating
sequence which is related to Lh = 0. Let us consider the PDE operators
Ln defined at (4.2). Let (λn)n∈N be a sequence in C0

b ([0, T ) × R) such that
λn → λ, u0

n → u0 in a bounded way and for which there are classical solutions
un of

Lnun = λn,

un(T, ·) = u0
n.

We recall that those sequences always exist because of Remark 7.2(c).
We set

gn = λn ◦ h−1
n , ϕn = ϕ ◦ h−1

n , vn = un ◦ h−1
n .

By Lemma 4.14, we have

L0
nvn = gn,

vn(T, ·) = ϕn,

where

L0
nϕ(t, y) = ∂tϕ(t, y) + σ2

hn
◦ h−1

n (t, y)∂2
xx
ϕ(t, y).

By Proposition 7.3, and Corollary 7.6, vn → ũ in a bounded way, where

L0ũ= λ̃,

ũ(T, ·) = ũ0.

This concludes the proof of the proposition. �

We now discuss how C0
b -generalized solutions are transformed under the

action of the function k introduced at (4.13). A similar result to Lemma
4.13 for the elliptic case is the following.

Proposition 7.8. For ϕ ∈C0([0, T ]×R) or C0(R), we set ϕ̄= ϕ◦k−1.
We set σk = σk′ and consider the formal operator

L1f = ∂tf + 1
2 σ̄

2
k ∂

2
xx
f + 1

2 (σ̄2
k)

′ ∂xf.

Informally, we can write

L1f = ∂tf + 1
2∂x(σ̄2

k ∂xf).

Let λ ∈C0
b ([0, T ]×R), u0 ∈C0

b (R).
Let u be the unique C0

b -generalized solution in C0
b ([0, T ]× R) to

Lu= λ,
(7.8)

u(T, ·) = u0.
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Then ū solves

L1ū= λ̄,

ū(T, ·) = ū0.

Proof. Let v be the unique solution to

L1v = λ̄,

v(T, ·) = ū0,

which exists because of Theorem 7.7, taking L = L1.
We define H :R → R such that

H(0) = 0, H ′(z) =
1

σ2
k

(z).

Again, (4.7) implies that H is bijective on R. This case corresponds to
example (a) in Remark 4.4 with α= 1.

We set ṽ = v ◦H−1. Again, by Theorem 7.7, we have

L0,1ṽ = λ̄ ◦H−1,

ṽ(T, ·) = u0 ◦ (k−1 ◦H−1),

where L0,1f = a2

2 ∂
2
xx
f and

a= (σkH
′) ◦H−1 =

1

σk
◦H−1.

Since

σk = (σk′) ◦ k−1 =
eΣ

σ
◦ k−1,

this yields

a= (σe−Σ) ◦ (H ◦ k)−1.

On the other hand, H ◦ k = h since

H ◦ k(0) = 0 = h(0),

(H ◦ k(x))′ =H ′(k(x))k′(x) =
1

σ2
k

k′(x) =
1

σ2k′
= e−Σ = h′.

We can therefore conclude that L0,1 ≡L0. Since problem (7.7) has a unique
solution, ṽ = ũ, where u solves (7.6) and ũ= u ◦ h−1. Finally,

v = ṽ ◦H = ũ ◦H = u ◦H ◦ h−1 = u ◦ k−1 = ū. �
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Proposition 7.9. The unique C0
b -generalized solution to (7.6) admits

a probabilistic representation in the sense that

u(s,x) = E

(

u0(Xs,x
T ) +

∫ T

s
λ(r,Xr,x

T )dr

)

,(7.9)

where Xs,x is the solution to the martingale problem related to L at time s
and point x.

Proof. The result follows from Theorem 7.7, Corollary 7.6 and Propo-
sition 5.10, which collectively imply the following. If X is a solution to the
martingale problem related to L at point x at time s, then Y = h(X) solves
the stochastic differential equation (5.3) with initial condition h(x) at time
s. �

8. Density of the associated semigroups. We now discuss the existence of
a density law for the solutions Xs,x of the martingale problem related to L.

