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OPERATOR SCALING STABLE RANDOM FIELDS

HERMINE BIERMÉ, MARK M. MEERSCHAERT, AND HANS-PETER SCHEFFLER

Abstract. A scalar valued random field {X(x)}x∈Rd is called operator-scaling if
for some d× d matrix E with positive real parts of the eigenvalues and some H > 0
we have

{X(cEx)}x∈Rd

f.d.
= {cHX(x)}x∈Rd for all c > 0,

where
f.d.
= denotes equality of all finite-dimensional marginal distributions. We

present a moving average and a harmonizable representation of stable operator
scaling random fields by utilizing so called E-homogeneous functions ϕ, satisfying
ϕ(cEx) = cϕ(x). These fields also have stationary increments and are stochasti-
cally continuous. In the Gaussian case critical Hölder-exponents and the Hausdorff-
dimension of the sample paths are also obtained.

1. Introduction

A scalar valued random field {X(x)}x∈Rd is called operator-scaling if for some d×d

matrix E with positive real parts of the eigenvalues and some H > 0 we have

(1.1) {X(cEx)}x∈Rd
f.d.
= {cHX(x)}x∈Rd for all c > 0,

where
f.d.
= denotes equality of all finite-dimensional marginal distributions. As usual

cE = exp(E log c) where exp(A) =
∑∞

k=0
Ak

k!
is the matrix exponential. Note that if

E = I, the identity matrix, then (1.1) is just the well-known self-similarity property

{X(cx)}x∈Rd
f.d.
= {cHX(x)}x∈Rd where one usually calls H the Hurst-index. See [11]

for an overview of self-similar processes in the one-dimensional case d = 1. Self-

similar processes are used in various fields of applications such as internet traffic

modelling [23], ground water modelling and mathematical finance, just to mention a

few. Various examples can be found for instance in the books [18] and [1]. A very

12000 Mathematics Subject Classification. Primary: 60G50, 60F17; Secondary: 60H30, 82C31.
Date: 20 February 2006.
Key words and phrases. fractional random fields, operator scaling.
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important class of such fields or processes are the fractional stable fields and especially

the Lévy fractional Brownian field.

These fields have different definitions which are usually not equivalent. More pre-

cisely, for 0 < α ≤ 2 let Zα(dy) be an independently scattered symmetric α-stable

(SαS) random measure on Rd with Lebesgue control measure λd (see [21] p. 121).

For 0 < H < 1 one defines the moving average representation by

(1.2) XH(x) =

∫

Rd

(

‖x− y‖H−d/α − ‖y‖H−d/α
)

Zα(dy).

For Wα(dξ) a complex isotropic SαS random measure with Lebesgue control measure

the harmonizable representation is given by

(1.3) X̃H(x) = Re

∫

Rd

(

ei〈x,ξ〉 − 1
)

‖ξ‖−H−d/αWα(dξ).

See [21] for a comprehensive introduction to random integrals with respect to stable

measures. It follows from basic properties that {XH(cx)}x∈Rd
f.d.
= {cHX(x)}x∈Rd as

well as {X̃H(cx)}x∈Rd
f.d.
= {cHX̃H(x)}x∈Rd . Moreover, both processes have stationary

increments, that is for any h ∈ Rd we have {XH(x+h)−XH(h)}x∈Rd
f.d.
= {XH(x)}x∈Rd

and similarly for {X̃H(x)}x∈Rd. Furthermore both fields are isotropic, that is

{XH(Ax)}x∈Rd
f.d.
= {X(x)}x∈Rd for any orthogonal matrix A. It is worth mention-

ing that if α < 2 the fields {XH(x)}x∈Rd and {X̃H(x)}x∈Rd defined in (1.2) and (1.3),

respectively, are usually different. See [21], Theorem 7.7.4 for the one-dimensional

case. However, in the Gaussian case α = 2, by computing the covariance function of

the fields, it follows that {XH(x)}x∈Rd and {X̃H(x)}x∈Rd have the same law up to a

multiplicative constant and known as the Lévy fractional Brownian field.

Certain applications (see, e.g., [7, 8, 20] and references therein) require that the

random field is anisotropic and satisfies a scaling relation. This scaling relation should

have different Hurst indices in different directions and these directions should not

necessarily be orthogonal. In the Gaussian case a prominent example of an anisotropic

random field is the fractional Brownian sheet {BH(x)}x∈Rd defined as follows: Let

0 < Hj < 1 for j = 1, . . . , d and set H = (H1, . . . , Hd). Define

BH(x) =

∫

Rd

d
∏

j=1

[

|xj − uj|
Hj−1/2 − |uj|

Hj−1/2
]

Z2(du).
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See [5, 14, 24] and the literature cited there for more information on these fields.

Then, if we set E = diag(H−1
1 , . . . , H−1

d ), it follows by a simple computation that

{BH(cEx)}x∈Rd
f.d.
= {cBH(x)}x∈Rd so {BH(x)}x∈Rd is operator scaling in the sense of

(1.1). However, {BH(x)}x∈Rd does not have stationary increments.

The purpose of this paper is to define two different classes of operator scaling stable

random fields (OSSRF) and analyze their basic properties. We present a moving

average representation as well as a harmonizable representation. Our constructions

are based on a class of E-homogeneous functions ϕ : Rd → [0,∞) where ϕ is positive

on Rd\{0} and ϕ(cEx) = cϕ(x) for all x ∈ Rd and c > 0. Such functions were studied

in detail in [19], Chapter 5. It will turn out that the harmonizable representation

allows more flexibility in the class of possible functions ϕ in contrast to the moving

average representation which is more restrictive. However, in both cases the OSSRFs

satisfy (1.1), have stationary increments and are continuous in probability. In the

Gaussian case α = 2 we show that there exists modifications of these fields which are

almost surely Hölder-continuous of certain indices and we compute the Hausdorff-

dimension of the graph.

This paper is organized as follows: In section 2 we introduce the class of E-

homogeneous functions, derive some basic properties and provide important examples.

In section 3 we define and analyze a moving average representation of OSSRFs. Sec-

tion 4 is devoted to the harmonizable representation and its properties. Finally, in

the Gaussian case α = 2, we analyze the sample path properties of both the moving

average and the harmonizable representation of OSSRFs.

2. E-homogeneous functions

Let E be a real d × d matrix with positive real parts of the eigenvalues 0 < a1 <

a2 . . . < ap for p ≤ d. Let us denote Γ = Rd \ {0}. It follows from Lemma 6.1.5 of

[19] that there exists a norm ‖ · ‖0 on Rd such that for the unit sphere S0 = {x ∈ Rd :

‖x‖0 = 1} the mapping Ψ : (0,∞) × S0 → Γ, Ψ(r, θ) = rEθ is a homeomorphism.

Moreover for any x ∈ Γ the function t 7→ ‖tEx‖0 is strictly increasing. Hence we

can write any x ∈ Γ uniquely as x = τ(x)E l(x) for some radial part τ(x) > 0 and

some direction l(x) ∈ S0 such that x 7→ τ(x) and x 7→ l(x) are continuous. Observe

that S0 = {x ∈ R
d : τ(x) = 1} is compact. Moreover we know that τ(x) → ∞ as
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x → ∞ and τ(x) → 0 as x → 0. Hence we can extend τ(·) continuously by setting

τ(0) = 0. Note that further τ(−x) = τ(x) and l(−x) = −l(x). The following result

gives bounds on the growth rate of τ(x) in terms of the real parts of the eigenvalues

of E.

Lemma 2.1. For any (small) δ > 0 there exist constants C1, . . . , C4 > 0 such that

for all ‖x‖0 ≤ 1 or all τ(x) ≤ 1,

C1‖x‖
1/a1+δ
0 ≤ τ(x) ≤ C2‖x‖

1/ap−δ
0 ,

and, for all ‖x‖0 ≥ 1 or all τ(x) ≥ 1,

C3‖x‖
1/ap−δ
0 ≤ τ(x) ≤ C4‖x‖

1/a1+δ
0 .

Proof. We will only prove the first two inequalities. It follows from Theorem 2.2.4 of

[19] that for any δ′ > 0 we have ta1−δ
′
‖t−Eθ‖0 → 0 as t → ∞ uniformly in ‖θ‖0 = 1.

