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Ash’s type II theorem, profinite topology and

Malcev products

Part I

Karsten Henckell∗, Stuart W. Margolis†,

Jean-Eric Pin‡and John Rhodes§

Abstract

This paper is concerned with the many deep and far reaching con-
sequences of Ash’s positive solution of the type II conjecture for finite
monoids. After rewieving the statement and history of the problem, we
show how it can be used to decide if a finite monoid is in the variety gen-
erated by the Malcev product of a given variety and the variety of groups.
Many interesting varieties of finite monoids have such a description in-
cluding the variety generated by inverse monoids, orthodox monoids and
solid monoids. A fascinating case is that of block groups. A block group
is a monoid such that every element has at most one semigroup inverse.
As a consequence of the cover conjecture — also verified by Ash — it
follows that block groups are precisely the divisors of power monoids of
finite groups. The proof of this last fact uses earlier results of the au-
thors and the deepest tools and results from global semigroup theory. We
next give connections with the profinite group topologies on finitely gen-
erated free monoids and free groups. In particular, we show that the type
II conjecture is equivalent with two other conjectures on the structure of
closed sets (one conjecture for the free monoid and another one for the free
group). Now Ash’s theorem implies that the two topological conjectures
are true and independently, a direct proof of the topological conjecture
for the free group has been recently obtained by Ribes and Zalesskii. An
important consequence is that a rational subset of a finitely generated free
group G is closed in the profinite topology if and only if it is a finite union
of sets of the form gH1H2 · · · Hn, where each Hi is a finitely generated
subgroup of G. This significantly extends classical results by M. Hall.
Finally we return to the roots of this problem and give connections with
the complexity theory of finite semigroups. We show that the largest local
complexity function in the sense of Rhodes and Tilson is computable.
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1 Introduction

The excitement caused by Chris Ash’s proof of the type II conjecture, published
in this journal [6], is well justified. The beauty and depth of the proof can be
amply seen by reading Ash’s article [5] and the full version [6]. The conjecture
itself had obtained wide circulation as one of the outstanding open problems in
finite semigroup theory of the past few years. This was spurred by many talks
by the fourth author (Rhodes) over the years and by its presentation of a set
of problems at the Chico conference in 1986 [42], successive survey articles of
the other authors [36, 14, 24], and by a sequence of articles of the third author
(Pin) [31, 33, 34, 37], who emphasized the topological and language theoretic
aspects of the problem. The purpose of this paper is to explain the many deep
consequences of Ash’s theorem. It is divided into two parts. Part II should
appear in the next issue of this journal.

We will assume in this paper that the reader has only a basic background in
finite semigroup theory. See [10, 11, 19, 23, 32] for additional background ma-
terial. For the most part, we follow the notations and terminology of Eilenberg
[11]. In particular, if ϕ : S → T is a function from S into T , we denote by sϕ
(instead of the usual ϕ(s)) the image of an element s of S by ϕ. All monoids
except free monoids and free groups are assumed finite. A monoid M divides a
monoid N if M is a quotient of a submonoid of N . The set of idempotents of a
monoid M is denoted E(M). Given a subset P of a monoid M , 〈P 〉 denotes the
submonoid of M generated by P . The word “variety” will be used for pseudo-
variety — that is, a collection of finite monoids closed under division and finite
direct product.

We begin with a statement of the problem. Recall that a relational morphism
between monoids M and N is a relation τ : M → N such that:

(1) (mτ)(nτ) ⊂ (mn)τ for all m, n ∈ M ,

(2) (mτ) is non-empty for all m ∈ M ,

(3) 1 ∈ 1τ

Equivalently, τ is a relation whose graph

graph(τ) = { (m, n) | n ∈ mτ }

is a submonoid of M ×N that projects onto M . See [54] for an introduction to
this notion and the related notion of derived category.

We will be only interested in relational morphisms into groups in this paper.
Note that if τ : M → G is a relational morphism into a group G, then 1τ−1 is
a submonoid of M . We define the kernel or type II submonoid of M , K(M),
to be the intersection of the submonoids 1τ−1 over all relational morphisms
τ : M → G into a group. Note that even though all relational morphisms
are between finite objects, it is not a priori clear that membership in K(M) is
decidable since there are an infinity of possible relational morphisms.

As one would like to decide membership in K(M), this leads to a search for
elements of M that are sure to be in K(M). It is fairly easy to prove using
standard facts about finite semigroups that the following is true [36, 53, 46].

(1) E(M) is contained in K(M),

(2) Let m, n ∈ M be such that mnm = m. Then mK(m)n ∪ nK(M)m ⊂
K(M).
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That is, every idempotent is in K(M) and K(M) is closed under weak con-
jugation: if m is a weak inverse of n, that is, if mnm = m, then, for every
k ∈ K(M), mkn ∈ K(M) and nkm ∈ K(M). Define D(M) to be the the
smallest submonoid of M closed under weak conjugation. Then D(M) contains
the idempotents of M : indeed, if e is idempotent, then e is an inverse of itself,
and thus 1 ∈ D(M) implies e = e1e ∈ D(M). Note that membership in D(M) is
decidable given the multiplication table of M . It follows from (1) and (2) above
that D(M) is a submonoid of K(M), and the fourth author (Rhodes) conjec-
tured that K(M) = D(M) — the “type II” conjecture. Ash’s result proves that
this conjecture is true.

Theorem 1.1 (Ash [5, 6]) For every finite monoid M , K(M) = D(M).

Actually, Ash’s results imply another related result conjectured in [17]. We
define a subset X of a monoid M to be pointlike (with respect to groups) if, for
all relational morphisms τ : M → G into a finite group G, there is a g such that
X ⊂ gτ−1. For m ∈ M let m(1) = {m} and m(−1) = { x ∈ M | xmx = x }, the
set of weak inverses of m. The Pointlike (or Cover) Conjecture [18] states that
a subset X of a monoid M is pointlike (with respect to groups) if and only if
there are elements m1, m2, . . .mn of M such that

X ⊂ D(M)m
(ε1)
1 D(M)m

(ε2)
2 D(M) · · ·D(M)m(εn)

n D(M)

where εi ∈ {1,−1} for 1 ≤ i ≤ n. It follows from Ash’s work [5, 6] that the
Pointlike Conjecture is true.

Theorem 1.2 (Ash [5, 6]) A subset X of a monoid M is pointlike (with respect
to groups) if and only if there are elements m1, m2, . . . mn of M such that

X ⊂ D(M)m
(ε1)
1 D(M)m

(ε2)
2 D(M) · · ·D(M)m(εn)

n D(M)

where εi ∈ {1,−1} for 1 ≤ i ≤ n.

By analogy, we can define the pointlike sets with respect to any variety V.
The first author (Henckell [13]) has proved that the pointlike sets with respect
to the variety of aperiodic monoids (that is, group-free monoids) are decidable.
See the second part of this paper for questions related to this problem.

By theorem 1.2, it is now clear that it is decidable if a set of elements of M
is pointlike (with respect to groups). Before going on to give the history and
consequences of these results, perhaps an explanation of terminology is due to
the reader. We are sure that it has occurred to a number of people who have
heard of this conjecture to wonder what type I semigroups are and perhaps are
there type III, type IV semigroups, etc.

Here is a simplified definition. See [47] for a fuller treatment. Let V be
a variety and let M be a monoid. A submonoid N of M is called a type V

submonoid of M if for all relational morphisms τ : M → T with T ∈ V, there is
a t ∈ T such that N ⊂ Stab(t)τ−1. Here Stab(t) = { s ∈ T | ts = t } is the right
stabilizer of t. The importance of stabilizers stems from the local structure of
Tilson’s derived category [54]. This definition was especially of interest for the
two varieties singled out by the Krohn-Rhodes decomposition theorem as being
of central importance in finite semigroup theory — A, the variety of aperiodic
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monoids, and the variety G of finite groups. Submonoids of type A where called
type I and submonoids of type G were called type II. It is clear that K(M) (and
now D(M) !) is the unique maximal type G submonoid of M . There is not a
unique maximal type I submonoid of M , but we shall see that it is decidable if
a monoid M is a type I submonoid of itself (termed absolute type I ) and explore
the consequences of this later in this paper.