First, we suppose that L is an operator in divergence form with Lf = (σ2

2 f
′)′

and that there are positive constants such that c≤ σ2 ≤ C. We will say, in
this case, that L has the Aronson form. This terminology refers to the funda-
mental paper [1] concerning exponential estimates of fundamental solutions
of nondegenerate parabolic equations. We begin with some properties (partly
classical) stated in [11]. We observe that point (ix) is slightly modified with
respect to [11], but this new configuration can be immediately deduced from
the proof in [11]. This preparatory work will be applied to the operator L1

introduced in (4.14).

Lemma 8.1. We suppose that 0< c≤ σ2 ≤C. Let σn, n ∈ N, be smooth
functions such that 0 < c ≤ σ2

n ≤ C and σ2
n → σ2 in C0, as at the begin-

ning of Section 4. We set Lng = (σ2
n

2 g
′)′. There exists a family of probability

measures (νt(dx, y), t≥ 0, y ∈ R) [resp., (νn
t (dx, y), t≥ 0, y ∈ R)] enjoying the

following properties:

(i) νt(dx, y) = pt(x, y)dx, ν
n
t (dx, y) = pn

t (x, y)dy;
(ii) (Aronson estimates) there exists M > 0, depending only on con-

stants c, C, with

1

M
√
t
exp

(

−M |x− y|2
t

)

≤ pt(x, y)≤
M√
t
exp

(

−|x− y|2
Mt

)

;

(iii) we have

∂tνt(·, y) = Lνt(·, y), ν0(·, y) = δy(8.1)

and

∂tν
n
t (·, y) =Lnν

n
t (·, y), νn

0 (·, y) = δy,
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where ν (resp., νn) is called the fundamental solution related to the previous
parabolic linear equation;

(iv) we have

∂tνt(x, ·) = Lν(x, ·),
∂tν

n
t (x, ·) = Lnν

n(x, ·);
(v) the map (t, x, y) 7→ pt(x, y) is continuous from ]0,∞[×R

2 to R;
(vi) the pn are smooth on ]0,∞[×R

2;
(vii) we have limn→∞ pn

t (x, y) = pt(x, y) uniformly on each compact sub-
set of ]0,∞[×R

2;
(viii) pt(x, y) = pt(y,x) holds for every t > 0 and every x, y ∈ R;

(ix)
∫ T
0 supy(

∫

R
|∂xpt(x, y)|2 dx)1/2 dt <∞.

The previous lemma allows us to establish the following.

Theorem 8.2. Let Zs,x be the solution to the martingale problem related
to L at time s and point x. Suppose that L to be of divergence type, having
the Aronson form. Then there is fundamental solution νt = rt(x, y) of

∂tνt(·, y) =Lνt(·, y), ν0(·, y) = δy,

with the following properties:

(i) letting g ∈ C0
b ([0, T ] × R), ϕ ∈ Cb(R), the C0

b -generalized solution u

to Lu= g, u(T, ·) = ϕ, is given by

u(s,x) =

∫

R

ϕ(y)rT−s(x, y)dy+

∫ T

s
dr

∫

R

g(r, y)rT−r(x, y)dy;(8.2)

(ii) the law of Zs,x
T has rT−s(x, ·) as density with respect to Lebesgue mea-

sure.

Proof. Let (rn
t (x, y)) be the fundamental solution corresponding to

the parabolic equation associated with Lnf(x) = (σ2
nf ′

2 )′, as introduced in
Section 4. We observe that (σ2

n) converges in a bounded way to σ2.

(i) We define

un(s,x) =

∫

R

ϕ(y)rn
T−s(x, y)dy +

∫ T

s
dr

∫

R

g(r, y)rn
T−r(x, y)dy.(8.3)

Points (vi) and (ii) of Lemma 8.1 imply that functions un belong to
C1,2([0, T [×R), so they are classical solutions to

Lnun = g,

un(T, ·) = u0.
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According to points (ii) and (vii) of the same lemma, one can prove that un

converges in a bounded way to u defined by (8.2). In fact, the coefficients σ2
n

are lower and upper bounded with a common constant, related to c and C.
Therefore, this u is the C0

b -generalized solution of the Cauchy problem being
considered, which is known to exist. By uniqueness, point (i) is established.