Hence ‖t−E‖0 := supθ∈S0
‖t−Eθ‖0 ≤ Ct−a1+δ′ for all t ≥ 1 and some constant C > 0.

Equivalently ‖sE‖0 ≤ Csa1−δ
′
for all s ≤ 1. Since ‖x‖0 =

∥

∥τ(x)E l(x)
∥

∥

0
≤ ‖τ(x)E‖0 ≤

Cτ(x)a1−δ
′

we get τ(x) ≥ C1‖x‖
1/a1+δ
0 , for δ = 1

a1−δ1
− 1

a1
, if ‖x‖0 ≤ 1 which is

equivalent to τ(x) ≤ 1.

Similarly we know that, for any δ′ > 0, t−ap−δ
′
‖tEθ‖0 → 0 as t → ∞ uniformly in

‖θ‖0 = 1. Therefore ‖tE‖0 ≤ Ctap+δ
′
for all t ≥ 1 or equivalently ‖s−E‖0 ≤ Cs−ap−δ

′

for all s ≤ 1. But x = τ(x)E l(x) and l(x) = τ(x)−Ex. Thus, 1 ≤
∥

∥τ(x)−E
∥

∥

0

∥

∥x
∥

∥

0
and

∥

∥x
∥

∥

0
≥ C−1τ(x)ap+δ

′
for all ‖x‖0 ≤ 1. Hence τ(x) ≤ C2‖x‖

1/ap−δ
0 for δ = 1

ap
− 1

ap+δ′

and ‖x‖0 ≤ 1. The proof is complete. �

The following results generalize some of the results in [13], Chapter 1.A to our more

general case of exponents E.

Lemma 2.2. There exists a constant K ≥ 1 such that for all x, y ∈ Rd we have

τ(x+ y) ≤ K
(

τ(x) + τ(y)
)

.

Proof. Observe that the set G = {(x, y) ∈ Rd × Rd : τ(x) + τ(y) = 1} is bounded

by Lemma 2.1 and closed by continuity of τ . Hence G is a compact set. Thus the

continuous function (x, y) 7→ τ(x + y) assumes a finite maximum K on G. Since

S0 × {0} ⊂ G, we have K ≥ 1. Given any x, y ∈ R
d both not equal to zero we set



OPERATOR SCALING STABLE FIELDS 5

s = (τ(x) + τ(y))−1. Then, with τ(cEx) = cτ(x) it follows that

τ(x+ y) = s−1τ
(

sE(x+ y)
)

= s−1τ
(

(sEx) + (sEy)
)

.

But
(

sEx, sEy
)

∈ G since τ
(

sEx
)

+ τ
(

sEy
)

= s (τ(x) + τ(y)) = 1. Therefore,

τ(x+ y) ≤ Ks−1 = K
(

τ(x) + τ(y)
)

and the proof is complete. �

Now let q = trace(E) and observe that by multivariable change of variables we

have λd(cE(B)) = cqλd(B) for all Borel sets B ⊂ Rd, c > 0, which can be written as

d(cEx) = cqdx. Let B(r, x) = {y ∈ Rd : τ(y − x) < r} denote the ball of radius r > 0

around x ∈ Rd. Then it is easy to see that B(r, x) = x+B(r, 0) = x+ rEB(1, 0) and

hence λd(B(r, x)) = rqλd(B(1, 0)). The following proposition provides an integration

in polar coordinates formula.

Proposition 2.3. There exists a unique finite Radon measure σ on S0 such that for

all f ∈ L1(Rd, dx) we have
∫

Rd

f(x) dx =

∫ ∞

0

∫

S0

f(rEθ) σ(dθ) rq−1 dr.

The proof of Proposition 2.3 is based on the following.

Lemma 2.4. If f : Γ → C is continuous and f(rEx) = r−qf(x) for all r > 0 and

x ∈ Γ, then there exists a constant µf such that for all g ∈ L1
(

(0,∞), r−1dr
)

we have
∫

Rd

f(x)g(τ(x)) dx = µf

∫ ∞

0

g(r)
dr

r
.

Proof. Let Lf : (0,∞) → C be defined as

Lf (r) =

{

∫

1≤τ(x)≤r
f(x) dx if r ≥ 1

−
∫

1≤τ(x)≤r−1 f(x) dx if r < 1 .

Since f is continuous on Γ, from dominated convergence, Lf is continuous on (0, 1)∪

(1,+∞). But λd(B(r, 0)) = rqλd(B(1, 0)) implies that λd
(

{x ∈ Rd : τ(x) = r}
)

= 0,

and it follows that Lf is also continuous at point 1 and thus on (0,+∞). Moreover,

for any r > 0 we have Lf(r
−1) = −Lf (r). When rs ≥ 1 with r, s > 0 a change of

variables yields

Lf(rs) =

∫

1≤τ(x)≤rs

f(x) dx =

∫

1≤τ(sEy)≤rs

f(sEy)sq dy =

∫

s−1≤τ(y)≤r

f(y) dy.
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Let us assume for instance that 1 ≤ s−1 ≤ r. Then, by continuity of Lf ,
∫

s−1≤τ(y)≤r

f(y) dy =

∫

1≤τ(y)≤r

f(y) dy −

∫

1≤τ(y)≤s−1

f(y) dy = Lf (r) − Lf (s
−1).

It follows using Lf (s
−1) = −Lf (s) that

(2.1) Lf (rs) = Lf (r) + Lf (s).

Similarly we show that (2.1) holds for s−1 ≤ 1 ≤ r and s−1 ≤ r ≤ 1 and thus for all

rs ≥ 1. Using again the fact that Lf (r
−1) = −Lf (r), for all r > 0, (2.1) is valid for all

r, s > 0. By continuity of Lf it follows that Lf (r) = Lf (e) log r. We set µf = Lf(e).

If g(r) = 1]a,b](r) for some 0 < a < b we get
∫

Rd

f(x)g(τ(x)) dx =

∫

a<τ(x)≤b

f(x) dx = Lf (b) − Lf(a)

= µf
(

log b− log a
)

= µf

∫ ∞

0

g(r)
dr

r
.

The general result follows by taking linear combinations and limits of these functions

in the standard way. �

Proof of Proposition 2.3. When f ∈ C(S0) define f̃ on Γ by f̃(x) = τ(x)−qf
(

l(x)
)

.

The function f̃ satisfies the hypothesis of Lemma 2.4. If f ≥ 0 then µf̃ = Lf̃(e) =
∫

1≤τ(x)≤e
τ(x)−qf

(

l(x)
)

dx ≥ 0. Moreover µaf̃ = aµf̃ , µf̃+g̃ = µf̃+µg̃ and the mapping

f 7→ µf̃ is continuous. Hence this mapping is a positive linear functional on C(S0).

Therefore there exists a Radon measure σ on S0 such that µf̃ =
∫

S0
f(θ) σ(dθ).

If g1 ∈ Cc((0,∞)) we get from applying Lemma 2.4 with f̃ and g(r) = rqg1(r) that
∫

Rd

f(l(x))g1(τ(x)) dx =

∫

Rd

f̃(x)τ(x)qg1(τ(x)) dx

= µf

∫ ∞

0

g1(r)r
q−1 dr

=

∫ ∞

0

∫

S0

f(θ) σ(dθ) g1(r)r
q−1 dr.

Since linear combinations of functions of the form f(l(x))g1(τ(x)) are dense in

L1(Rd, dx) the result follows. �

Corollary 2.5. Let β ∈ R and suppose f : Rd → C is measurable such that |f(x)| =

O(τ(x)β). If β > −q then f is integrable near 0, and if β < −q then f is integrable

near infinity.



OPERATOR SCALING STABLE FIELDS 7

We are now in position to define the class of E-homogeneous functions and a

important subclass needed in the moving average representation of OSSRFs. Let E

be a d× d matrix as above such that 0 < a1 < · · · < ap and for x ∈ Γ let
(

τ(x), l(x)
)

be the polar coordinates associated to E, that is x = τ(x)El(x).

Definition 2.6. Let ϕ : R
d → C be any function. We say that ϕ is E-homogeneous

if ϕ(cEx) = cϕ(x) for all c > 0 and x ∈ Γ.