2 Some history

Like many problems that resist immediate solution, a number of partial results
and equivalent conditions to the conjecture have appeared or will appear in
the literature. In this section we briefly survey these previous results. We will
concentrate on the special cases of the conjecture that have been proved and
leave the important connections with topology for a later section.

The type II subsemigroup first appeared in [46]. The motivations came from
the complexity theory of finite semigroups and monoids. We recall some basic
facts. Let V0 = A and, for n ≥ 0, let Vn+1 = A∗G∗Vn. Here V∗W denotes
the variety generated by all monoid semidirect products M ∗N where M ∈ V

and N ∈ W. It follows from the Krohn-Rhodes decomposition theorem that
every monoid M is in Vn for some n. The least such n is called the complexity
of M [52].

The idea of type I (resp. type II) submonoids is that if M is in a variety of
the form V∗A (resp. V∗G), then any type I (type II) submonoid of M should
be a member of V. In particular, one obtains a lower bound to complexity
by taking the maximal length of a chain of submonoids alternating type I and
type II and containing a non-aperiodic type I submonoid. It was hoped at the
time of the publication of [46] that this latter number would in fact give the
complexity of an arbitrary monoid. This was in fact true for inverse monoids
and completely regular monoids but a counterexample was constructed in [44].

Nonetheless, we will return in the last section of this paper to examine these
chains of submonoids which give the largest local complexity function as proved
in [47]. Furthermore, the paper [46] went on to prove important facts about
type I and type II submonoids. In particular, the following result was proved
there.

Theorem 2.1 [46] Let M be a monoid and let m be a regular element of M .
Then m ∈ K(M) if and only if m ∈ D(M). In particular, if M is a regular
monoid, then K(M) = D(M).

The proof in [46] was long and based on certain renormalizations of the
structure matrix of a regular D-class. Tilson gave a much more accessible proof
in [53] by directly associating an injective automaton with every regular D-
class. This work had major influence on subsequent work on this problem. It
was used to show [17] that the type II conjecture could be reduced to the case
of block groups — monoids in which every element has at most one semigroup
inverse. It also played an important role in Ash’s formulation of and proof of
the conjecture. We shall see why block groups play such an important role in
the theory later in this paper. We will provide more details of these facts in
section 5.
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Another particular case of interest was the case of monoids with commuting
idempotents. Indeed it was shown [27] that the type II conjecture implied
that the variety generated by inverse monoids was in fact equal to the variety of
monoids with commuting idempotents. This weak form of the type II conjecture
was also solved by Ash as a warm up to his future proof of the full conjecture.

Theorem 2.2 (Ash [3, 4]) Every monoid with commuting idempotents divides
an inverse monoid. Equivalently, the variety generated by inverse monoids is
equal to the variety of monoids with commuting idempotents.

The proof of this result handled non-regular elements by appealing to Ram-
sey’s theorem in a non trivial way. In 1986, T.E. Hall gave an illuminating
lecture on this proof at the Chico Conference on Semigroups. This stimulated
Birget and two of the authors to see how to extend this result to the case of
monoids whose idempotents form a submonoid.

Theorem 2.3 [8, 9] Every monoid whose idempotents form a submonoid di-
vides an orthodox monoid.

Recall that an orthodox monoid is a regular monoid whose idempotents form
a submonoid. Actually more was proved. By combining the results of [4] and
the methods introduced in [53], the following result was obtained:

Theorem 2.4 [8, 9] Let M be a monoid such that D(M) is a regular submonoid.
Then D(M) = K(M). That is the type II conjecture is true in this case.

It is fairly easy to prove that if the idempotents of a monoid form a band
(resp. generate a completely regular monoid), then D(M) is a band (resp.
completely regular monoid). We will clarify the connection between these results
in the next section of this paper.

An other interesting special case was proved in [16]:

Theorem 2.5 [16] Let M be a J -trivial monoid. Then D(M) = K(M).

The interesting part of this proof is that it directly constructs a relational
morphism from a J -trivial monoid onto a finite group that proves D(M) =
K(M). The proof is very different than Ash’s and it is unknown at the present
time if this proof technique can be extended to the general case.

3 Malcev products and semidirect products with

groups

As indicated in the previous section, the motivation for the definition of K(M)
came from a desire to decompose M into a semidirect product N ∗ G where
N is “simpler” than M and G is a finite group. The paper [46] was written
before the influential notion of variety of finite monoids and languages had been
formulated by Eilenberg and Schützenberger [11, 32]. It is within this context
that we can make these statements precise.

5



Let V and W be varieties. We have defined V∗W to be the variety generated
by monoid semidirect products of members of V and W. There is a related
variety that we now define. Let

V M©W = { M | There is a relational morphism τ : M → N with

N ∈ W and such that eτ−1 ∈ V for all idempotents e ∈ N }

The variety V M©W is called the Malcev product of V and W. We will be
interested in when a variety decomposes in the form V ∗G or V M©G. We first
list some preliminary observations.

Theorem 3.1 Let V be any variety. Then V ∗G ⊂ V M©G.

Proof. Let M ∈ V ∗G. Then M divides a monoid of the form N ∗K where
N ∈ V and K ∈ G. Let π : N ∗ K → K be the projection. Then 1π−1 is
isomorphic to N ∈ V. Therefore N ∗ K is in V M©G and so is M since M
divides N ∗K.

We now give the connection between Malcev product with the variety of
groups and K(M). We first have the following result that is proved by a com-
pactness argument [36, 46].

Theorem 3.2 Let M be a monoid. Then there is a group G and a relational
morphism τ : M → G such that 1τ−1 = K(M).

Proof. Since M is finite, there are only a finite number of sets of the form 1τ−1,
where τ is a relational morphism from M onto a finite group G. Therefore one
can select a finite set of relational morphisms τi : M → Gi (1 ≤ i ≤ n) such that
every 1τ−1 is equal to one of the 1τ−1

i . Set G = G1×G2×· · ·×Gn and define a
relational morphism τ : M → G by setting mτ = mτ1×mτ2× · · · ×mτn. Then

1τ−1 =
⋂

1≤i≤n

1τ−1
i = K(M)

A slight improvement of the previous proof leads to the following stronger result:

Theorem 3.3 Let M be a monoid. Then there is a group G and a relational
morphism τ : M → G such that

(1) 1τ−1 = K(M),

(2) A subset P of M is a pointlike subset of M if and only if there exists
g ∈ G such that P is a subset of gτ−1.

A relational morphism τ : M → G satisfying the conditions (1) and (2) of
theorem 3.3 is called universal for M (with respect to groups).

Theorem 3.4 Let M be a monoid and let V be a variety. The following con-
ditions are equivalent

(1) M ∈ V M©G,

(2) there exists a relational morphism τ : M → G, universal for M , such that
1τ−1 ∈ V,
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(3) K(M) ∈ V

Proof. (1) implies (3). Let M ∈ V M©G. Then there is a relational morphism
τ : M → G onto a group G such that 1τ−1 ∈ V. Now K(M) is a submonoid of
1τ−1 by definition and thus K(M) ∈ V.
(3) implies (2). Assume that K(M) ∈ V. By theorem 3.3 there exists a rela-
tional morphism τ : M → G, universal for M , such that 1τ−1 = K(M). Thus
1τ−1 ∈ V.
(2) implies (1). If there exists a relational morphism τ : M → G such that
1τ−1 ∈ V, then M ∈ V M©G by definition.

