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Abstract. The goal of the present paper is to provide a systematic and comprehensive
study ofrational stochastic languagesover a semiringK ∈ {Q, Q+, R, R+}. A rational
stochastic language is a probability distribution over a free monoidΣ∗ which is rational
over K, that is which can be generated by a multiplicity automata with parameters in
K. We study the relations between the classes of rational stochastic languagesSrat

K (Σ).
We define the notion ofresidual of a stochastic language and we use it to investigate
properties of several subclasses of rational stochastic languages. Lastly, we study the
representation of rational stochastic languages by means of multiplicity automata.

1 Introduction

In probabilistic grammatical inference, data often arise in the form of a finite sequence
of wordsw1, . . . , wn over some predefined alphabetΣ. These words are assumed to
be independently drawn according to a fixed but unknown probability distribution over
Σ∗. Probability distributions over free monoidsΣ∗ are calledstochastic languages. A
usual goal in grammatical inference is to try to infer an approximation of this distri-
bution in some class of probabilistic models, such asprobabilistic automata. A proba-
bilistic automaton (PA) is composed of astructure, which is a finite automaton (NFA),
andparametersassociated with states and transitions, which represent the probabil-
ity for a state to be initial, terminal or the probability fora transition to be chosen.
It can easily be shown that probabilistic automata have the same expressivity as Hid-
den Markov Models (HMM), which are heavily used in statistical inference [DDE05].
Given the structureA of a probabilistic automaton and a sequence of wordsS, com-
puting parameters forA which maximize the likelihood ofS is NP-hard [AW92]. In
practical cases however, algorithms based on the E.M. (Expectation-Maximization)
method [DLR77] can be used to compute approximate values. Onthe other hand, in-
ferring a probabilistic automaton (structure and parameters) from a sequence of words
is a widely open field of research. Most results obtained so far only deal with re-
stricted subclasses of PA, such as Probabilistic Deterministic Automata (PDA), i.e.
probabilistic automata whose structure is deterministic (DFA) or Probabilistic Resid-
ual Automata (PRA), i.e. probabilistic automata whose structure is a residual finite
state automaton (RFSA)[CO94,CO99,dlHT00,ELDD02,DE04].

In other respects, it can be noticed that stochastic languages are particular cases
of formal power seriesand that probabilistic automata are also particular cases of
multiplicity automata, notions which have been extensively studied in the field of for-
mal language theory[SS78,BR84,Sak03]. Therefore, stochastic languages which can
be generated by multiplicity automata are special cases ofrational languages. We call
themrational stochastic languages. The goal of the present paper is to provide a sys-
tematic and comprehensive study ofrational stochastic languagesso as to bring out



properties that could be useful for a grammatical inferencepurpose. Indeed, consid-
ering the objects to infer as special cases of rational languages makes it possible to
use the powerful theoretical tools that have been developedin that field and hence,
give answers to many questions that naturally arise when working with them: is it
possible to decide within polynomial time whether two probabilistic automata gener-
ate the same stochastic language? does allowing negative coefficients in probabilistic
automata extend the class of generated stochastic languages? can a rational stochastic
language which takes all its values inQ always be generated by a multiplicity automata
with coefficients inQ? and so forth. Also, studyingrational stochastic languagesfor
themselves, considered as objects of language theory, helps to bring out notions and
properties which are important in a grammatical inference pespective: for example, we
show that the notion of residual language (or derivative), so important for grammatical
inference [DLT02,DLT04], has a natural counterpart for stochastic languages [DE03],
which can be used to express many properties of classes of stochastic languages.