It follows that an E-homogeneous function ϕ is completely determined by its values

on S0, since ϕ(x) = ϕ(τ(x)El(x)) = τ(x)ϕ(l(x)). Observe that if ϕ is E-homogeneous

and continuous with positive values on Γ, then

(2.2) Mϕ = max
θ∈S0

ϕ(θ) > 0 and mϕ = min
θ∈S0

ϕ(θ) > 0.

Moreover by continuity we necessarily have ϕ(0) = 0.

Definition 2.7. Let β > 0. A continuous function ϕ : Rd → [0,∞) is called (β,E)-

admissible, if ϕ(x) > 0 for all x 6= 0 and for any 0 < A < B there exists a positive

constant C > 0 such that, for A ≤ ‖y‖ ≤ B,

τ(x) ≤ 1 ⇒ |ϕ(x+ y) − ϕ(y)| ≤ Cτ(x)β .

Remark 2.8. If a continuous function ϕ : Rd → [0,∞) is positive and Lipschitz on

Γ, that is |ϕ(x) − ϕ(y)| ≤ C‖x− y‖0 for x, y ∈ Γ, then ϕ is (β,E)-admissible for all

β < a1 by Lemma 2.1.

Remark 2.9. If ϕ is (β,E)-admissible then β ≤ a1. In fact, if Rd = V1 ⊕ · · · ⊕ Vp is

the spectral decomposition of Rd with respect to E (see [19], Chapter 2 for details),

by restricting the argument of the proof of Lemma 2.1 to the space V1 on can show

that for any δ > 0 there exists a constant C > 0 such that τ(x) ≤ C‖x‖
1/a1−δ
0 for

all x ∈ V1 with ‖x‖0 ≤ 1. Then, if for some fixed nonzero u ∈ V1 we consider the

function t 7→ ϕ(tu) we get for δ1 = βδ that |ϕ(tu+ su) − ϕ(su)| ≤ C|t|β/a1−δ1 for all

small t and s bounded away from zero and infinity. If one would have β > a1, one

could chose δ > 0 such that β/a1 − δ1 > 1 and hence there would exist a constant

K > 0 such that ϕ(tu) = K for all t 6= 0. But since ϕ is continuous and ϕ(0) = 0

this is impossible.
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Remark 2.10. In general the exponent E of a homogeneous function ϕ is not unique.

It is easy to check that ϕ(x) → ∞ as ‖x‖ → ∞, and then Theorem 5.2.13 in [19]

implies that the set of possible exponents is E + TS(ϕ) where E is any exponent,

S(ϕ) is the set of symmetries of ϕ, and TS(ϕ) is the tangent space at the identity.

Here we say that A is a symmetry of ϕ if ϕ(Ax) = ϕ(x) for all x ∈ Rd. The

symmetries S(ϕ) form a Lie group, and the tangent space consists of all derivatives

x′(0) of smooth curves x(t) on S(ϕ) for which x(0) = I the identity. For example, if

ϕ is rotationally invariant then S(ϕ) is the orthogonal group and TS(ϕ) is the linear

space of skew-symmetric matrices. Although exponents are not unique, Theorem

5.2.14 in [19] shows that every exponent E of a homogeneous function ϕ has the

same real spectrum 0 < a1 < · · · < ap and induces the same spectral decomposition

Rd = V1 ⊕ . . .⊕ Vp, since these structural components describe the growth properties

of the homogeneous function. In particular, the function r 7→ ϕ(rx) grows like r1/ai

for any nonzero x ∈ Vi, see Section 5.3 in [19] for more details.

We conclude this section by examples of (β,E)-admissible, E-homogeneous func-

tions ϕ : Rd → [0,∞) used in Theorem 3.1 below to define a moving average repre-

sentation of OSSRFs {Xϕ(x)}x∈Rd . Let us denote < ., . > the standard inner product

on Rd and Et the transpose of any d×d-matrix E with respect to this inner product.

The following class of examples is inspired by the log-characteristic function of a full

operator stable law on Rd. See [19] for details.

Theorem 2.11. Assume E is a real d × d-matrix such that the real parts of the

eigenvalues satisfy 1/2 < a1 < a2 . . . < ap for p ≤ d. Assume M(dθ) is a finite

measure on the unit sphere S0 corresponding to E such that

span
{

rE
t

θ : r > 0, θ ∈ supp(M)
}

= R
d.

Then

ϕ(x) =

∫

S0

∫ ∞

0

(

1 − cos
(

〈x, rE
t

θ〉
)) dr

r2
M(dθ)

is a continuous, E-homogeneous function such that ϕ(x) > 0 for all x ∈ Γ. Moreover

ϕ is (β,E)-admissible for β < min
(

a1,
a1
ap

)

if a1 ≤ 1 and β = 1 if a1 > 1.

Proof. Let a1 > 1/2 denote the smallest real part of the eigenvalues of E. Since

E and Et have the same eigenvalues, it follows from Theorem 2.2.4 of [19] that
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for any δ > 0 there exists a constant C > 0 such that ‖rE
t
θ‖0 ≤ Cra1−δ for all

0 < r ≤ 1 and θ0 ∈ S0. Therefore, from dominated convergence, ϕ is well-defined

and continuous on Rd. Moreover we have ϕ(x) ≥ 0 and ϕ(x) = 0 implies x = 0.

A simple change of variable shows that ϕ(cEx) = cϕ(x) for all c > 0 and x ∈ R
d.

It remains to show that ϕ is (β,E)-admissible. Using the trigonometric identity

cos(a) − cos(b) = −2 sin((a+ b)/2) sin((a− b)/2) we have for any x, y ∈ R
d that

(2.3) |ϕ(x+ y) − ϕ(y)| ≤ 2

∫

S0

∫ ∞

0

∣

∣

∣
sin

(〈x+ 2y, rE
t
θ〉

2

)

sin
(〈x, rE

t
θ〉

2

)
∣

∣

∣

dr

r2
M(dθ).

First, let us assume that a1 > 1, then an upper bound of (2.3) is given by

2

∫

S0

∫ ∞

0

∣

∣

∣
sin

(〈x, rE
t
θ〉

2

)
∣

∣

∣

dr

r2
M(dθ),

which is finite because a1 > 1, using ‖rE
t
θ‖0 ≤ Cra1−δ for all 0 < r ≤ 1 and θ0 ∈ S0,

and elementary estimates. Moreover writing x = τ(x)El(x) a change of variables

yields to

2

∫

S0

∫ ∞

0

∣

∣

∣
sin

(〈x, rE
t
θ〉

2

)
∣

∣

∣

dr

r2
M(dθ) = 2τ(x)

∫

S0

∫ ∞

0

∣

∣

∣
sin

(〈l(x), rE
t
θ〉

2

)
∣

∣

∣

dr

r2
M(dθ),

which proves that ϕ is 1-admissible.

Let us now consider the case where a1 ≤ 1. Choose δ > 0 small enough. On one

hand, for r ≤ 1, one can find C > 0 such that

∣

∣

∣
sin

(〈x+ 2y, rE
t
θ〉

2

)

sin
(〈x, rE

t
θ〉

2

)
∣

∣

∣
≤ C

(

2‖y‖0 + ‖x‖0

)

‖x‖0r
2a1−δ.

On the other hand, it follows from Theorem 2.2.4 of [19] that one can find C > 0

such that ‖rE
t
θ‖0 ≤ Crap+δ for all r ≥ 1 and θ0 ∈ S0. Thus, for γ < min

(

1, 1
ap

)

,

using | sin(u)| ≤ |u|γ, one can find C > 0 such that

∣

∣

∣
sin

(〈x+ 2y, rE
t
θ〉

2

)

sin
(〈x, rE

t
θ〉

2

)
∣

∣

∣
≤ C‖x‖γ0r

γap+γδ.

Therefore, by substituting these upper bounds into the right-hand side of (2.3) and

integrating, for some constant C > 0 we have shown that |ϕ(x+ y)− ϕ(y)| ≤ C‖x‖γ0

for all ‖x‖0 ≤ 1 and A ≤ ‖y‖0 ≤ B.

Since by Lemma 2.1 ‖x‖0 ≤ Cτ(x)a1−δ for τ(x) ≤ 1, the assertion follows with

β = γ(a1 − δ). �
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The following result gives a constructive description of a large class of continuous,

admissible E-homogeneous functions.