We have the following very important corollary to Ash’s theorem. Recall
that a variety V is called decidable if there is an algorithm that decides whether
a given monoid is a member of V or not.

Theorem 3.5 Let V be a decidable variety. Then V M©G is a decidable variety.

Proof. By theorem 3.4 and theorem 1.1, M ∈ V M©G if and only if D(M) ∈ V.
Since V is decidable by hypothesis and membership in D(M) is decidable given
the multiplication table of M , the result follows.

The importance of theorem 3.5 becomes apparent when contrasted with the
fact that the collection of decidable varieties is not closed under join, semidirect
product or Malcev product [1].

In general, V ∗ G is a proper subvariety of V M©G. For example, an un-
published example of the fourth author proves that the variety (A ∗ G) M©G

contains monoids of complexity n for any n ≥ 0. These examples will appear
in the second part of this paper. On the other hand, (A ∗G) ∗G = A ∗G is
contained in V1, the variety of monoids of complexity less than or equal to one.

The question of when equality holds is a special case of a question that has
attracted great attention over the past few years. It has to do with the notion
and application of the derived category of a morphism to the decomposition
theory of monoids. See [54] and [43] or the survey article [24]. As the details
would take us too far afield, we list the following theorems for the readers
familiar with the notion of division of categories and of a local variety in the
sense of [54].

Theorem 3.6 A monoid M belongs to V∗G if and only if there is a relational
morphism τ : M → G onto a finite group G such that the derived category D(τ)
divides a member of V.

Thus membership in V∗G is a “global” question in that it depends not just
on the inverse image of the identity, but on the global structure of the derived
category of certain relational morphisms. When being able to determine if a
category divides a member of a variety only depends on the local structure
of the category — that is on the loop monoids being members of the variety
— then we can replace Malcev product by semidirect product. Intuitively a
variety is “local” if this latter condition holds. Again the reader is urged to
read [54, 44, 24] for more details.

Theorem 3.7 Let V be a local variety. Then V ∗G = V M©G.
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Many important varieties are known to be local. The following result com-
bines the work of Simon, Thérien and Jones-Szendrei [11, 50, 20].

Theorem 3.8 Any variety of bands is local. The variety CR of completely
regular monoids is local.

Corollary 3.9 Let V be any variety of bands or the variety of completely reg-
ular monoids. Then V ∗G = V M©G is decidable.

Proof. The equality V ∗G = V M©G follows from Theorems 3.7 and 3.8. Now
the variety CR is clearly decidable and since any variety of bands is defined by
a finite number of identities, varieties of bands are also decidable. Therefore the
result follows from theorem 3.5.

In fact, it was long known that many varieties decompose as a semidirect
product of a variety of bands and the variety of groups. One of the impetuses
for the introduction of the derived category into decomposition theory and the
notion of local and global membership of finite categories in a variety was a
desire to show that the semidirect product could be replaced by the Malcev
product in these cases. Recall that a regular monoid M is orthodox if E(M) is
a submonoid of M .

Theorem 3.10 Let V be a variety of bands and let M be a monoid. The
following conditions are equivalent:

(1) M ∈ V ∗G,

(2) M ∈ V M©G,

(3) E(M) ∈ V,

(4) M divides an orthodox monoid N such that E(N) ∈ V.

Proof. It is easy to prove that of M is a monoid such that E(M) is a submonoid,
then E(M) = D(M). The equivalence of (1) and (2) follows from Corollary 3.9.
The equivalence of (2) and (3) follows from theorem 3.4. Furthermore, let W

be the variety generated by orthodox monoids such that E(M) ∈ V. It is easy
to show that if M ∈ V, then M ∗ G ∈ W for any group G. Also, well known
results about orthodox monoids [8, 9] show that if M is an orthodox monoid
with E(M) ∈ V, then M ∈ V M©G. We have then that V ∗G ⊂ W ⊂ V M©G

and equality follows from the equivalence of (1) and (2). Thus V ∗G = W and
(1) is equivalent with (4).

Notice that Theorems 2.2 and 2.3 are special cases of this result. Recall
also that a regular monoid M is solid if the monoid 〈E(M)〉 generated by
the idempotents of M is completely regular. The following theorem is proved
analogously to Theorem 3.10.

Theorem 3.11 [8, 9] Let M be a monoid. The following conditions are equiv-
alent:

(1) M ∈ CR ∗G,

(2) M ∈ CR M©G,

(3) 〈E(M)〉 ∈ CR,
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(4) M divides a solid monoid.

Theorem 3.7 is only a sufficient condition for V ∗G to be equal to V M©G.
The case of the variety J of J -trivial monoids is fascinating. Recall that a block
group is a monoid M such that every element has at most one semigroup inverse.
By classical results it follows that M is a block-group if and only if everyR-class
and every L-class has at most one idempotent. Thus in the eggbox picture of
M , the maximal blocks containing idempotents are groups [10].
Note that a regular monoid is a block group if and only if it is inverse. It is easy
to see that the collection BG of all block groups is a variety.

An interesting class of block groups comes from the well known fact that
if G is a group, then the monoid P(G) of all subsets of G under the usual
multiplication (also called the power group of G) is a block group [30]. If PG

denotes the variety generated by all power groups, then we have PG ⊂ BG.
Denote by EJ the variety of monoids such that 〈E(M)〉 ∈ J. The following
summarizes some of the work that appeared in [28].

Theorem 3.12 The following formulae hold: PG = J ∗G ⊂ BG = J M©G =
EJ.

The proof uses a number of techniques, some purely algebraic, and some
using results from the theory of languages. For example, it is easy to show that
if G is a group, then P(G) divides P1(G) ∗G, where P1(G) is the submonoid of
P(G) consisting of all subsets of G containing the identity and where G acts on
P1(G) by conjugation. Furthermore, P1(G) is easily seen to be J -trivial and
this shows that PG ⊂ J∗G. The other inclusion involves a detailed study of the
languages accepted by power groups. By using the wreath product principle of
Straubing [32, 35], which gives a description of the languages accepted by wreath
products of monoids in terms of those accepted by the factors, one shows that
every language accepted by a wreath product of a group by a J -trivial monoid
is also accepted by a power group. By Eilenberg’s theorem [11], the opposite
inclusion also holds. This method of proof also pioneered by Straubing and
Thérien, is a very powerful method for proving results like these.

A very deep result of Knast [22] shows that J is not a local variety. In the
framework of global semigroup theory, we state the theorem of Knast using the
notions of Tilson [54]. Recall that the exponent of a monoid M is the smallest
integer ω such that mω is idempotent for every m ∈ M . Similarly, the exponent
of a finite category C is the smallest integer ω such that mω is idempotent for
every loop m ∈ C. It is also equal to the l.c.m. of the exponents of all loop
monoids of C.

Theorem 3.13 (Knast) A finite category C divides a J -trivial monoid if and
only if it satisfies the following path identity, where ω denotes the exponent of
C:

(ab)ωad(cd)ω = (ab)ω(cd)ω

for every subgraph of C of the form

There are categories such that every loop monoid of the category is J -trivial,
but the category itself does not divide any member of J. This is what led
two of the authors to conjecture in [28] that PG was a proper subvariety of
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BG. However the conjecture turned out to be false, as shown by the two other
authors in [18] (when combined with Ash’s theorem).

Theorem 3.14 If the Pointlike Conjecture is true, then PG = BG.