Formal power seriestake their values in a semiringK: let us denote byK〈〈Σ〉〉 the
set of all formal power series. Here, we only consider semiringsQ, R, Q+ andR+. For
any such semiringK, we define the setSrat

K (Σ) of rational stochastic languages as the
set of stochastic languages overΣ which are rational languages overK. For any two
distinct semiringsK andK ′, the corresponding sets of rational stochastic languages
are distinct. We show thatR is a Fatou extension ofQ for stochastic languages, which
means that any rational stochastic language overR which takes its values inQ is also
rational overQ. However,R+ is not a Fatou extension ofQ+ for stochastic languages:
there exists a rational stochastic language overR+ which takes its values inQ+ and
which is not rational overQ+.

For any stochastic languagep overΣ and any wordu such thatp(uΣ∗) 6= 0, let us
define the residual languageu−1p of p with respect tou byu−1p(w) = p(uw)/p(uΣ∗):
residual languages clearly are stochastic languages. We show that the residual lan-
guages of a rational stochastic languagep overK are also rational overK. The residual
subsemimodule[Res(p)] of K〈〈Σ〉〉 spanned by the residual languages of any stochas-
tic languagep may be used to express the rationality ofp: p is rational iff [Res(p)] is
included in a finitely generated subsemimodule ofK〈〈Σ〉〉. But whenK is positive,
i.e. K = Q+ or K = R+, it may happen that[Res(p)] itself is not finitely generated.
We study the properties of two subclasses ofSrat

K (Σ): the setSfingen
K (Σ) composed

of rational stochastic languages overK whose residual subsemimodule is finitely gen-
erated and the setSfin

K (Σ) composed of rational stochastic languages overK which
have finitely many residual languages. We show that for any ofthese two classes,R+

is a Fatou extension ofQ+: any stochastic language ofSfingen

R+ (Σ) (resp. ofSfin

R+ (Σ))

which takes its values inQ+ is an element ofSfingen

Q+ (Σ) (resp. ofSfin

Q+ (Σ)). We also

show that for any elementp of Sfingen
K (Σ), there exists a unique minimal subset of

residual languages ofp which generates[Res(p)].

Then, we study the representation of rational stochastic languages by means of
multiplicity automata. We first show that the set of multiplicity automata with parame-
ters inQ which generate stochastic languages is not recursive. Moreover, it contains no
recursively enumerable subset capable to generate the whole set of rational stochastic
languages overQ. A stochastic languagep is a formal series which has two properties:
(i) p(w) ≥ 0 for any wordw, (ii)

∑

w p(w) = 1. We show that the undecidability
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comes from the first requirement, since the second one can be decided within poly-
nomial time. We show that the set of stochastic languages which can be generated
by probabilistic automata with parameters inQ+ (resp.R+) exactly coincides with
Srat

Q+(Σ) (resp.Srat
R+ (Σ)). A probabilistic automatonA is called a Probabilistic Resid-

ual Automaton (PRA) if the stochastic languages associatedwith its states are residual
languages of the stochastic languagespA generated byA. We show that the set of
stochastic languages that can be generated by probabilistic residual automata with pa-
rameters inQ+ (resp.R+) exactly coincides withSfingen

Q+ (Σ) (resp.Sfingen

R+ (Σ)). We
do not know whether the class of PRA is decidable. However, wedescribe two decid-
able subclasses of PRA capable of generatingSfingen

K (Σ) whenK = Q+ orK = R+:
the class ofK-reduced PRA and the class of prefixial PRA. The first one provides min-
imal representation in the class of PRA but we show that the membership problem is
PSPACE-complete. The second one produces more cumbersome representation but
the membership problem is polynomial. Finally, we show thatthe set of stochastic
languages that can be generated by probabilistic deterministic automata with parame-
ters inQ+ (resp.R+) exactly coincides withSfin

Q+ (Σ), which is also equal toSfin
Q (Σ)

(resp.Sfin

R+ (Σ), which is also equal toSfin
R (Σ)).