Corollary 2.12. Let θ1, . . . , θd be any basis of Rd, let 0 < λ1 ≤ · · · ≤ λd and

C1, . . . , Cd > 0. Choose a d × d matrix E such that Etθj = λjθj for j = 1, . . . , d.

Then for any ρ > 0, if ρ < 2λ1 the function

ϕ(x) =
(

d
∑

j=1

Cj|〈x, θj〉|
ρ/λj

)1/ρ

is a continuous E-homogeneous and (β,E)-admissible function for β < min
(

λ1, ρ
λ1

λd

)

if λ1 ≤ ρ and β = ρ if λ1 > ρ.

Proof. First observe that since rE
t
θj = rλjθj it follows that ϕ(cEx) = cϕ(x). Moreover

ϕ is continuous. Let B > A > 0, since y 7→
∑d

j=1Cj|〈y, θj〉|
ρ/λj is continuous and

positive on Γ, by the mean value theorem, for A ≤ ‖y‖ ≤ B and ‖x‖ ≤ A/2, one can

find C > 0 such that

(2.4) |ϕ(x+ y) − ϕ(y)| ≤ C
∣

∣

∣

d
∑

j=1

Cj |〈x+ y, θj〉|
ρ/λj −

d
∑

j=1

Cj |〈y, θj〉|
ρ/λj

∣

∣

∣
.

Hence it remains to show that the right hand side of (2.4) is (β,E)-admissible. Let

M =
∑d

j=1 γjεθj for suitable γj > 0, where εθ denotes the dirac mass in θ. Let us

define for x ∈ R
d,

ψ(x) =

∫

S0

∫ ∞

0

(

1 − cos
(

〈x, r(1/ρ)Etθ〉
)) dr

r2
M(dθ),

which is well defined since ρ < 2λ1. Moreover, by Theorem 2.11, ψ is (β, (1/ρ)E)-

admissible for β < min
(

λ1

ρ
, λ1

λd

)

if λ1 < ρ and β = 1 if λ1 > ρ. Let τρ(x) denote

the radial part with respect to (1/ρ)E. Then uniqueness implies that the radial part

τ(x) with respect to E is given by τ(x) = τρ(x)
1/ρ. Hence ψ is (β,E)-admissible for

β < min
(

λ1, ρ
λ1

λd

)

if λ1 < ρ and β = ρ if λ1 > ρ.
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Moreover, since r(1/ρ)Etθj = rλj/ρθj we get

ψ(x) =

d
∑

j=1

γj

∫ ∞

0

(

1 − cos
(

rλj/ρ|〈x, θj〉|
)) dr

r2

=

d
∑

j=1

ργj
λj

(

∫ ∞

0

(

1 − cos(s)
)

s−(ρ/λj )−1 ds
)

|〈x, θj〉|
ρ/λj

=
d

∑

j=1

Cj|〈x, θj〉|
ρ/λj .

This completes the proof. �

3. Moving average representation

In this section we consider a moving average representation of OSSRFs and derive

its basic properties. We first give sufficient conditions such that the integral repre-

sentation exists. More precisely, for 0 < α ≤ 2 we consider Zα(dy) an independently

scattered SαS random measure on Rd with Lebesgue control measure λd. Then we

define a moving average representation of OSSRFs using the basic fact that a random

integral
∫

Rd
f(y)Zα(dy) exists if and only if

∫

Rd
|f(y)|α dy <∞.

Throughout this section we fix a real d × d matrix E with 0 < a1 < · · · < ap

denoting the real parts of the eigenvalues of E. As before, let q = trace(E).

Theorem 3.1. Let β > 0. Let ϕ : Rd → [0,∞) be an E-homogeneous, (β,E)-

admissible function. Then for any 0 < α ≤ 2 and any 0 < H < β the random field

(3.1) Xϕ(x) =

∫

Rd

(

ϕ(x− y)H−q/α − ϕ(−y)H−q/α
)

Zα(dy) , x ∈ R
d

exists and is stochastically continuous.

Proof. Let us recall that Xϕ(x) exists if and only if

Γαϕ(x) =

∫

Rd

∣

∣

∣
ϕ(x− y)H−q/α − ϕ(−y)H−q/α

∣

∣

∣

α

dy <∞.

Let us assume that H ∈ (0, β). Observe that by (2.2) and the fact that ϕ is E-

homogeneous, ϕ(z) ≤ Mϕτ(z) and ϕ(z) ≥ mϕτ(z) for all z 6= 0. Fix any x ∈ Γ.

Then,
∣

∣

∣
ϕ(x− y)H−q/α − ϕ(−y)H−q/α

∣

∣

∣

α

≤ C
(

τ(x− y)αH−q + τ(y)αH−q
)

.
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But for any R > 0 it follows from Corollary 2.5 that
∫

τ(y)≤R
τ(y)αH−q dy < ∞ if

H > 0. Moreover, by Lemma 2.2 {y : τ(x− y) ≤ R} ⊂ {y : τ(y) ≤ K(R+ τ(x))} and

hence, by a change of variable we obtain using Corollary 2.5 again that, if H > 0
∫

τ(y)≤R

τ(x− y)αH−q dy =

∫

τ(x−y)≤R

τ(y)αH−q dy ≤

∫

τ(y)≤K(R+τ(x))

τ(y)αH−q dy <∞.

It remains to show that for some R = R(x) > 0 we have

(3.2)

∫

τ(y)>R

∣

∣

∣
ϕ(x+ y)H−q/α − ϕ(y)H−q/α

∣

∣

∣

α

dy <∞.

Observe that for τ(y) > R, ϕ(y) > 0, so we can write

ϕ(x+ y) = ϕ
(

ϕ(y)E
(

ϕ(y)−Ex+ ϕ(y)−Ey
))

) = ϕ(y)ϕ
(

ϕ(y)−Ex+ ϕ(y)−Ey
)

,

since ϕ is E-homogeneous. Moreover ϕ
(

ϕ(y)−Ey
)

= 1 and since ϕ is (β,E) admissi-

ble, one can find C > 0 such that
∣

∣ϕ
(

ϕ(y)−Ex+ ϕ(y)−Ey
)

− 1
∣

∣ ≤ Cτ
(

ϕ(y)−Ex
)β

= Cϕ(y)−βτ (x)β .

Hence by the mean value theorem applied to the function tH−q/α near t = 1, one can

find C1 > 0 such that
∣

∣

∣
ϕ(x+ y)H−q/α − ϕ(y)H−q/α

∣

∣

∣
= ϕ(y)H−q/α

∣

∣ϕ(ϕ(y)−Ex+ ϕ(y)−Ey)H−q/α − 1
∣

∣

≤ C1ϕ(y)H−β−q/ατ (x)β ,

for all τ(y) > R, where R > 0 is chosen sufficiently large so that Cϕ(y)−βτ (x)β < 1/2

for all τ(y) > R. But ϕ(y)H−β−q/α ≤ C2τ(y)
H−β−q/α and by Corollary 2.5 we know

that
∫

τ(y)≥R
τ(y)αH−q−αβ dy < ∞ if H < β. This allows to conclude that Γαϕ(x) is

finite for all x ∈ Rd. Let us now show that Xϕ is stochastically continuous. Since

Xϕ is a SαS field, it follows from Proposition 3.5.1 in [21] that Xϕ is stochastically

continuous if and only if, for all x0 ∈ R
d,

∫

Rd

∣

∣

∣
ϕ(x0 + x− y)H−q/α − ϕ(x0 − y)H−q/α

∣

∣

∣

α

dy → 0 as x→ 0.

By a change a variables, this holds if and only if

(3.3) Γαϕ(x) → 0 as x→ 0.

But ϕ is continuous on Rd so
∣

∣

∣
ϕ(x− y)H−q/α − ϕ(−y)H−q/α

∣

∣

∣

α

→ 0 as x→ 0
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for almost every y ∈ Rd. Moreover, arguing as above, as soon as τ(x) ≤ 1, for suitable

R > 0, one can find C > 0 such that

∣

∣

∣
ϕ(x− y)H−q/α − ϕ(−y)H−q/α

∣

∣

∣

α

≤ C
(

τ(y)αH−q1τ(y)≤K(R+1)(y) + τ(y)α(H−β)−q1τ(y)≥R(y)
)

,

where 1B(y) denotes the indicator function of a set B. Then (3.3) holds using domi-

nated convergence.