Proof. This theorem is proved by combining the results of theorem 3.12 with
Knast’s theorem 3.13. By theorem 3.12, BG = PG if and only if J M©G = J∗G.
Let M ∈ J M©G. Then, by theorem 3.4, there exists a relational morphism
τ : M → G onto a group G, universal for M , such that 1τ−1 ∈ J. Let Cτ be the
derived category of τ : the objects of Cτ are the elements of G and the arrows
are the triples (h, (m, g), hg) such that (m, g) ∈ graph(τ) — or equivalently
g ∈ mτ . Composition is given by the formula

(h, (m, g), hg)(hg, (m′, g′), hgg′) = (h, (mm′, gg′), hgg′)

pictured below Note that for all g ∈ G, C(g, g) = 1τ−1, because (g, (m, 1)g) is
an arrow if and only if m ∈ 1τ−1. In other words, the category Cτ is locally
in J, and we have to show, by Theorem 3.6, that it is globally in J. To verify
Knast’s identity, consider a subgraph of Cτ of the form shown in Figure 2. Then
we have {a, c} ⊂ gτ−1 and {b, d} ⊂ g−1τ−1. Set ā = (ab)ωa, b̄ = b(ab)2ω−1,
c̄ = (cd)ωc, d̄ = d(cd)2ω−1, e = āb̄ = (ab)ω and f = c̄d̄ = (cd)ω . The following
lemma can be verified by a straightforward calculation.

Lemma 3.15 The following properties hold:

(1) e and f are idempotent,

(2) ea = eā = ā and fc = f c̄ = c̄.

(3) b̄ = ā−1 and d̄ = c̄−1 in the block group M .

Here ā−1 and c̄−1 denote the unique semigroup inverses of ā and c̄ respectively.
Now e R ā, f R c̄, and we have the picture of two (perhaps not distinct) J -
classes. By Lemma 3.15, we have (ab)ω(cd)ω = ef and (ab)ωad(cd)ω = ād̄ =
āc̄−1 and thus proving Knast’s identity reduces to showing the equality

ef = āc̄−1

Since τ is universal for M , the inclusion {a, c} ⊂ gτ−1 shows that {a, c} is
a pointlike subset of M . By the Pointlike Conjecture, there exist elements
d0, . . . , dk, d′0, . . . , d′k of D(M), elements m1, . . . , mk of M and integers
ε1, . . . , εk ∈ {−1, 1} such that

a ∈ d0m
(ε1)
1 d1m

(ε2)
2 · · · dk−1m

(εk)
k dk (1)

c ∈ d′0m
(ε1)
1 d′1m

(ε2)
2 · · · d′k−1m

(εk)
k d′k (2)

where, as before, m(1) = {m} and m(−1) = {x ∈ M | xmx = x}. We need the
following lemma, which follows from the work of Tilson [53].

Lemma 3.16 Let M be a block group and let R be a regular R-class of M .

(1) For every r ∈ R, for every m ∈ M such that rm ∈ R, there exists m̄ ∈
m(−1) such that rmm̄ = r.

(2) For every r ∈ R, for every m ∈ M and for every m̄ ∈ m(−1) such that
rm̄ ∈ R, one has rm̄m = r.

10



(3) For every m ∈ M , the action of m on R defined, for every r ∈ R, by

r ·m =

{

rm if rm ∈ R

undefined otherwise

is partially one-to-one and is a partial identity if m ∈ K(M).

Of course a dual lemma holds by considering L-classes instead of R-classes.

Proof. (1) Let r, rm ∈ R. Then since r R rm, there exists m′ ∈ M such that
rmm′ = r. Set m̄ = (m′m)2ω−1m′. Then m̄ ∈ m−1 since

m̄mm̄ = (m′m)2ω−1m′m(m′m)2ω−1m′ = (m′m)4ω−1m′ = (m′m)2ω−1m′ = m̄

Furthermore, rmm̄ = rm(m′m)2ω−1m′ = r(mm′)2ω = r.
(3) Suppose now that r1m = r2m = r for some r, r1, r2 ∈ R. Since R is

regular, it is contained in a regular J -class J and the L-class of r contains an
idempotent e. Therefore re = r, that is

r1(me) = r2(me) = r

By the first part of the lemma, there exist weak inverses m̄1, m̄2 of me such
that

r1(me)m̄1 = r1 and r2(me)m̄2 = r2

It is clear that if n ∈ m(−1), then n ≤J m. It follows that m̄1, m̄2 ∈ J and
since m̄1 and m̄2 are weak inverses of me ∈ J , they are in fact inverses of me.
But since M is a block group, every element has a unique inverse, and thus
m̄1 = m̄2. It follows that

r1 = r1(me)m̄1 = r2(me)m̄1 = r2(me)m̄2 = r2

and thus the action of m on R is partially one-to-one.
Let SR be the symmetric group on R and let τ : M → SR be the relation

that associates to any m ∈ M the set mτ of all permutations on R that extends
the partial permutation on R defined by m. It is easy to see that τ is a relational
morphism. In particular, if m ∈ K(M), then m ∈ 1τ−1 by definition and thus
m is a partial identity.

(2) If rm̄ ∈ R and if m̄ ∈ m(−1), then m̄mm̄ = m̄, and thus rm̄m ∈ R. Now
m̄m is idempotent, and thus belongs to K(M), and by (3), induces a partial
identity on R. In particular rm̄m = r.

Let R be the R-class of f . By (2), there exists a sequence m
[εi]
i ∈ m

(εi)
i (1 ≤

i ≤ k) such that

c̄ = fc = fd′0m
[ε1]
1 d′1 · · · d′k−1m

[εk]
k d′k ∈ R

In particular, all the elements f , fd′0, fd′0m
[ε1]
1 , fd′0m

[ε1]
1 d′1, . . . are elements of

R. But since d′0, . . . , d′k ∈ D(M) ⊂ K(M), part (3) of lemma 3.16 shows that
the actions of these elements on R are partial identities. Therefore

c̄ = fm
[ε1]
1 · · · m

[εk]
k ∈ fm

(ε1)
1 · · · m

(εk)
k (3)
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and similarly,

ā ∈ em
(ε1)
1 · · · m

(εk)
k (4)

We next compute the inverse of c̄ in M . Set, for 0 ≤ i ≤ k, ri = fm
[ε1]
1 · · · m

[εi]
i

and

m
[−εi]
i =

{

mi if εi = −1

an element m
[−1]
i of m

(−εi)
i such that ri−1mim

[−1]
i = ri−1 if εi = 1

(5)

Of course, we are using the first part of lemma 3.16 to define m
[−1]
i . Now we

have
ri−1m

[εi]
i m

[−εi]
i = ri−1 (1 ≤ i ≤ k)

This follows from the definition of m
[−1]
i if εi = 1 and from the second part of

lemma 3.16 if εi = −1. It follows by induction

fm
[ε1]
1 · · · m

[εk]
k m

[−εk]
k · · · m

[−ε1]
1 f = f

and thus
c̄−1 = m

[−εk]
k · · · m

[−ε1]
1 f (6)

Furthermore, by (4), we have

ā = em′[ε1]
1 · · · m′[εk]

k (7)

for some elements m′[εi]
i such that m′[εi]

i = mi if εi = 1 and m′[εi]
i ∈ m

(−1)
i if

εi = −1. Set, for 1 ≤ i ≤ k,

si = em′[ε1]
1 · · · m′[εi]

i m
[−εi]
i · · · m

[−ε1]
1 f

We claim that si = si−1 for all i ≥ 1. Indeed, if εi = −1, we have

em′[ε1]
1 · · · m′[εi−1]

i−1 m′[−1]
i m′

i = em′[ε1]
1 · · · m′[εi−1]

i−1

by part (2) of lemma 3.16 and, if εi = 1, then

m′
im

[−1]
i m

[εi−1]
i−1 · · · m

[−ε1]
1 f = m

[εi−1]
i−1 · · · m

[−ε1]
1 f

by the dual version of the same lemma. Therefore, starting from (4) and (6),
we obtain by induction

āc̄−1 = em′[ε1]
1 · · · m′[εk ]

k m
[−εk]
k · · · m

[−ε1]
1 f = · · · = em′[ε1]

1 m
[−ε1]
1 f = ef

Therefore M satisfies Knast’s identity and thus M ∈ J ∗G.