We recall some properties on rational series, stochastic languages and multiplicity
automata in Section 2. We define and study rational stochastic languages in Section 3.
The relations between the classes of rational stochastic languages are studied in Sub-
section 3.1. Properties of the residual languages of rational stochastic languages are
studied in Subsection 3.2. A characterisation of rational stochastic languages in terms
of stable subsemimodule is given in Subsection 3.3. ClassesSfingen

K (Σ) andSfin
K (Σ)

are defined and studied in Subsection 3.4. The representation of rational stochastic
languages by means of multiplicity automata is given in Section 4.

2 Preliminaries

2.1 Rational series

In this section, we recall some definitions and results on rational series. For more
information, we invite the reader to consult [SS78,BR84,Sak03].

Let Σ be a finitealphabet, andΣ∗ be the set of words onΣ. The empty word is
denoted byε and the length of a wordu is denoted by|u|. The number of occurrences
of the letterx in the wordw is denoted by|w|x. For any integerk, we denote byΣk the
set{u ∈ Σ∗ | |u| = k} and byΣ≤k the set{u ∈ Σ∗ | |u| ≤ k}. We denote by< the
length-lexicographic order onΣ∗. For any wordu ∈ Σ∗ and any languageL ⊆ Σ∗,
let uL = {uv ∈ Σ∗|v ∈ L} andu−1L = {v ∈ Σ∗|uv ∈ L}. A subsetP of Σ∗ is
prefixial if for any u, v ∈ Σ∗, uv ∈ P ⇒ u ∈ P .

A semiringis a setK with two binary operations+ and· and two constant elements
0 and 1 such that

1. 〈K,+, 0〉 is a commutative monoid,
2. 〈K, ·, 1〉 is a monoid,
3. the distribution lawsa · (b + c) = a · b + a · c and(a + b) · c = a · c + b · c hold,
4. 0 · a = a · 0 = 0 for everya.
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A semiring ispositiveif the sum of two elements different from 0 is different from
0.

The semirings we consider here are the field of rational numbers Q, the field of
real numbersR, Q+ andR+, respectively the non negative elements ofQ andR; Q+

andR+ are positive semirings.
Let Σ be a finite alphabet andK a semiring. Aformal power seriesis a mappingr

of Σ∗ into K. The valuesr(w) wherew ∈ Σ∗ are referred to as thecoefficientsof the
series, andr is written as a formal sumr =

∑

w∈Σ∗ r(w)w. The set of all formal power
series is denoted byK〈〈Σ〉〉. Givenr, the subset ofΣ∗ defined by{w|r(w) 6= 0} is
the supportof r and denoted bysupp(r). A polynomialis a series whose support is
finite. The subset ofK〈〈Σ〉〉 consisting of all polynomials is denoted byK〈Σ〉.

We denote by 0 the series all of whose coefficients equal 0. We denote by 1 the
series whose coefficient forε equals 1, the remaining coefficients being equal to 0.
The sumof two seriesr andr′ in K〈〈Σ〉〉 is defined byr + r′ =

∑

w∈Σ∗(r(w) +
r′(w))w. The multiplication of a seriesr by a scalara ∈ K is defined byar =
∑

w∈Σ∗ a · r(w)w. The Cauchy product of two seriesr andr′ is defined byrr′ =
∑

w∈Σ∗

(
∑

w1w2=w r(w1) · r′(w2)
)

w. These operations furnishK〈〈Σ〉〉 with the struc-
ture of a semiring withK〈Σ〉 as a subsemiring. The Hadamard product of two series
r andr′ is defined byr ⊙ r′ =

∑

w∈Σ∗ r(w)r′(w)w.
A seriesr is quasiregularif r(ǫ) = 0. Quasiregular series have the property that

for everyw ∈ Σ∗, there exist finitely many integersi such thatri(w) 6= 0 where the
exponenti of ri refers to the Cauchy product. Letr be a quasiregular series,r∗ (resp.
r+) is defined byr∗(w) =

∑

i≥0 ri(w) (resp.r+(w) =
∑

i≥1 ri(w)).
A subsemiringR of K〈〈Σ〉〉 is rationally closedif r+ ∈ R for every quasiregu-

lar elementr of R. The familyKrat〈〈Σ〉〉 of K-rational series overΣ is the smallest
rationally closed subset ofK〈〈Σ〉〉 which contains all polynomials. WhenK is com-
mutative, the Hadamard product of two rational series is a rational series.