This concludes the proof. �

Corollary 3.2. Under the conditions of Theorem 3.1, the random field {Xϕ(x)}x∈Rd

has the following properties:

(a) operator scaling, that is, for any c > 0,

(3.4) {Xϕ(c
Ex)}x∈Rd

f.d.
= {cHXϕ(x)}x∈Rd .

(b) stationary increments, that is, for any h ∈ Rd,

(3.5) {Xϕ(x+ h) −Xϕ(h)}x∈Rd
f.d.
= {Xϕ(x)}x∈Rd.

Proof. We will only prove part (a). The proof of part (b) is left to the reader. Fix

any x1, . . . , xm ∈ Rd. Then (3.4) follows if we can show that for any t1, . . . , tm ∈ R

we have
m

∑

j=1

tjXϕ(c
Exj)

d
= cH

m
∑

j=1

tjXϕ(xj).

By a change of variable together with ϕ(cEx) = cϕ(x) and the fact that Zα(c
Edz)

d
=

cq/αZα(dz) we get

m
∑

j=1

tjXϕ(c
Exj) =

∫

Rd

m
∑

j=1

tj

(

ϕ(cExj − y)H−q/α − ϕ(−y)H−q/α
)

Zα(dy)

d
= cq/α

∫

Rd

m
∑

j=1

tj

(

ϕ
(

cE(xj − z)
)H−q/α

− ϕ(−cEz)H−q/α
)

Zα(dz)

= cH
m

∑

j=1

tjXϕ(xj)

and the proof is complete. �
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Remark 3.3. Theorem 3.1 and Corollary 3.2 include the following classical isotropic

random fields as special cases. Assume ϕ(x) = ‖x‖ and E = I, the identity matrix.

Observe that ϕ is an E-homogeneous, (1, E)-admissible function. Then

Xϕ(x) =

∫

Rd

(

‖x− y‖H−d/α − ‖y‖H−d/α
)

Zα(dy)

Especially, if α = 2, then {Xϕ(x)}x∈Rd is known as the Lévy fractional Brownian field.

Note that in this case, for any 0 < α ≤ 2 equation (3.4) reduces to the well-known

self-similarity property {Xϕ(cx)}x∈Rd
f.d.
= {cHXϕ(x)}x∈Rd. Moreover our results also

include the well known one-dimensional case d = 1 of linear fractional stable motions

and especially the fractional Brownian motion when α = 2.

4. Harmonizable representation

In this section we consider an harmonizable representation of OSSRFs and derive

its basic properties. We first give necessary and sufficient conditions such that the

integral representation exists and yields a stochastically continuous field. For 0 <

α ≤ 2, let Wα(dξ) be a complex isotropic SαS random measure with Lebesgue control

measure (see [21] p. 281).

Throughout this section we fix a real d × d matrix E with 0 < a1 < · · · < ap

denoting the real parts of the eigenvalues of E. As before, let q = trace(E).

Theorem 4.1. Let ψ : Rd → [0,∞) be a continuous, Et-homogeneous function such

that ψ(x) 6= 0 for x 6= 0. Then for any 0 < α ≤ 2 the random field

(4.1) Xψ(x) = Re

∫

Rd

(

ei<x,ξ> − 1
)

ψ(ξ)−H−q/αWα(dξ) , x ∈ R
d

exists and is stochastically continuous if and only if H ∈ (0, a1).

Proof. Let us recall that Xψ(x) exists if and only if

Γαψ(x) :=

∫

Rd

∣

∣ei<x,ξ> − 1
∣

∣

α
ψ(ξ)−αH−q dξ < +∞.

Let us assume that H ∈ (0, a1). By integration in polar coordinates for Et given by

Proposition 2.3,

Γαψ(x) =

∫ ∞

0

∫

S0

∣

∣

∣
ei<x,r

Etθ> − 1
∣

∣

∣

α

r−αH−1ψ(θ)−αH−q σ(dθ) dr.
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For δ ∈ (0, H − a1), by considering the cases r > 1 and 0 ≤ r ≤ 1 separately and

using the same spectral bounds on the growth of ‖rE
t
‖ as in the proof of Lemma 2.1,

one can find C > 0 such that
∣

∣

∣
ei<x,r

Etθ> − 1
∣

∣

∣

α

≤ C (1 + ‖x‖α)min (rα(a1−δ), 1).

Moreover, since ψ is continuous with positive values on the sphere S0, and hence

bounded away from zero,
∫

S0

ψ(θ)−αH−q σ(dθ) <∞.

This allows us to conclude that Γαψ(x) is finite for all x ∈ R
d. Let us show now thatXψ

is stochastically continuous. Since Xψ is a SαS field, it is stochastically continuous

if and only if, for all x0 ∈ Rd,
∫

Rd

∣

∣

∣

((

ei<x0+x,ξ> − 1
)

−
(

ei<x0,ξ> − 1
))

∣

∣

∣

α

ψ(ξ)−αH−q dξ → 0 as x→ 0

that is, equivalently,

(4.2) Γαψ(x) → 0 as x → 0.

It is straightforward to see that (4.2) holds for H ∈ (0, a1), using dominated conver-

gence and the upper bound computed above.

Conversely, let us assume that Xψ exists and that it is stochastically continuous. Let

us remark that in this case Γαψ(x) exists for all x ∈ R
d and satisfies, for all λ > 0

Γαψ(λ
Ex) = λαHΓαψ(x).

Let us fix any x ∈ Rd, with x 6= 0 and let us notice that Γαψ(x) 6= 0. Since Xψ is

stochastically continuous, by (4.2)

λαHΓαψ(x) → 0 as λ→ 0,

which implies that H > 0.

Let us now prove that H < a1.

First case: Assume that a1 is an eigenvalue of E. Then there exist θ1 ∈ Rd such that

‖θ1‖ = 1 and Eθ1 = a1θ1. Therefore

Γαψ(θ1) =

∫ ∞

0

∫

S0

∣

∣

∣
ei<θ1,r

Etθ> − 1
∣

∣

∣

α

r−αH−1ψ(θ)−αH−q σ(dθ) dr,

with
∣

∣< θ1, r
Etθ >

∣

∣ = ra1 | < θ1, θ > | ≤ Cra1 .
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Then, for r ≤
(

π
C

)1/a1 ,

∣

∣ei<θ1,r
Etθ> − 1

∣

∣ = 2
∣

∣sin
(< θ1, r

Etθ >

2

)
∣

∣ ≥ 2ra1
| < θ1, θ > |

π
,

and hence

Γαψ(θ1) ≥
1

πα

∫ ( πC )
1/a1

0

∫

S0

|< θ1, θ >|
α r−α(H−a1)−1ψ(θ)−αH−q σ(dθ) dr.

Since ψ is positive on the sphere S0,
∫

S0

|< θ1, θ >|
α ψ(θ)−αH−q σ(dθ) > 0,

and then Γαψ(θ1) < +∞ implies that H < a1.

Second case: Assume that a1 is not an eigenvalue of E. Then there exists b1 ∈ R such

that λ1 = a1 + ib1 and λ1 are complex eigenvalues of E. One can find θ1, γ1 ∈ Rd,

with ‖θ1‖ = ‖γ1‖ = 1 such that

rEθ1 = ra1 (cos (b1 log r)θ1 + sin (b1 log r) γ1)

rEγ1 = ra1 (− sin (b1 log r) θ1 + cos (b1 log r)γ1) .

Then it can be shown using the inequality |eiω − 1| ≥ |ω|/π for |ω| < π that a lower

bound of Γαψ(θ1) + Γαψ(γ1) is given by

1

πα

∫ ( π
2C )

1/a1

0

∫

S0

(
∣

∣< rEθ1, θ >
∣

∣

α
+

∣

∣< rEγ1, θ >
∣

∣

α)
r−αH−1ψ(θ)−αH−q σ(dθ) dr.