Of course, since we know by theorem 1.2 that the pointlike conjecture is
true, we have the following theorem.

Theorem 3.17 The following equalities hold: PG = BG = J ∗G = J M©G.
In particular, it is decidable whether a monoid divides a power group.
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At the present time, this seems to be one of the most difficult results in finite
semigroup theory in that it requires both Ash’s theorem and Knast’s theorem.
That is, given a block group M , how does one find a finite group H such that M
divides P(H)? First one must trace through the (purely algebraic) proof that
BG = J M©G to construct a group G1 and a relational morphism τ : M → G1

such that 1τ−1 is J -trivial. Then one must use theorem 3.14 and Ash’s proof of
theorem 1.2 to find a group G2 and a J -trivial monoid N such that M divides
N ∗G2 for some action of G2 on N . Then we use the language theoretic approach
of [26, 28] to construct a group G3 such that N ∗G2 divides P(G3) and we can
take H = G3.

4 Local Complexity of Finite Semigroups

In this section we return to the origins of the type II problem and give the con-
nections with the complexity of finite semigroups. We have given the definition
of the complexity function c : Sgp → N in section 1. Here Sgp is the variety
of all finite semigroups. The following theorem characterizing the complexity
function appeared in [47].

Theorem 4.1 The complexity function c : Sgp → N is the largest function, in
the pointwise sense, satisfying the following axioms:

(1) Sc = 0 for every aperiodic semigroup.

(2) Sc ≤ 1 for every finite group.

(3) If S divides T , then Sc ≤ Tc.

(4) (S × T )c ≤ max{Sc, T c}.

(5) (S ◦ T )c ≤ Sc + Tc.

Here “◦” denotes wreath product. A function ` : Sgp → N is called a local
complexity function if it satisfies Axioms 1-5 and in addition:

(1) S` = max{(eSe)` | e = e2 ∈ S}.

For a time it was thought that the complexity function c was local. An example
in [44] constructed a semigroup S such that Sc = 2, but max{(eSe)c | e = e2 ∈
S} = 1. In the second part of this paper, a sequence of semigroups Sn (n > 0)
is constructed such that:

(1) Snc = n.

(2) K(Sn) ∈ A ∗G. In particular, K(Sn)c ≤ 1.

(3) Sn ∈ (A ∗G) M©G. (See theorem 3.4).

Thus the complexity of a semigroup S can differ arbitrarily from the complexity
of its type II subsemigroup K(S). Also, note that (A ∗ G) ∗ G = A ∗ G

is contained in V1, but (3) shows that (A ∗ G) M©G contains semigroups of
arbitrary complexity. Letting V = A ∗G, we see that in general V ∗G can be
a “small” proper subvariety of V M©G.

Furthermore, consider a relation τn : Sn → Gn onto some finite group Gn,
such that the inverse image of the identity is K(Sn). Let Dn be the derived
semigroup of τn as defined in [52]. It follows easily from the basic properties
of the derived semigroup that eDne is contained in K(Sn)0 for all idempotents
e ∈ Dn. On the other hand the Derived Semigroup Theorem [52] shows that
Sn divides the wreath product Dn ◦Gn. It follows that Dnc ≥ n− 1 and thus,

13



the complexity of a semigroup can differ arbitrarily from that of any of its local
submonoids. This shows that the complexity function is very global.

On the other hand, the main Theorem of [47] implies that the lower bound
to complexity considered in [46] is the largest local complexity function. We
review the definition here. Let S be a semigroup and let

S = U0 ≥ T1 ≥ U1 ≤ . . . ≥ Tn ≥ Un

be a descending sequence of subsemigroups such that each Ti, (1 ≤ i ≤ n), is a
nonaperiodic absolute type I semigroup and each Ui is a type II subsemigroup
of Ti for 1 ≤ i ≤ n. We say that the above chain is an alternating series for S
of length n.

Recall that an absolute type I semigroup is a semigroup T such that, for
every relational morphism τ : T → A where A is an aperiodic semigroup, there
is a t ∈ A such that T ⊂ Stab(t)τ−1. That is, T is a type I subsemigroup of
itself.

Let S be a semigroup. Define S` to be the length of the longest alternating
series of S. S` is called the local complexity of S. The following is the main
Theorem of [47].

Theorem 4.2 The local complexity function ` : Sgp → N is the largest function
in the pointwise sense satisfying Axioms 1-6.

At the time that [47] was published it was not known whether being either
an absolute type I semigroup or a type II semigroup was decidable. Ash’s
Theorem takes care of type II. The main result of this section shows that there
is an easy criterion to decide if a semigroup is absolute type I as well. We first
need the following hitherto unpublished result of the fourth author. Let U2 be
the semigroup consisting of two right zeroes {a, b} and an identity.

Theorem 4.3 A semigroup T is absolute type I if and only if for every rela-
tional morphism τ : T → U2, T ⊂ {1, a}τ−1 or T ⊂ {1, b}τ−1.

Note that the maximal right stabilizers in U2 are {1, a} and {1, b}, so that
Theorem 4.3 says that we need only check that T behaves like a type I semigroup
with respect to relational morphisms into U2. Since there are only a finite
number of relational morphisms between any two finite semigroups, we have
the following important corollary.

Corollary 4.4 There is an algorithm to decide if a finite semigroup is an ab-
solute type I semigroup.

Before commencing with the proof of theorem 4.3, we recall that A, the
variety of aperiodic semigroups is the smallest collection A of semigroups con-
taining the trivial semigroup, closed under division, direct product and such that
if T ∈ A, then so is T ◦U2. This is an immediate corollary of the Krohn-Rhodes
Theorem and is a useful tool for inductive proofs involving A.

It will be useful in the proof of theorem 4.3 to have the following concept as
well. A semigroup S is R1 if every R-class of S has at most one idempotent.
The collection R1 of all R1 semigroups forms a variety of finite semigroups. The
next lemma ties up our definition with that of [45] and gives a proof of 4.3.
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Lemma 4.5 The following conditions are equivalent for a semigroup S:

(1) For every relational morphism τ : S → T where T is aperiodic, there is
an R1 subsemigroup R ⊂ T such that S ⊂ Rτ−1.

(2) S is an absolute type I semigroup.

(3) For every relational morphism τ : S → U2, S ⊂ {1, a}τ−1 or S ⊂
{1, b}τ−1.

Proof. Let R be an aperiodic R1 semigroup. Let e be an idempotent in the
minimal ideal of R. It is clear that eR is just the R-class of e. Since R ∈ R1,
the only idempotent in eR is e and since eR is an aperiodic simple semigroup,
it follows that eR = {e} and thus R ⊂ Stab(e). This gives immediately that (1)
implies (2). (2) implies (3) is obvious.

(3) implies (1). We will use the inductive scheme for aperiodic semigroups
outlined above. Let S be a finite semigroup and let AS = {T ∈ A | for all
relational morphisms τ : S → T , there is an R1 subsemigroup R of T such that
S ⊂ Rτ−1}. Then the trivial semigroup is in AS . Now assume that T ∈ AS

and that T ′ divides T . Then there is an injective relational morphism (i.e. the
inverse of a surjective partial function) ι : T ′ → T . Let τ : S → T ′ be a
relational morphism. Then τι : S → T is a relational morphism and thus there
is an R1 subsemigroup R of T such that S ⊂ R(τι)−1. Therefore, S ⊂ R′τ−1

where R′ = Rι−1. Since ι is an injective relational morphism it follows that R′

divides R and is also an R1 semigroup. This proves that T ′ ∈ AS . A similar
type proof shows that AS is closed under direct product as well.