(ii) Setting g = 0, point (i) implies that u(s,x) =
∫

R
ϕ(y)rT−s(x, y)dy is

the C0
b -generalized solution to Lu = 0 with u(T,x) = ϕ(x). By Proposi-

tion 7.9, in particular, using the probabilistic representation, we get
E(ϕ(Zs,x

T )) =
∫

R
ϕ(y)rT−s(x, y)dy. �

Remark 8.3. If L is in the divergence form, as before, then DL = {f ∈
C1 such that there exists g ∈ C1 with f ′ = g

σ2 }. This is a consequence of

Lemma 4.9 and the fact that e−Σ = 1
σ2 .

Hereafter, we will consider a general PDE operator L with distributional
drift, as in Section 4, for which the assumption (Aronson) below holds.

c≤ eΣ

σ2
≤C.(Aronson)

We observe that the PDE operator in divergence form of the type L1f =

(
σ2

k
f ′

2 )′, where σk = (σk′) ◦ k−1, has the Aronson form, so the previous the-
orem can be applied.

Theorem 8.4. Let Xs,x be the solution to the martingale problem re-
lated to L at time s and point x. Suppose that L fulfills assumption (Aronson).
Then there exists a kernel pt(x, y) such that:

(i) the law of Xs,x
t has pt−s(x, ·) as density with respect to Lebesgue mea-

sure for each t ∈ ]s,T ];
(ii) letting g ∈ C0

b ([0, T ] × R), ϕ ∈ C0
b (R), the C0

b -generalized solution u
to Lu= g, u(T, ·) = ϕ, is given by

u(s,x) =

∫

R

ϕ(y)pT−s(x, y)dy +

∫ T

s
dr

∫

R

g(r, y)pT−r(x, y)dy.(8.4)

Proof. (i) Proposition 5.15 says that Zs,x = k(Xs,x) solves the martin-
gale problem with respect to L1. Let rt(x, y) be the fundamental solution
associated with the parabolic PDE L1 = ∂t +L1. The first point then follows
from the next observation.

Remark 8.5. By means of a change of variable, it is easy to see that
the density law of Xs,x

t equals

pt(x,x1) = rt(k(x), k(x1))k
′(x1) = rt(k(x), k(x1))

eΣ

σ2
(x1).
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(ii) This is a consequence of point (i), Fubini’s theorem and Proposi-
tion 7.9. �

At this point, we need a lemma which extends to the kernel pt(x,x1) the
integrability property of the kernel rt(x,x1) stated in (8.3) concerning the
divergence case.

Lemma 8.6. Let pt(x,x1) be the kernel introduced in Theorem 8.4. Then:

(i) it is continuous in all variables (t, x, x1) ∈ ]0, T [×R
2;

(ii) it fulfills Aronson estimates;

(iii)
∫ T
0 (supx1

∫

R
∂xpt(x,x1)

2 dx)1/2 dt <∞.

Proof. We recall, by Remark 8.5, that

pt(x,x1) = rt(k(x), k(x1))k
′(x1),

where rt(z, z1) is the fundamental solution associated with the operator

L1f = (
σ2

k

2 f
′)′, k′ = eΣ

σ2 . This, and point (v) of Lemma 8.1, directly imply
the validity of the first point.

Taking into account assumption (Aronson), Aronson estimates for (rt(z, z1))
and the fact that

|k(x)− k(x1)|=
∫ 1

0
k′(αx+ (1−α)x1)dα|x− x1|,

result (ii) follows easily.
With the same conventions as before, we have

∂xpt(x,x1) = ∂zrt(k(x), k(x1))k
′(x)k′(x1).

So, for x ∈ R,
(

∫

R

(∂xpt(x,x1))
2 dx

)1/2

=

(

k′(x1)

∫

R

(∂zrt(z, k(x1)))
2 dz

)1/2

≤
√
C sup

z1

(
∫

R

dz(∂zrt(z, z1))
2
)1/2

.