Observe that for a, b ≥ 0 we have aα + bα ≥ (a2 + b2)α/2. Therefore

∣

∣< rEθ1, θ >
∣

∣

α
+

∣

∣< rEγ1, θ >
∣

∣

α
≥

(

∣

∣< rEθ1, θ >
∣

∣

2
+

∣

∣< rEγ1, θ >
∣

∣

2
)α/2

≥ rαa1
(

|< θ1, θ >|
2 + |< γ1, θ >|

2)α/2 .

Then we conclude as in the first case that H < a1. The proof is complete. �

Corollary 4.2. Under the conditions of Theorem 4.1, the random field {Xψ(x)}x∈Rd

has the following properties:

(a) operator scaling, that is, for any c > 0,

(4.3) {Xψ(c
Ex)}x∈Rd

f.d.
= {cHXψ(x)}x∈Rd.

(b) stationary increments, that is, for any h ∈ R
d,

(4.4) {Xψ(x+ h) −Xψ(h)}x∈Rd
f.d.
= {Xψ(x)}x∈Rd
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Proof. Let us recall that by corollary 6.3.2 of [21], for f ∈ Lα(Rd), the characteristic

function of the random variable Y = Re
∫

Rd
f(y)Wα(dy) is given by

(4.5) E
(

eitY
)

= exp
(

−c0|t|
α

∫

Rd

|f(y)|αdy
)

where c0 =
1

2π

∫ π

0

(cos θ)2 dθ.

Hence, for any x1, . . . , xm ∈ R
d, the finite dimensional characteristic function of

(Xψ(x1), . . . , Xψ(xm)) is given by

E

(

exp
(

i

m
∑

j=1

tjXψ(xj)
))

= exp
(

−c0

∫

Rd

∣

∣

∣

m
∑

j=1

tj
(

ei<xj ,ξ> − 1
)

∣

∣

∣

α

ψ(ξ)−αH−qdξ
)

,

for any t1, . . . , tm ∈ R. Thus, for any c > 0, by a change of variable γ = cE
t
ξ in the

integral of the right side, since ψ is an Et homogeneous function, we get

E

(

exp
(

i

m
∑

j=1

tjXψ(c
Exj)

))

= E

(

exp
(

i

m
∑

j=1

tjc
HXψ(xj)

))

,

which proves (a). Furthermore, for any h ∈ Rd and x ∈ Rd, we have that

Xψ(x+ h) −Xψ(x) = Re

∫

Rd

ei<h,ξ>
(

ei<x,ξ> − 1
)

ψ(ξ)−H−q/αWα(dξ).

Hence

E

(

exp
(

i
m

∑

j=1

tj (Xψ(xj + h) −Xψ(xj))
))

= exp
(

−c0

∫

Rd

∣

∣

∣

m
∑

j=1

tje
i<h,ξ>

(

ei<xj ,ξ> − 1
)

∣

∣

∣

α

ψ(ξ)−αH−qdξ
)

= E

(

exp
(

i
m

∑

j=1

tjXψ(xj)
))

,

proving (b). �

Remark 4.3. In the Gaussian case, the covariance function of the random field Xϕ(x)

defined by the moving average representation (3.1) can be computed by an argument

similar to Proposition 8.1.4 of [21]. Let σ2
θ = E[(Xϕ(θ))

2] for any unit vector θ,

and define τ(x) and ℓ(x) as before so that x = τ(x)Eℓ(x). Using Corollary 3.2

(a) it follows that E[(Xϕ(x))
2] = τ(x)2Hσ2

ℓ(x), and then we can use the fact that

2Xϕ(x)Xϕ(y) = Xϕ(x)
2 +Xϕ(y)

2 − (Xϕ(x) −Xϕ(y))
2 to conclude that

(4.6) E [Xϕ(x)Xϕ(y)] = 1
2

[

τ(x)2Hσ2
ℓ(x) + τ(y)2Hσ2

ℓ(y) − τ(x− y)2Hσ2
ℓ(x−y)

]

.
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In the isotropic case discussed in Remark 3.3 we have τ(x) = ‖x‖ and ℓ(x) = x/‖x‖,

and a change of variables in (3.1) shows that σ2
θ ≡ σ2 is the same for any unit vector,

using the fact that ϕ(Rx) = ϕ(x) for any orthogonal linear transformation R in

this case. Then (4.6) reduces to the familiar autocovariance function for a fractional

Gaussian random field. A similar argument shows that the autocovariance function

of the random field defined by the harmonizable representation (4.1) is given by

(4.7) E [Xψ(x)Xψ(y)] = 1
2

[

τ(x)2Hω2
ℓ(x) + τ(y)2Hω2

ℓ(y) − τ(x− y)2Hω2
ℓ(x−y)

]

where ω2
θ = E[(Xψ(θ))2]. For the isotropic case, where (4.1) reduces to the harmo-

nizable representation (1.3) for a fractional Gaussian field, we again note that ω2
θ is

constant over the unit sphere. Since a mean zero Gaussian random field is determined

by its autocovariance function, we recover the well-known fact that the moving aver-

age and harmonizable representations of the fractional Gaussian random field differ

by at most a constant factor. It does not seem possible to extend this argument to

the general case of operator scaling Gaussian random fields, since it would be difficult

to compare σ2
θ to ω2

θ in this case. Hence there remains an interesting open question

under which relationship between the functions ϕ and ψ in the Gaussian case the

moving average representation of Theorem 3.1 and the harmonizable representation

of Theorem 4.1 are equivalent.

Remark 4.4. Many random fields occurring in applications have Hurst indices that

vary with coordinate [7, 8]. Consider a random field satisfying (1.1), and suppose

that the matrix E has an eigenvector e with associated real eigenvalue λ. Then it

follows from (1.1) that the stochastic process r 7→ X(re) is self-similar with

{X(cλre)}r∈R

f.d.
= {cHX(re)}r∈R for all c > 0,

so that the Hurst index of this process is H/λ. If E has a basis of eigenvectors with

distinct real eigenvalues, then the projections of this random field onto the eigenvector

directions yield processes with different Hurst indices in each coordinate. This also

shows that the usual methods for estimating the Hurst index, such as rescaled range

analysis [15] and dispersional analysis [9], can also be applied to estimate the scaling

indices of the operator scaling random field from data, once the proper coordinates

are established. Estimating these coordinate directions from data is an interesting

open question. In some practical applications, these coordinates are known from
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the problem setup. For example, in a groundwater aquifer the coordinates of the

hydraulic conductivity field are thought to correspond to the vertical, the direction

of horizontal mean flow, and the horizontal direction perpendicular to the mean flow

[7]. In fractured rock, the scaling coordinates of the transmissivity field correspond

to the main fracture orientations, and are usually not mutually perpendicular [22].

Similarly, in material science, the crack fronts determine the natural coordinates [20].

We caution, however, that estimating the Hurst index in the wrong (non-eigenvalue)

coordinates is likely to be misleading, because in those directions the field is not

self-similar. Finally, we note that the parameters E,H in (1.1) are not unique. If

(1.1) holds, then we also have {X(cE
′
x)}

f.d.
= {cX(x)} where E ′ = (1/H)E, so that

the Hurst indices of the random field are the ratio of H and the eigenvalues of E, as

already noted. Furthermore, the exponents of an admissible function are not unique,

because of possible symmetries, as discussed previously in Remark 2.10. Hence the

Hurst index of each component is really an estimate of H/ai where 0 < a1 < · · · < ap

is the real spectrum of E, and these indices, as well as the coordinate system in which

they pertain, are the same for any choice of H and E.

We have already seen that the OSSRFs, defined by a moving average or a harmo-

nizable representation were stochastically continuous. In the next section we show

that in the Gaussian case α = 2 one can get Hölder regularity for the sample paths.

5. Gaussian OSSRFs

In this section, we are interested in the smoothness of the sample paths of Gaussian

OSSRFs given by Theorem 3.1 or Theorem 4.1, respectively. Moreover we compute

the box- and the Hausdorff-dimension of the graph of OSSRFs in these cases. We fol-

low the terminology used in [8]. Using their definition of the Hölder critical exponent

of a random process (Definition 5) we state the following definition.