Now assume that T ∈ AS and let τ : S → T ◦ U2 be a relational morphism.
Let π : T ◦ U2 → U2 be the projection morphism. By the assumption (3) it
follows without loss of generality, that S ⊂ {1, a}(τπ)−1. Notice that {1, a} is
isomorphic to the semigroup U1 consisting of an identity and a zero, and thus
we can consider τ : S → T ◦ ({1, a, b}, U1). Thus every element of this wreath
product is of the form (f, x) where x ∈ {1, a} and f : {1, a, b} → T .

Since a is the zero of U1, it is easy to see that the function

η : T ◦ ({1, a, b}, U1) → T

such that (f, x)η = af is a morphism. Since we are assuming that T ∈ AS , there
is an R1 subsemigroup R of T such that S ⊂ Rη−1τ−1. Let R′ = Rη−1. Then
R′ is the disjoint union of a subsemigroup N = R′ ∩ {(f, 1) | f : {1, a, b} → T}
and an ideal I = R′ ∩ {(f, a) | f : {1, a, b} → T}. It is easy to see that the Rees
quotient R′/I = N ∪ {0} divides N ×U1 and that N divides T {1,a,b}, so by the
above and the easy fact that U1 ∈ AS , R′/I ∈ AS . Let ρ : R′ → R′/I be the
Rees morphism. Then θ =

(

τ ∩ (S×R′)
)

ρ : S → R′/I is a relational morphism.
Thus there is an R1 subsemigroup T of R′/I such that S ⊂ Tθ−1. All this
allows to assume without loss of generality, that N is an R1 subsemigroup of
R′.

It suffices then to prove that I is an R1 semigroup. Suppose that (f, a) and
(g, a) are R-equivalent idempotents of R. Then (f, a)η = (g, a)η, since η is a
morphism and R is an R1 semigroup. That is, af = ag. Thus,

(f, a) = (g, a)(f, a) = (g + af, a) = (g + ag, a) = (g, a)

using the fact that we are dealing with R-equivalent idempotents. This proves
that I is an R1 semigroup and we are done.
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Theorem 4.6 The local complexity function ` : Sgp → N is computable.

The rest of this section is devoted to providing a more satisfying descrition
of absolute type I semigroups. It confirms a conjecture first published in [45].
We first gather some simple facts about absolute type I semigroups.

Lemma 4.7

(1) Let ϕ : S → T be a surjective functional morphism. If S is absolute type
I, then so is T .

(2) If S is absolute type I, then so are S1 and S0.

Proof. Let ϕ : S → T be a surjective functional morphism and let τ : T → A
be a relational morphism onto an aperiodic semigroup A. Then ϕτ : S → A is a
relational morphism. Since S is absolute type I there is a t ∈ T , such that S ⊂
Atτ

−1ϕ−1 where At = Stab(t). Therefore, T = Sϕ ⊂ Atτ
−1ϕ−1ϕ ⊂ Atτ

−1,
since ϕ is a function. Therefore T is absolute type I and this proves (1). The
proof of (2) is easy and is left to the reader.

Theorem 4.8 A semigroup S is an absolute type I semigroup if and only if S
is generated by the union of a chain of L-classes, L1 >L L2 >L · · · >L Ln.

Proof. First assume that S is generated by the union of a chain of L-classes,
L1 >L L2 >L · · · >L Ln. Let τ : S → U2 be a relational morphism. It is easy to
see that Ln is contained in the inverse image of an L-class of U2. But L-classes
of U2 are singletons. If Ln is contained in the inverse image of 1, so are all the
other Li for i < n, since they are all L-above Ln. Thus S is contained in the
inverse image of {1}. If Ln is contained in the inverse image of {a}, then again
it is easy to see that the chain condition implies that all the Li are contained
in {1, a}τ−1. Thus in this case, S is contained in the inverse image of {1, a}.
Similarly, if Ln is contained in the inverse image of {b}, then S is contained in
the inverse image of {1, b}. Theorem 4.3 implies that S is absolute type I.

Conversely, assume that S is absolute type I. Without loss of generality we
may assume that S is a monoid with 0 by 4.7 (2). We induct on the number k
of non-zero J -classes of S. If k = 1, then S is either a group or a group with 0
and the result is clear.

Assume that every monoid with 0 with less than k non-zero J -classes that
is absolute type I is generated by a chain of L-classes. Let S have k non-zero
J -classes, where k ≥ 2. Let J 6= 0 be a (0)-minimal J -class. Let I = SJS be
the ideal generated by J and let T = S/I be the Rees quotient. By Lemma 4.7
(1), T is absolute type I. Since T has k − 1 non-zero J -classes, the inductive
hypothesis implies that T is generated by the union of a chain of L-classes,
L1 >L · · · >L Lr in the L-order of T . Without loss of generality, we can assume
that Lr 6= 0.

Let K be the submonoid of S generated by the union of the Li (i = 1, . . . , r).
Let Y be the set of L-classes of J that are not contained in K. If Y is empty,
then K = S and we are done, so we assume that Y 6= ∅. Define a relation ≥
on Y by L ≥ L′ if and only if there is a k ∈ K such that Lk = L′. Clearly
≥ is reflexive and transitive. Let ∼ denote the associated equivalence relation
and let ≥ also denote the associated partial order on Y/∼. Let [L] denote the
equivalence class of L.
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We claim that the poset (Y/∼,≥) has a unique maximal element. Otherwise
there are two ≥ maximal classes [L] and [L′] that are incomparable. Define τ :
S → U2 to be the relational morphism generated by sτ = {1} if s ∈ S\([L]∪[L′]),
sτ = {a} if s ∈ ∪[L] and sτ = {b} if s ∈ ∪[L′]. It is easy to see that 1 ∈ sτ if and
only if s is in K or s belongs to an L-class that is not equivalent to L or L′. Since
L and L′ are not contained in K, it follows that there is an s ∈ L and s′ ∈ L′

such that neither s nor s′ is τ related to 1. Now a ∈ sτ . Clearly b ∈ sτ if and
only if s = xty where t is in an L-class equivalent to L′ and 1 ∈ yτ . Since J is
(0)-minimal, it follows that xt L t. Since 1 ∈ yτ , either y is in K or in an L-class
not equivalent to L. If y ∈ K, then s = xty L ty and thus L ≤ L′ contradicting
the assumption that L and L′ are incomparable. On the other hand, if y is in
an L-class not equivalent to L, then s = xty L y (by (0)-minimality of J again)
and this too is a contradiction. Therefore, sτ = {a}. Similarly, s′τ = {b}.
Therefore, S is not absolute type I and this is a contradiction.

Let L be a representative of the unique maximal ∼ class. Clearly S is
generated by K ∪L and thus by ∪1≤i≤rLi ∪L. It suffices then to prove that we
can find an L-class L′ equivalent to L and such that L ≤L Lr.

Consider then the relational morphism η : S → U2 generated by Liη = {1}
for i = 1, . . . , r−1, Lrη = {a} and Lη = {b}. Since S is absolute type I, and Lr

is strictly J -above L, it follows that S is contained in {1, a}η−1. As above, we
can find an s ∈ L such that s is not in K. Therefore, a ∈ sη. This means that we
can factor s = xty where t ∈ Lr and y ∈ 1η−1. But 1η−1 ⊂ K by construction.
Now if xt is not in J , it follows that xt is in K and thus s = xty ∈ K, a
contradiction. Therefore xt is in J . Clearly the L-class L′ of xt is L-below Lr

and satisfies L′ ≥ L. Therefore, L′ ∼ L by maximality and we are done.