(iii) Follows after integration with respect to t and because of Lemma 8.1(ix).
�

Proposition 8.7. Let g ∈C0
b ([0, T ] × R)∩L1([0, T ] × R), ϕ ∈C0

b (R) ∩
L1(R). Let u : [0, T ] × R → R be the C0

b -generalized solution to Lu = g,
u(T, ·) = ϕ. Then:

(a)
∫ T
0 dt

∫

R
u2(t, x)dx <∞;
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(b) x 7→ u(t, x) is absolutely continuous,

∫ T

0
dt

(
∫

R

(∂xu)
2(t, x)dx

)1/2

<∞

and in particular, for a.e. t∈ [0, T ], ∂xu(t, ·) is square integrable.

Remark 8.8. Previous assumptions imply that g and ϕ are also square
integrable.

Proof of Proposition 8.7. We recall the expression given in Theo-
rem 8.4,

u(t, x) =

∫

R

ϕ(x1)pT−t(x,x1)dx1 +

∫ T

t
dr

∫

R

g(r,x1)pT−r(x,x1)dx1.

Using Lemma 8.6 and classical integration theorems, we have

∂xu(t, x) =

∫

R

ϕ(x1)∂xpT−t(x,x1)dx1

(8.5)

+

∫ T

t
dr

∫

R

ds g(s,x1)∂xpT−s(x,x1)dx1.

Using Jensen’s inequality, we have

|u(t, x)|2 ≤
∫

R

ϕ(x1)
2pT−t(x,x1)dx1

+ (T − t)

∫ T

t
ds

∫

R

g2(s,x1)pT−s(x,x1)dx1.

Therefore,
∫

R

u2(t, x)dx=

∫

R

dx1ϕ(x1)
2
∫

R

dxpT−t(x,x1)

+

∫ T

t
ds (T − t)

∫

R

dx1

∫

g2(s,x1)

∫

R

dxpT−s(x,x1).

Using Aronson estimates, this quantity is bounded by

const

(
∫

R

dx1ϕ(x1)
2
∫

R

dx
1√
T − t

p

(

x− x1√
T − t

)

+

∫ T

t
ds

∫

R

dx1

∫

g2(s,x1)

∫

R

dx
1√
T − s

p

(

x− x1√
T − s

))

,

where p is the Gaussian N(0,1) density. This is clearly equal to

const

(
∫

R

dx1ϕ(x1)
2 +

∫ T

0
ds

∫

R

dx1 g
2(s,x1)

)

.
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This establishes point (a).
Concerning point (b), in order to simplify the framework we will suppose

that g = 0. Expression (8.4) implies that

∂xu(t, x) =

∫

R

ϕ(x1)∂xpT−t(x,x1)dx1.

Jensen’s inequality implies that

∂xu(t, x)
2 ≤

(
∫

R

dx1 |ϕ(x1)||∂xpT−t(x,x1)|2
)

∫

R

dx1 |ϕ(x1)|.

Integrating with respect to x and taking the square root, we get
√

∫

R

dx∂xu(t, x)2 ≤
√

∫

R

|ϕ(x1)|dx1

√

∫

R

dx1 |ϕ(x1)|
∫

R

dx |∂xpT−t(x,x1)|2

≤
∫

R

dx1 |ϕ(x1)|
√

sup
x1

∫

R

|∂xpt(x,x1)|2 dx.

Integrating with respect to t gives

∫ T

0
dt‖∂xu(t, ·)‖L2(R) ≤

∫

R

dx1 |ϕ(x1)|
∫ T

0
dt

√

sup
x1

∫

R

∂xpt(x,x1)2 dx.

This quantity is finite due to Lemma 8.6(iii). �

9. Relation with weak solutions of stochastic partial differential equa-
tions. As in the previous section, we will adopt assumption (Aronson). At
this point, we wish to investigate the link between C0

b -generalized solutions
and the notion of SPDE’s weak solutions for a corresponding Cauchy prob-
lem.

We will adopt the same conventions as in Section 4. In this section, we will
suppose that coefficients σ, b are realizations of stochastic processes indexed
by R. Let us consider the formal operator L = ∂t + L, where L acts on the
second variable.

We consider the equation

Lu= λ,
(9.1)

u(T, ·) = u0.