Definition 5.1. Let γ ∈ (0, 1). A random field {X(x)}x∈Rd is said to have Hölder

critical exponent γ whenever it satisfies the following two properties:

(a) for any s ∈ (0, γ), the sample paths of X satisfy almost surely a uniform

Hölder condition of order s on any compact set, that is for any compact set
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K ⊂ Rd, there exists a positive random variable A such that

|X(x) −X(y)| ≤ A‖x− y‖s for all x, y ∈ K.

(b) for any s ∈ (γ, 1), almost surely the sample paths of X fail to satisfy any

uniform Hölder condition of order s.

For a Gaussian random field X a well known result links the Hölder regularity of

the sample paths x 7→ X(x, ω) to those of the quadratic mean. Let us recall this

property when the field also has stationary increments. We refer to [2] Theorem 8.3.2

and Theorem 3.3.2 for a detailed proof.

Proposition 5.2. Let {X(x)}x∈Rd be a Gaussian random field with stationary incre-

ments. Let γ ∈ (0, 1) and assume that

γ = sup
{

s > 0; E
(

(X(x) −X(0))2) = o‖x‖→0

(

‖x‖2s
)}

.

Then, for any s ∈ (0, γ), any continuous version of X satisfies almost surely a uniform

Hölder condition of order s on any compact set.

If moreover

γ = inf
{

s > 0; ‖x‖2s = o‖x‖→0

(

E
(

(X(x) −X(0))2
))}

,

then any continuous version of X admits γ as the Hölder critical exponent.

The previous definition and proposition are given in [8] for random processes (d = 1)

in order to study regularity properties of a field along straight lines. More precisely,

when {X(x)}x∈Rd is a random field, it is also interesting to study the Hölder regularity

of the process {X(x0 + tu)}t∈R, for x0 ∈ Rd and u a unit vector. This will provide

some additional directional regularity information. For {X(x)}x∈Rd with stationary

increments, one only has to consider {X(tu)}t∈R for all directions u. Let us recall

Definition 6 of [8].

Definition 5.3. Let {X(x)}x∈Rd with stationary increments and let u be any direction

of the unit sphere. If the process {X(tu)}t∈R has Hölder critical exponent γ(u) we

say that X admits γ(u) as directional regularity in direction u.

Let us investigate these properties for the Gaussian OSSRFs given by Theorem 3.1

or Theorem 4.1, respectively. Throughout this section we fix a real d × d matrix E

with 0 < a1 < · · · < ap denoting the real parts of the eigenvalues of E. Following
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[19], Section 2.1, let V1, . . . , Vp be the spectral decomposition of Rd with respect to

E. For i = 1, . . . , p, let us denote

Wi = V1 ⊕ . . .⊕ Vi,

and W0 = {0}. Observe that E|Wi
has a1 < · · · < ai as real parts of the eigenvalues.

As before let q = trace(E).

Theorem 5.4. Let ϕ : Rd → [0,∞) be an E-homogeneous, (β,E)-admissible func-

tion. For 0 < H < β let Xϕ be the moving average Gaussian OSSRF given by The-

orem 3.1. Moreover let ψ : R
d → [0,∞) be a continuous Et-homogeneous function

with ψ(x) > 0 for all x 6= 0. For 0 < H < a1 let Xψ be the harmonizable Gaussian

OSSRF given by Theorem 4.1. Then any continuous version of Xϕ and Xψ, respec-

tively, admits H/ap as Hölder critical exponent. Moreover, for any i = 1, . . . , p, for

any direction u ∈Wi\Wi−1, the fields Xϕ and Xψ admit H/ai as directional regularity

in direction u.

Proof. Let x ∈ Rd. With a little abuse of notation we write Xϕ/ψ to indicate that

we either consider Xϕ or Xψ. Observe that Xϕ/ψ(0) = 0 and in order to apply

Proposition 5.2 we define

Γ2
ϕ/ψ(x) = E

(

Xϕ/ψ(x)2
)

=

{

∫

Rd

∣

∣ϕ(x− y)H−q/2 − ϕ(−y)H−q/2
∣

∣

2
dy

4
∫

Rd
sin2

(

<x,ξ>
2

)

ψ(ξ)−2H−qdξ

Using polar coordinates with respect to E, it is straightforward to see that

(5.1) Γ2
ϕ/ψ(x) = τ(x)2HΓϕ/ψ(l(x)),

where for all θ ∈ S0,

(5.2) 0 < m ≤ Γ2
ϕ/ψ(θ) ≤M,

since Γ2
ϕ/ψ is continuous and positive on the compact set S0.

For any i = 1, . . . , p let us fix u ∈ Wi \ Wi−1. Since the spaces V1, . . . , Vp are

E-invariant and the real parts of the eigenvalues of E|Wi
are a1 < · · · < ai it follows

as in the proof of Lemma 2.1 by considering the space Wi instead of Rd, that for any

small δ > 0 there exists a constant C2 = C2(u) > 0 such that τ(tu) ≤ C2|t|
1/ai−δ for

any |t| ≤ 1. Furthermore, observe that if we write u = ui + ūi−1 with ui ∈ Vi and

ūi−1 ∈ Wi−1 we have ui 6= 0. Writing tu = τ(tu)El(tu) and l(tu) = li(tu) + l̄i−1(tu)

with li(tu) ∈ Vi and l̄i−1(tu) ∈ Wi−1, it follows from the E-invariance of the spectral
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decomposition that tui = τ(tu)Eli(tu) with li(tu) 6= 0. Since we have E = E1⊕· · ·⊕Ep

where every real part of the eigenvalues of Ei equals ai we conclude

|t|‖ui‖ = ‖τ(tu)Eli(tu)‖ = ‖τ(tu)Eili(tu)‖ ≤ ‖τ(tu)Ei‖‖li(tu)‖ ≤ Cτ(tu)ai−δ

for any |t| ≤ 1 using the fact that ‖li(tu)‖ ≤ C3 for any |t| ≤ 1 and some C3 > 0.

Hence there exists a constant C1 = C1(u) > 0 such that τ(tu) ≥ C1|t|
1/ai+δ for any

|t| ≤ 1. Therefore we have shown that for all directions u ∈Wi \Wi−1 and any small

δ > 0 there exist constants C1, C2 > 0, such that

(5.3) C1|t|
1/ai+δ ≤ τ(tu) ≤ C2|t|

1/ai−δ for all |t| ≤ 1.

In view of (5.1), (5.2) and (5.3) we therefore get that for any direction u ∈Wi \Wi−1

and any δ > 0 there exist constants C1, C2 > 0 such that C1|t|
2H/ai+δ ≤ Γ2

ϕ/ψ(tu) ≤

C2|t|
2H/ai−δ for |t| ≤ 1, which by Proposition 5.2 shows that Xϕ/ψ admits H/ai as

directional regularity in direction u.

It follows from this that for any s ∈ (H/ap, 1) almost surely the sample paths of

Xϕ/ψ fail to satisfy any uniform Hölder condition of order s, since H/ap is the Hölder

critical exponent of Xϕ/ψ in any direction of Wp \Wp−1. Finally, in view of (5.1),

(5.2) and Lemma 2.1 we know that for any δ > 0 there exists a constant C > 0 such

that Γ2
ϕ/ψ(x) ≤ C‖x‖2H/ap−δ for ‖x‖ ≤ 1 and hence by Proposition 5.2 it follows that

any continuous version of Xϕ/ψ satisfies almost surely a uniform Hölder condition of

order s < H/ap on any compact set. This concludes the proof. �

Having described the Hölder regularity of Gaussian OSSRFs, a natural question

that arises is to determine the box- and the Hausdorff-dimensions of their graphs on

a compact set. We refer to Falconer [12] for the definitions and properties of box-

and the Hausdorff-dimension. Let us fix a compact set K ⊂ Rd. For a random field

X on Rd we consider G(X)(ω) = {(x,X(x)(ω)); x ∈ K} the graph of a realization

of this field over the compact K. We will denote dimHG(X), resp dimBG(X), the

Hausdorff-dimension and the box-dimension of G(X), respectively.

It is a well understood fact that directional regularity implies information about

the Hausdorff-dimension of the field in that direction. See e.g. [2], Chapter 8. As an

immediate corollary to Theorem 5.4 we get:
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Corollary 5.5. Under the assumptions of Theorem 5.4 we have for all i = 1, . . . , p

and all directions u ∈Wi \Wi−1 that

dimH{(t, Xϕ/ψ(tu)) : t ∈ [0, 1]} = 2 −H/ai a.s.