5 Topology

In a sequence of papers [31, 37, 34], the third author gives an interpretation of
the type II conjecture in terms of a conjecture on the structure of closed rational
sets in the profinite group topology on a free monoid. In [29], it is shown that the
type II conjecture is in fact equivalent to this topological conjecture. Related
work appeared in [17]. It is proved in [38] that a conjecture on the structure of
rational closed subsets in the profinite topology on the free group, generalizing
a classical result of M. Hall [12], implies the topological conjecture on the free
monoid and thus the type II conjecture. We show here that all these conjectures
are equivalent. In particular, Ash’s theorem implies that the two topological
conjectures are true and leads to a complete and decidable description of the
rational closed sets in both the free monoid and the free group. As the authors
were preparing this article, a direct proof of the topological conjecture on the
free group has been obtained by Ribes and Zalesskii [48], giving in turn a new
proof of Ash’s theorem! The proof of Ribes and Zaleski uses profinite trees
acting on groups, and thus seems at first sight very far from the proof of Ash.
However, a more careful study reveals some interesting connections between the
two proofs and it would be interesting to combine the two techniques.

In this section, we only concentrate on the connections between profinite
group topologies on free monoids and free groups and the type II conjecture.
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For more details on these topologies, see [37].
Let A be a finite set and let A∗ and FG(A) denote the free monoid and

the free group on A respectively. The rational subsets of a monoid M form the
smallest class R of subsets of M such that

(a) every finite subset of M belongs to R,

(b) if S and T are in R, then so are ST and S ∪ T ,

(c) if S ∈ R, then so is the submonoid S∗ of M generated by S.

If M = A∗, the free monoid on a finite set A, a well-known theorem of Kleene
states that the rational subsets are exactly the recognizable subsets. In partic-
ular, the rational sets form a boolean algebra under union and complement. If
M = FG(A), the rational subsets also form a boolean algebra (a non-trivial
result), which strictly contains the boolean algebra of recognizable subsets. The
rational subsets of the free monoid and of the free group are related as follows.
Let Ã = A∪A−1, where A∩A−1 = ∅ and let K ⊂ Ã∗ be the set of group reduced
words. We have the canonical injection ι : FG(A) → Ã∗ and the canonical maps
π : Ã∗ → FG(A) and δ : Ã∗ → K, where wδ is the unique reduced word v with
vπ = wπ. Then a theorem of Benois [7] states a subset S of FG(A) is rational
if and only if the subset Sδ of Ã∗ is rational.

The profinite group topology on A∗ (FG(A)) is the smallest topology such
that every monoid (group) morphism from A∗ (FG(A)) onto a finite group G
is continuous. This topology was first considered for the free group by M. Hall
[12] and by Reutenauer for the free monoid [40, 41]. It is also connected to the
study of implicit operations [2, 39].

It is clear that a basis for the topology on A∗ is the set of recognizable
languages whose syntactic monoid is a finite group and that a basis for the
topology on FG(A) is the set of cosets of subgroups of FG(A) of finite index.
If X is a subset of the free monoid or the free group, let X̄ denote the closure
of X in the respective topology. The next theorem gives the first connection
between the profinite group topology and the type II conjecture.

Theorem 5.1 [37] Let M be a finite monoid, represented as a morphic image
ϕ : A∗ → M of a finitely generated free monoid. Let m ∈ M . Then m ∈ K(M)
if and only if 1 ∈ mϕ−1.

Thus the question of whether an element m of M is in K(M) is decidable,
the so called weak form of the type II conjecture, is equivalent to seeing if the
empty word is in the closure, in the profinite group topology on A∗, of the set
of words that represent m. The third author refined this to find a conjecture on
closed rational sets in the free monoid that is equivalent to the type II conjecture
itself. We start with the following observation.

The topologies on the free monoid and on the free group can also be defined
by the following metric. Define d(u, u) = 0 and if u 6= v, then d(u, v) = 2−n

where n is the order of the smallest group that separates u and v. Since it is
well-known that the free monoid and the free group are residually finite with
respect to groups — that is, for every pair of distinct elements there is a monoid
(respectively group) morphism onto a finite group that separates them — it is
easy to prove that the function d is an ulta-metric, is compatible with multi-
plication and turns A∗ (FG(A)) into a topological monoid (group). Here is an
interesting limit for this topology. It holds for both cases.
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Theorem 5.2 [40] For all x, u, y ∈ A∗ (FG(A)), lim
n→∞

xun!y = xy

In essence one need just observe that un! = 1 in every finite group of order at
most n and then use the metric properties listed above. As a closed set contains
the limit of any converging sequence, we have the following corollary.

Corollary 5.3 Let X be a closed set. If xun!y ∈ X for all n ≥ 0, then xy ∈ X.

The third author conjectured that the converse of this corollary holds if X
is a recognizable set. More precisely:

Conjecture 5.1 [37] Let L be a recognizable subset of A∗. Then L is closed if
and only if for all x, u, y ∈ A∗, if {xuny | n > 0} ⊂ L, then xy ∈ L.

In [34], it is proved that this conjecture implies that K(M) = D(M) for
every finite monoid M , that is the topological conjecture 5.1 implies the type
II conjecture. In [29] it is proved that the converse is true. The proofs of these
equivalences are non-trivial.

In [38] an easier to state conjecture on rational closed sets in the free group
is made. First recall the following result of M. Hall. See [12, 49] for proofs.

Theorem 5.4 (Hall) Let H be a finitely generated subgroup of FG(A). Then
H is closed in the profinite topology.

The conjecture of Pin and Reutenauer just states that the product of finitely
generated subgroups of FG(A) is closed:

Conjecture 5.2 (Pin and Reutenauer [38]) Let H1, . . . , Hn be finitely gener-
ated subgroups of FG(A). Then H1H2 · · ·Hn is closed in the profinite topology.

The main theorem of this section shows that the two topological conjectures
are equivalent to the type II conjecture and therefore are true.

Theorem 5.5 The following statements are equivalent:

(a) K(M) = D(M) for every finite monoid M .

(b) The topological conjecture for free monoids is true.

(c) The topological conjecture for free groups is true.

Proof. By the remarks above, by the results of [29, 34, 38], we need only prove
that (b) implies (c). We use freely the notations Ã, K and δ introduced above.
Consider the profinite topologies on Ã∗ and FG(A) and the relative topology
on K ⊂ Ã∗. We have the canonical maps π : Ã∗ → FG(A) and δ : Ã∗ → K. It
is well known that β = δ−1π : K → FG(A) is a bijection. The following is an
immediate corollary of [37], theorem 4.11(c).

Lemma 5.6 β : K → FG(A) is a homeomorphism.

Let H1, . . . , Hn be finitely generated subgroups of FG(A). Let Ai =
(Qi, qi, qi) for i = 1,. . . , n be the finite state inverse automaton with initial-
terminal state qi such that |Ai| ∩K = Hiβ

−1. That is, Ai recognizes Hi when
considered as an automaton over FG(A). The only difference with an automa-
ton over A∗ is that to any edge (q, a, q′) is associated an edge (q′, ā, q). In
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other words, one can read edges backwards by inversing their labels. Assume
Qi ∩Qj = ∅ for i 6= j. Consider the automaton B0 = (Q, q1, qn) pictured below:
More formally, the state set of B0 is Q = ∪1≤i≤nQi, the edges of B0 are the
union of the edges of the Ai together with {(qi, 1, qi+1) | 1 ≤ i ≤ n}. Note that
even though every edge in Ai has an inverse edge, none of the edges reading the
identity can be read backwards.
Clearly, considered as an automaton over FG(A), A accepts L = H1H2 · · ·Hn.
However, there may be some reduced words representing elements of L, that are
not accepted by A.