The aim of this section is to show that a C0
b -generalized solution to (9.1)

provides, when σ = 1, a solution to the (stochastic) PDE of the type (1.1), as
defined in the Definition 1.1, that is, with the help of a symmetric integral
via regularization, as defined in Section 3. We denote by D(R) the linear
space of C∞ real functions with compact support.

The link between the SPDE (1.1) and (1.2) is given in the following.
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Proposition 9.1. Let u(t, x), v(t, x), t∈ [0, T ], x ∈ R be two continuous
random fields a.s. in C0,1(]0, T [×R) such that v(t, x) = u(T − t, x). v is a
solution to the SPDE (1.1) if and only if v is a solution to the SPDE (1.2).

Proof. We observe that ∂xv(t, x) = −∂xu(T − t, x). The proof is ele-
mentary. The only point to check is the following:

∫

R

d◦η(x)α(x)

(
∫ T

t
ds∂xu(s,x)

)

= −
∫

R

d◦η(x)α(x)

(
∫ t

0
ds∂xv(s,x)

)

.

This follows by the definition of symmetric integral and the following, obvi-
ous, identity:

∫

R

dx
η(x+ ε)− η(x− ε)

2ε
α(x)

(
∫ T

t
ds∂xu(s,x)

)

= −
∫

R

dx
η(x+ ε)− η(x− ε)

2ε
α(x)

(
∫ t

0
ds∂xv(s,x)

)

for every ε > 0. �

We continue with a lemma, still supposing σ to be general.

Lemma 9.2. Let λ (resp., u0) be a random field with parameter (t, x) ∈
[0, T ] × R (resp., x ∈ R) whose paths are bounded and continuous. Let σ, b
be continuous stochastic processes such that Σ is defined a.s. and assump-
tion (Aronson) is satisfied. Let u be the random field which is a.s. the C0

b -
generalized solution to (9.1). The following then holds:

∫

R

dxα(x)

(

u(t, x)− u0(x) +

∫ T

t
λ(s,x)ds

)

=

∫

R

eΣ(x)
(

∫ T

t
ds∂xu(s,x)

)

d◦
(

α
σ2

2
e−Σ(x)

)

for every α ∈D(R).

Proof. We fix a realization ω. Theorem 8.4 says that the unique solu-
tion to equation (9.1) is given by

u(s,x) =

∫

R

u0(y)pT−s(x, y)dy +

∫ T

s
dr

∫

R

λ(r, y)pT−r(x, y)dy,(9.2)

where (pt(x, y)) is the density law of the solution to the martingale problem
related to L at point x at time s.

Proposition 8.7(b) implies that ∂xu exists and is integrable on ]0, T [×R.
According to Proposition 7.8, we know that

ū(t, z) = u(t, k−1(z))
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is a C0
b -generalized solution to

L1ū= λ̄,
(9.3)

ū(T, ·) = ū0,

where

λ̄(t, z) = λ(t, k−1(z)), ū0(z) = u0(k−1(z)).

On the other hand, ū can be represented via (8.2) in Theorem 8.2 through
fundamental solutions (νt) = (rt(x, y)) of

∂tνt(·, y) = L1νt(·, y), ν0(·, y) = δy.

Since the previous equation holds in the Schwarz distribution sense, by in-
spection, it is not difficult to show that ū is a solution (in the sense of
distributions) to (9.3), which means that we have the following:

∫

R

α(z)(ū0(z)− ū(t, z))dz − 1
2

∫ T

t
ds

∫

R

α′(z)∂z ū(s, z)σ
2
k(z)

(9.4)

=

∫ T

t
ds

∫

R

α(z)λ̄(s, z)

for every test function α ∈D(R), t ∈ [0, T ]. We recall, in particular, that ∂zū

is in L1(]0, T [×R).
We set

D(t, z) =

∫ T

t
∂zū(s, z)ds, D(t, z) =D(t, z)

σ2
k(z)

2
.

Expression (9.4) shows that

∂zD(t, ·) = −ū0 + ū(t, ·) +

∫ T

t
λ̄(s, ·)ds,(9.5)

in the sense of distributions. So for each t ∈ [0, T ], D is of class C1.