Let K be a semiring and letm,n be two integers. Let us denote byKm×n the set
of m × n matrices whose elements belong toK and byIm the matrix whose diagonal
elements are equal to 1 and whose all other elements are null.Note thatKm×m forms
a semiring.

A seriesr is recognizableif there exists a multiplicative homomorphismµ : Σ∗ →
Kn×n, n ≥ 1, and two matricesλ ∈ K1×n, γ ∈ Kn×1 such that for everyw ∈ Σ∗,
r(w) = λµ(w)γ. The tuple(λ, µ, γ) is called ann dimensionallinear representation
of r. A linear representation ofr is said to bereducedif its dimension is minimal.

Let us denote byKrec〈〈Σ〉〉 the set of all recognizable series.

Theorem 1. [Sch61] The familiesKrat〈〈Σ〉〉 andKrec〈〈Σ〉〉 coincide.

Let K be a semiring. Then a commutative monoid V is called aK-semimoduleif
there is an operation· from K × V into V such that for anya, b ∈ K, v,w ∈ V ,

1. (ab) · v = a · (b · v),
2. (a + b) · v = a · v + b · v anda · (v + w) = a · v + a · w,
3. 1 · v = v and0 · v = 0.

If S is a subset of aK-semimoduleV , the subsemimodule[S] generated byS is
the smallest of all subsemimodules ofV containingS. It can be proved that[S] =
{a1s1 + . . . + ansn|n ∈ N∗, ai ∈ K, si ∈ S}.
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Let us consider the semimoduleKΣ∗
of all functionsF : Σ∗ → K. For any word

u of Σ∗ and any functionF of KΣ∗
, we define a new functioṅuF by u̇F (v) = F (uv)

for any wordv. The operator transformingF into u̇F is linear: for anyF,G ∈ KΣ∗

anda ∈ K, u̇ (a · F ) = a · u̇F and u̇(F + G) = u̇F + u̇G. A subsetB of KΣ∗
is

calledstableif the conditionsu ∈ Σ∗ andF ∈ B imply that u̇F ∈ B.

Theorem 2. [Fli74,Jac75] Suppose thatK is a commutative semiring andr belongs
to K〈〈Σ〉〉. Then the following three conditions are equivalent:

1. r belongs toKrat〈〈Σ〉〉;
2. the subsemimodule ofK〈〈Σ〉〉 generated by{u̇r|u ∈ Σ∗} is contained in a finitely

generated stable subsemimodule ofKΣ∗
;

3. r belongs to a finitely generated stable subsemimodule ofKΣ∗
.

WhenK is not a field, it may happen that a seriesr belongs to a finitely generated
stable subsemimodule ofK〈〈Σ〉〉, and hence is a rational series, while the stable sub-
semimodule generated by{u̇r|u ∈ Σ∗} is not finitely generated. An example of this
situation will be provided on Example 1.

Two linear representations(λ, µ, γ) and(λ′, µ′, γ′) of a rational seriesr aresimilar
if there exists an inversible matrixm ∈ Kn×n such thatλ′ = λm,µ′w = m−1µwm
for any wordw andγ′ = m−1γ.

Theorem 3. [Sch61,Fli74] Assume thatK is a commutative field. Then any two re-
duced linear representations(λ, µ, γ) and(λ′, µ′, γ′) of a rational seriesr are similar.
The dimension of any reduced linear representation ofr is also the dimension of the
vector subspace generated by{u̇r|u ∈ Σ∗}.