Conjecture 5.3 Let H1 = 〈aba−1〉 and H2 = 〈a〉. Then ab ∈ H1H2, but ab
considered as an element of Ã∗ is not accepted by A. The equivalent word
aba−1a is accepted.

To rectify this situation we add an edge labelled 1 between any states p 6= q in
B0 such that there is a path labelled aa−1 : p → q for some a ∈ Ã. Note that
since p 6= q, if p ∈ Qi, then q ∈ Qj for some j > i since each Ai is an inverse
automaton. We obtain an automaton B1. One can continue this process of
mimicking aa−1 pairs with identity arrows to obtain B2, . . . , Bk. It is clear that
this process halts after a finite number of steps and we obtain an automaton
B = (Q, q1, qn) with the following properties:

(1) considered as an automaton over FG(A), B accepts L = H1H2 · · ·Hn,

(2) considered as an automaton over Ã∗, |B| ∩ K = Lβ−1. That is, every
reduced word representing an element of L is accepted by B.

The topological conjecture for FG(A) states that L is a closed set. By lemma
5.6, it suffices to prove that Lβ−1 = |B| ∩K is closed in K and thus that |B| is
closed in Ã∗ by definition of the relative topology. Thus it suffices to show that
if xu+y ⊂ |B|, then xy ∈ |B|, by the topological conjecture for Ã∗. Let k = |Q|.
If xu+y ⊂ |B|, then in particular, xuk!y ∈ |B|. Thus there is a path p : q1 → qn

such that p reads xuk!y. By the pigeon-hole principle, there is some state s,
and a factorization of p = abc such that a : q1 → s, b : s → s and c : s → qn,
such that b reads ur for some r ≤ k. By the construction of B, no edge in b
reads 1 and if s is a state of Ai then b is actually a path in Ai. Since Ai is
inverse, there is also a path b−1 : s → s reading u−r. It follows that the path
ab(b−1)

k!

r c : q1 → qn reads a word of the form xui(u−1)july with i+ l = j. This
word reduces to xy and by the construction of B, xy ∈ |B| as desired.

As a consequence of Ash’s proof of the type II conjecture, or as a consequence
of the result of Ribes and Zalesskii, the topological conjectures now become
theorems which we record below.

Theorem 5.7 Let L be a rational subset of A∗. Then L is closed if and only
if L satisfies the implication xu+y ⊂ L ⇒ xy ∈ L.

Theorem 5.8 Let H1, . . . , Hn be finitely generated subgroups of FG(A). Then
the set H1H2 · · ·Hn is closed in the profinite topology.

It is shown in [38] that the truth of the topological conjecture for the free
group implies a number of results on the structure of rational closed sets in

20



the free monoid and the free group. As these results now become theorems, we
repeat them here and leave the details to [38]. Let F be the smallest class of
subsets of the free group such that

(a) The empty set and every singleton {g}, g ∈ FG(A), is in F ,

(b) If X, Y ∈ F , then so are XY and X ∪ Y ,

(c) if X ∈ F , then 〈X〉, the group generated by X , is in F .

F is a proper subset of the set of rational subsets of FG(A). Here is an alter-
native characterization of members of F .

Proposition 5.9 (Proposition 2.2 of [38]) F is the class of all subsets of FG(A)
that are finite unions of sets of the form gH1H2 · · ·Hn where g ∈ FG(A) and H1,
. . . , Hn are finitely generated subgroups of FG(A). Furthermore F is precisely
the collection of closed rational subsets of FG(A) in the profinite topology.

The following theorem gives an algorithm to compute the closure of a rational
set L ⊂ FG(A).

Theorem 5.10 (Theorem 2.4 of [38]) Let L ⊂ FG(A) be rational. Then the
closure L̄ of L in the profinite topology is rational. Furthermore L̄ can be com-
puted by the following rules where X and Y are rational subsets of the free
group:

(1) X̄ = X if X is finite.

(2) X ∪ Y = X̄ ∪ Ȳ .

(3) XY = X̄Ȳ .

(4) X∗ = 〈X〉 = (X ∪X−1)∗.

Given a rational expression for L, one can clearly construct a rational ex-
pression for L̄. The next theorem follows from well-known results about rational
sets in free groups.

Lemma 5.11 Let L, L′ ∈ Rat(FG(A)) be given by rational expressions. Then
it is decidable whether or not L = L′.

Proof. Let L ∈ Rat(FG(A)) be given by a rational expression. Then by using
the theorem of Benois [7], one can effectively construct a finite state automaton
B(L) over Ã∗ such that |B(L)| = Lβ−1, the set of reduced words representing
L. But L = L′ if and only if Lβ−1 = L′β−1 and the result follows since equality
is decidable for languages specified by finite state automata.

Corollary 5.12 Let L ∈ Rat(FG(A)) be given by a rational expression. Then
it is decidable whether or not L is closed in the profinite topology.

Proof. L is closed if and only if L = L̄.

Similarly, we can use the truth of the conjecture for the free monoid to show
that closed sets have nice properties.

Let L ⊂ A∗. Let F ∗(L) be the smallest set K containing L and closed under
the implication xu+y ⊂ K ⇒ xy ∈ K. It is clear that F ∗(L) is well defined.
Furthermore, it is shown in [37] that if L ∈ Rat(A∗) is given by a rational
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expression (or by a finite automaton), then F ∗(L) ∈ Rat(A∗) and a rational
expression (resp. a finite automaton) for F ∗(L) can be effectively computed.

Theorem 5.13 Let L be a rational subset of A∗. Then L̄ = F ∗(L). Further-
more, L̄ is rational, effectively constructible from L and its syntactic monoid is
a block group.

Proof. It follows immediately from theorem 7.6 of [37].

Corollary 5.14 It is decidable whether a rational subset of A∗ is closed or not
in the profinite topology.

A simple characterization can also be given in terms of syntactic monoids.
Let L be a subset of A∗. Then the syntactic congruence of L is the equivalence
∼L on A∗ defined by

u ∼L v if and only if, for every x, y ∈ A∗ (xuy ∈ L ⇐⇒ xvy ∈ L).

The quotient A∗/∼L is the syntactic monoid of L and the natural morphism
η : A∗ → M(L) is called the syntactic morphism. Finally, the subset P = Lη
of M(L) is called the syntactic image of L. It is a well-known fact that L is
rational if and only if M(L) is a finite monoid.

Theorem 5.15 Let L ⊂ A∗ be rational and let M be its syntactic monoid. Then
L is closed if and only if its syntactic image P satisfies the following property:

for every s, t ∈ M and for every e ∈ E(M), set ∈ P implies st ∈ P .

Here is another way to compute the closure of a rational subset of A∗. It too
follows from the truth of the conjecture on the free group. A subset L ⊂ A∗ is
simple if L = L∗0w1L

∗
1w2 · · ·wkL∗k where the Li’s are rational subsets of A∗ for

i = 0, . . . , k and wi ∈ A∗ for i = 1, . . . , k. It is an easy consequence of Kleene’s
theorem that a subset L of A∗ is rational if and only if it is a finite union of
simple sets. Furthermore, given a rational expression or finite state automaton
representing L, we can effectively write L as a finite union of simple sets [37].

Theorem 5.16 (Theorem 7.8 of [37]) Let L = L∗0w1L
∗
1w2 · · ·wkL∗k be simple.

Then L̄ = 〈L0〉w1〈L1〉 · · ·wk〈Lk〉 ∩ A∗.

Since closure commutes with union, this allows to effectively compute the
closure of a rational set.
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Figure 1: A regular D-class of a block group.
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Figure 3: The automaton B0.
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