Proof. The result is a direct consequence of Theorem 5.4 and the Corollary on page

204 of [2], using the fact that t 7→ Xϕ/ψ(tu) is a β = H/ai-index process and that

2 − β ≤ 1/β for 0 < β < 1. �

Our next result investigates the global box- and Hausdorff-dimension of Gaussian

OSSRFs.

Theorem 5.6. Under the assumptions of Theorem 5.4, for any continuous version

of Xϕ and Xψ, almost surely

dimH G(Xϕ/ψ) = dimB G(Xϕ/ψ) = d+ 1 −H/ap.

Proof. Let us choose a continuous version of Xϕ/ψ. From Theorem 5.4, for any s <

H/ap, the sample paths of Xϕ/ψ satisfy almost surely a uniform Hölder condition of

order s on K. Thus by a d-dimensional version of Corollary 11.2 of [12], we have

dimHG(Xϕ/ψ) ≤ dimBG(Xϕ/ψ) ≤ d+ 1 − s, a.s.

where dimB denotes the upper box-dimension. Therefore

dimHG(Xϕ/ψ) ≤ dimBG(Xϕ/ψ) ≤ d+ 1 −H/ap, a.s.

and it remains to show that a.s. dimHG(Xϕ/ψ) ≥ d+ 1−H/ap. Since the lower box

dimension satisfies dimBG(Xϕ/ψ) ≥ dimHG(Xϕ/ψ) the proof is then complete.

We follow the same kind of ideas developed in [6] and [4]. Let s > 1. Following the

same argument as in Theorem 16.2 of [12], in view of the Frostman criterion (Theorem

4.13 (a) in [12]), if one proves that the integral Is

Is =

∫

K×K

E
[

(

(Xϕ/ψ(x) −Xϕ/ψ(y))2 + ‖x− y‖2
)−s/2

]

dx dy,

is finite, then almost surely dimHG(Xϕ/ψ) ≥ s.

As before, let V1, . . . , Vp denote the spectral decomposition of Rd with respect to E

and let Wi = V1 + · · ·+ Vi. We will choose an inner-product (·, ·) on Rd which makes

these spaces mutually orthogonal and use the norm ‖x‖ = (x, x)1/2. Since all norms

on R
d are equivalent, this entails no loss of generality.
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Since by assumption s > 1, the function (ξ2 + 1)−s/2 is in L1(R) and its Fourier

transform, denoted by fs, is not only in L∞(R) but also in L1(R). Then we can write,

using Fourier-inversion (fundamental lemma in [6])

(ξ2 + 1)−s/2 =
1

2π

∫

R

eiξtfs(t)dt.

It follows that

E

[

(

(Xϕ/ψ(x) −Xϕ/ψ(y))2 + ‖x− y‖2
)−s/2

]

=
1

2π
‖x− y‖−s

∫

R

E

(

e
it
Xϕ/ψ(x)−Xϕ/ψ(y)

‖x−y‖

)

fs(t)dt

=
1

2π
‖x− y‖−s

∫

R

e
− t2

2

E(Xϕ/ψ(x)−Xϕ/ψ(y))2)
‖x−y‖2 fs(t)dt,

since Xϕ/ψ is Gaussian. Then, as fs ∈ L∞(R), one can find C > 0 such that

E

[

(

(Xϕ/ψ(x) −Xϕ/ψ(y))2 + ‖x− y‖2
)−s/2

]

≤ C‖x− y‖1−s
(

E

[

(

Xϕ/ψ(x) −Xϕ/ψ(y)
)2

])−1/2

≤ Cm−1‖x− y‖1−sτ(x− y)−H,

according to (5.1) and (5.2) and using the fact that Xϕ/ψ has stationary increments.

Let us choose A > 0 such that K ⊂ {x ∈ Rd; ‖x‖ ≤ A/2}. Then for some constant

C > 0

Is ≤ C

∫

‖x‖≤A

‖x‖1−sτ(x)−Hdx,

as long as the integral in the right hand side is bounded.

If p = 1, by Lemma 2.1, for δ > 0, one can find C > 0 such that, for ‖x‖ ≤ A,

τ(x)−H ≤ C‖x‖−H/ap−δ,

and hence Is is finite as soon as s < d+ 1 −H/ap − δ.

If p ≥ 2 let us write x = xp+y for some xp ∈ Vp and y ∈Wp−1 and write x = τ(x)El(x)

with l(x) ∈ S0. Decompose l(x) = lp(x) + θ with lp(x) ∈ Vp and θ ∈ Wp−1. By the

direct sum decomposition we see that xp = τ(x)E lp(x) and y = τ(x)Eθ. Moreover,

since Vp and Wp−1 are orthogonal in the chosen inner product it follows that ‖x‖ ≤ A

implies both ‖xp‖ ≤ A and ‖y‖ ≤ A in the associated norm. In view of the proof of
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Lemma 2.1, restricted to the spaces Vp and Wp−1, respectively, it follows that for any

δ > 0 and some constants C1, C2 > 0, if ‖x‖ ≤ A then

‖xp‖ ≤ C1τ(x)
ap−δ and ‖y‖ ≤ C2τ(x)

a1−δ.

Then one can find c > 0 such that

τ(x)H ≥ c‖xp‖
H/ap+δ and τ(x)H ≥ c‖y‖H/a1+δ

and thus

τ(x)H ≥ c/2
(

‖xp‖
H/ap+δ + ‖y‖H/a1+δ

)

.

Hence, for any δ > 0

Is ≤ C

∫

‖xp‖≤A

∫

‖y‖≤A

(

‖xp‖
2 + ‖y‖2

)1/2−s/2 (

‖xp‖
H/ap+δ + ‖y‖H/a1+δ

)−1
dy dxp.

Let k = dim Vp and observe that in the present case 1 ≤ k ≤ d − 1. By using polar

coordinates for both Vp and Wp−1, for some constant C > 0 we have Is ≤ CJs where

Js =

∫ A

0

∫ A

0

(u2 + v2)1/2−s/2
(

uH/ap+δ + vH/a1+δ
)−1

uk−1vd−1−k du dv.

The change of variables u = tv yields

Js =

∫ A

0

∫ A/v

0

vd−s−H/ap−δ(t2 + 1)1/2−s/2
(

tH/ap+δ + vH/a1−H/ap
)−1

tk−1 dt dv

≤

(
∫ A

0

vd−s−H/ap−δdv

) (
∫ +∞

0

(t2 + 1)1/2−s/2t−H/ap−δ+k−1dt

)

.

Since H
ap
< 1 ≤ k, the second term is bounded as soon as s > k + 1 − H/ap − δ,

whereas the first one is finite whenever s < d + 1 − H/ap − δ. Thus, for all δ > 0

small enough, it follows that almost surely dimHG(Xϕ/ψ) ≥ d + 1 − H/ap − δ and

the proof is complete. �

Remark 5.7. As pointed out in the introduction, the fractional Brownian sheet

{BH(x)}x∈Rd is operator scaling with E = diag(α1, . . . , αd) where αi = 1/Hi, in fact

{BH(cEx)}x∈Rd
f.d.
= {cBH(x)}x∈Rd, but does not have stationary increments. By The-

orem 1.1 of [3] we know that dimH G(BH) = dimB G(BH) = d+1−min(α−1
1 , . . . , α−1

d ).

Now let Xϕ/ψ be our Gaussian OSSRFs considered above. It follows from operator

scaling, that

{Xϕ/ψ(c
1
H
Ex)}x∈Rd

f.d.
= {cXϕ/ψ(x)}x∈Rd
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too, and that ᾱi = ai/H , i = 1, . . . , p are the real parts of the eigenvalues of (1/H)E.

Hence Theorem 5.6 can be reformulated as

dimH G(Xϕ/ψ) = dimB G(Xϕ/ψ) = d+ 1 − min(ᾱ−1
1 , . . . , ᾱ−1

p )

in complete similarity to the result in [3]. Hence we have constructed operator scaling

Gaussian random fields with the same box- and Hausdorff-dimension as the fractional

Brownian sheet, but our fields have additionally stationary increments.
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