Let K be a subsemiring ofK ′. K ′ is said to be aFatou extensionof K if ev-
ery rational series overK ′ with coefficients inK is a rational series overK. It has
been shown in [Fli74] that whenK and K ′ are commutative fields thenK ′ is a
Fatou extension ofK. Therefore,R is a Fatou extension ofQ: any rational series
over R which only takes rational values is a rational series overQ: Rrat〈〈Σ〉〉 ∩
Q〈〈Σ〉〉 = Qrat〈〈Σ〉〉. It has also been proved thatR+ is not a Fatou extension of
Q+: Q+rat〈〈Σ〉〉 ( R+rat〈〈Σ〉〉 ∩ Q+〈〈Σ〉〉.

2.2 Stochastic languages

A stochastic languageis a formal seriesp which takes its values inR+ and such that
∑

w∈Σ∗ p(w) = 1. For any stochastic languagep and any languageL ⊆ Σ∗, the sum
∑

w∈L p(w) is defined without ambiguity. So, let us denote
∑

w∈L p(w) by p(L). The
set of all stochastic languages overΣ is denoted byS(Σ). For any stochastic language
p and any wordu such thatp(uΣ∗) 6= 0, we define the stochastic languageu−1p by

u−1p(w) =
p(uw)

p(uΣ∗)
·

u−1p is called theresidual languageof p wrt u. Let us denote byres(p) the set{u ∈
Σ∗|∑w∈Σ∗ p(uw) 6= 0} and byRes(p) the set{u−1p|u ∈ res(p)}. For anyK ∈
{R, R+, Q, Q+}, defineSrat

K (Σ) = Krat〈〈Σ〉〉 ∩ S(Σ), the set of rational stochastic
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languages overK. Let S = {s1, . . . , sn} be a finite subset ofS(Σ). The convex hull
of S in K〈〈Σ〉〉 is defined byconvK(S) = {s ∈ K〈〈Σ〉〉|s = α1 · s1 + . . . + αn · sn

where eachαi ∈ K,αi ≥ 0 andα1+. . .+αn = 1}. Clearly, any element ofconvK(S)
is a stochastic language.

Example 1.Let Σ = {a}, and letp1, p2 andp be the rational stochastic languages
overR+ defined onΣ∗ by

p1(a
n) = 2−(n+1), p2(a

n) = 3 · 2−(2n+2) andp = (p1 + p2)/2.

Check that

ȧnp1 =
p1

2n
, ȧnp2 =

p2

22n
andȧnp =

2np1 + p2

22n+1

and

(an)−1p1 = p1, (a
n)−1p2 = p2 and(an)−1p =

2np1 + p2

2n + 1
·

Let V be the vector subspace ofR〈〈Σ〉〉 generated byp1 and p2: V is represented
on Figure 1. The subsemimodule ofR+〈〈Σ〉〉 generated byp1 and p2 corresponds

������
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������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

p1 p2p

O

p3

ȧp

˙
a2p

V Vp

S(Σ) ∩ V

a−1p(a2)−1p

Fig. 1. The stable subsemimodule ofR+〈〈Σ〉〉 generated byp is equal toVp: it does
not contains the halfline]Op1) and it is not finitely generated.

to the closed halfconeC delimited by the halflines[Op1) and[Op2). The line(p1p2)
is composed of the rational seriesr in V which satisfy

∑

w∈Σ∗ r(w) = 1. Let q =
αp1 + (1 − α)p2. The constraintq(an) ≥ 0 is equivalent to the inequality

(2n+1 − 3)α + 3 ≥ 0.

The seriesq such thatq(an) ≥ 0 for any integern must satisfy

0 ≤ α ≤ 3.
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Let p3 = 3p1 − 2p2. The stochastic languages inV are the points of the line(p2p3)
which lie betweenp2 andp3.

Let Vp be the subsemimodule ofR+〈〈Σ〉〉 generated by{u̇p|u ∈ Σ∗}. Check that
Vp = {t(αp1 +(1−α)p2)|1/2 ≤ α < 1, t ∈ R+} and thatVp is not finitely generated.