For t ∈ [0, T ] and x ∈ R, we set A(t, x) =
∫ T
t ∂xu(s,x)ds, A(t, x) =

A(t, x)eΣ(x). We recall that

u(s,x) = ū(s, k(x)), ∂xu(s,x) = ∂xū(s, k(x))k
′(x).

Therefore,

A(t, x) =D(t, k(x))k′(x)

so that

A(t, x) = 2D(t, k(x))
k′(x)

σ2
k(k(x))

=D(t, k(x))
2

σ2(x)k′(x)

= 2D(t, k(x))e−Σ(x).
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Therefore, A(t, x) = 2D(t, k(x)) and so A is of class C1.
Since ∂xA(t, x) = 2∂zD(t, k(x))k′(x), (9.5) gives

∂xA(t, x) =

(

−u0(x) + u(t, x) +

∫ T

t
λ(s,x)ds

)

2
eΣ

σ2
(x).(9.6)

Consequently,

u(t, x)− u0(x) +

∫ T

t
λ(s,x)ds= ∂x

(

eΣ(x)
∫ T

t
ds∂xu(s,x)

)

e−Σ(x)σ
2(x)

2
.

We integrate the previous expression against a test function α ∈ D(R) to
obtain

∫

R

dxα(x)

(

u(t, x)− u0(x) +

∫ T

t
λ(s,x)ds

)

=

∫

R

dxα(x)

{

∂x

(

eΣ(x)
∫ T

t
ds∂xu(s,x)

)

e−Σ(x)σ
2(x)

2

}

.

Remark 3.1 and integration by parts for the symmetric integral provided
by Remark 3.2(c) allow us to conclude the proof of the lemma. �

Finally, we are able to state the theorem concerning the existence of weak
solutions for the SPDE.

Theorem 9.3. Let λ (resp., u0) be a random field with parameter in
(t, x) ∈ [0, T ]× R (resp., x ∈ R) whose paths are bounded and continuous.

We suppose that σ = 1 and that η is a (two-sided) zero strong cubic varia-
tion process such that there are two finite and strictly positive random vari-
ables Z1,Z2 with Z1 ≤ eη(x) ≤Z2 a.s.

Let u be the random field which is ω a.s. a C0
b -generalized solution to (9.1)

for b= η(ω). We set v(t, x) = u(T − t, x). Then v is a (weak) solution of the
SPDE (1.1).

Proof. Proposition 9.1 says that it will be enough to verify that

−
∫

R

α(x)u(t, x)dx+

∫

R

α(x)u0(x)dx

− 1
2

∫

R

α′(x)

(
∫ T

t
ds∂xu(s,x)

)

dx+

∫

R

α(x)

(
∫ T

t
ds∂xu(s,x)

)

d◦η(x)

=

∫ T

t
ds

∫

R

dxα(x)λ(s,x)

for every test function α and every t ∈ [0, T ].
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After making the identification b = η(ω), the previous Lemma 9.2 says
that

∫

R

dxα(x)

(

u(t, x)− u0(x) +

∫ T

t
λ(s,x)ds

)

=

∫

R

e2η(x)
(

∫ T

t
ds∂xu(s,x)

)

d◦
(

αe−2η

2
(x)

)

.

Since η is a zero strong cubic variation process, Proposition 3.8 implies
that eη is also a zero strong cubic variation process. Then the Itô chain rule
from Proposition 3.9, applied with F (x, η(x)) = α(x)eη(x), and Remark 3.1
say that the right-hand side of previous expression gives

1
2

∫

R

(
∫ T

t
ds∂xu(s,x)

)

d0(αe−2η(x))

= 1
2

∫

R

(
∫ T

t
ds∂xu(s,x)

)

e2η(x)(α′(x)e−2η(x)dx+ α(x)d◦e−2η(x))

= 1
2

∫

R

(
∫ T

t
ds∂xu(s,x)

)

α′(x)dx

−
∫

R

(
∫ T

t
ds∂xu(s,x)

)

α(x)d◦η(x).

This concludes the proof. �
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