2.3 Automata

A non deterministic finite automaton(NFA) is a tuple〈Σ,Q,QI , QT , δ〉 whereQ is
a finite set of states,QI ⊆ Q is the set of initial states,QT ⊆ Q is the set of final
states,δ is the transition functiondefined fromQ × Σ to 2Q. Let δ also denote the
extended transition function defined from2Q×Σ∗ to 2Q by δ(q, ε) = {q}, δ(q, wx) =
∪q′∈δ(q,w)δ(q

′, x) andδ(R,w) = ∪q∈Rδ(q, w) for any q ∈ Q, R ⊆ Q, x ∈ Σ and
w ∈ Σ∗. An NFA is deterministic(DFA) if QI contains only one elementq0 and if
∀q ∈ Q, ∀x ∈ Σ, |δ(q, x)| ≤ 1.

Let K be a semiring. AK-multiplicity automaton (MA)is a 5-tuple〈Σ,Q,ϕ, ι, τ〉
whereQ is a finite set of states,ϕ : Q×Σ×Q → K is the transition function,ι : Q →
K is the initialization function andτ : Q → K is the termination function. LetQI =
{q ∈ Q|ι(q) 6= 0} be the set ofinitial statesandQT = {q ∈ Q|τ(q) 6= 0} be the set
of terminal states. Thesupportof an MA 〈Σ,Q,ϕ, ι, τ〉 is the NFA〈Σ,Q,QI , QT , δ〉
whereδ(q, x) = {q′ ∈ Q|ϕ(q, x, q′) 6= 0}. We extend the transition functionϕ to
Q × Σ∗ × Q by ϕ(q, wx, r) =

∑

s∈Q ϕ(q, w, s)ϕ(s, x, r) andϕ(q, ε, r) = 1 if q = r
and0 otherwise, for anyq, r ∈ Q, x ∈ Σ andw ∈ Σ∗. For any finite subsetL ⊂ Σ∗

and anyR ⊆ Q, defineϕ(q, L,R) =
∑

w∈L,r∈R ϕ(q, w, r).
For any MAA = 〈Σ,Q,ϕ, ι, τ〉, we define the seriesrA by

rA(w) =
∑

q,r∈Q

ι(q)ϕ(q, w, r)τ(r).

For anyq ∈ Q, we define the seriesrA,q by rA,q(w) =
∑

r∈Q ϕ(q, w, r)τ(r).

If the semiringK is positive, it can be shown that the support of the seriesrA

defined by aK-multiplicity automaton is equal to the language defined by the support
of A. In particular,supp(rA) is a regular language. This property is false in general
whenK is not positive.

Two MA A andA′ areequivalentif they define the same series, i.e. ifrA = rA′ .
Let A = 〈Σ,Q,ϕ, ι, τ〉 be aK-MA and let q ∈ Q. Suppose that there exist

coefficientsαq′ ∈ K for q′ ∈ Q′ = Q \ {q} such thatrA,q =
∑

q′∈Q′ αq′rA,q′. Let
A′ = 〈Σ,Q′, ϕ′, ι′, τ ′〉 where

– ϕ′(r, x, s) = ϕ(r, x, s) + αsϕ(r, x, q) for anyr, s ∈ Q′ andx ∈ Σ,
– ι′(r) = ι(r) + αrι(q) for anyr ∈ Q′,
– τ ′(r) = τ(r) for anyr ∈ Q′.

The multiplicity automatonA′ is called aK-reductionof A. A multiplicity au-
tomatonA is calledK-reducedif it has noK-reduction.

Proposition 1. LetA = 〈Σ,Q,ϕ, ι, τ〉 be aK-MA and letA′ = 〈Σ,Q′, ϕ′, ι′, τ ′〉 be
a K-reduction ofA. Then, for any stateq′ ∈ Q′, rA′,q′ = rA,q′ . As a consequence,
rA′ = rA.

7



Proof. Let Q′ = Q \ {q} and let αq′ ∈ K for any q′ ∈ Q′ such thatrA,q =
∑

q′∈Q′ αq′rA,q′ . For any stater ∈ Q′, we have

rA′,r(ε) = τ ′(r) = τ(r) = rA,r(ε).

Now, assume that for any wordw of length ≤ k and any stater ∈ Q′ we have
rA′,r(w) = rA,r(w). Let x be a letter, we have:

rA′,r(xw) =
∑

s∈Q′

ϕ′(r, x, s)rA′,s(w) =
∑

s∈Q′

(ϕ(r, x, s) + αsϕ(r, x, q)) rA,s(w)

=
∑

s∈Q′

ϕ(r, x, s)rA,s(w) + ϕ(r, x, q)
∑

s∈Q′

αsrA,s(w)

=
∑

s∈Q′

ϕ(r, x, s)rA,s(w) + ϕ(r, x, q)rA,q(w)

=
∑

s∈Q

ϕ(r, x, s)rA,s(w) = rA,r(xw).

Hence,rA′,r = rA,r for anyr of Q′. Moreover,

rA′ =
∑

s∈Q′

ι′(s)rA,s =
∑

s∈Q′

(ι(s) + αsι(q)) rA,s

=
∑

s∈Q′

ι(s)rA,s + ι(q)
∑

s∈Q′

αsrA,s =
∑

s∈Q

ι(s)rA,s = rA.

⊓⊔

A stateq ∈ Q is accessible(resp.co-accessible) if there existsq0 ∈ QI (resp.
qt ∈ QT ) andu ∈ Σ∗ such thatϕ(q0, u, q) 6= 0 (resp.ϕ(q, u, qt) 6= 0). An MA is
trimmedif all its states are accessible and co-accessible. Given anMA A, a trimmed
MA equivalent toA can efficiently be computed fromA.

From now, we only consider trimmed MA.

We shall consider several subclasses of multiplicity automata, defined as follows:
A semi Probabilistic Automaton (semi-PA)is an MA 〈Σ,Q,ϕ, ι, τ〉 such thatι, ϕ

andτ take their values in[0, 1], such that
∑

q∈Q ι(q) ≤ 1 and for any stateq, τ(q) +

ϕ(q,Σ,Q) ≤ 1. Semi-PA generate rational series overR+.
A Probabilistic Automaton (PA)is a trimmed semi-PA〈Σ,Q,ϕ, ι, τ〉 such that

∑

q∈Q ι(q) = 1 and for any stateq, τ(q) + ϕ(q,Σ,Q) = 1. Probabilistic automata
generate stochastic languages.

Proposition 2. Let A = 〈Σ,Q,ϕ, ι, τ〉 be aK-semi-PA (resp. aK-PA). For q ∈ Q,
∑

w∈Σ∗ rA,q(w) ≤ 1 (resp.
∑

w∈Σ∗ rA,q(w) = 1). As a consequence,
∑

w∈Σ∗ rA(w) ≤
1 (resp.

∑

w∈Σ∗ rA(w) = 1).

8



Proof. For any integerk and anyq ∈ Q, we have

∑

|w|≤k+1

rA,q(w) + ϕ(q,Σk+2, Q)

=
∑

|w|≤k

rA,q(w) +
∑

r∈Q

ϕ(q,Σk+1, r)τ(r) +
∑

r∈Q

ϕ(q,Σk+1, r)ϕ(r,Σ,Q)

=
∑

|w|≤k

rA,q(w) +
∑

r∈Q

ϕ(q,Σk+1, r)[τ(r) + ϕ(r,Σ,Q)].

From this relation, it is easy to infer by induction onk that

∑

|w|≤k

rA,q(w) +
∑

r∈Q

ϕ(q,Σk+1, r) ≤ 1 (resp. = 1)

whenA is a semi-PA (resp. a PA).
A first consequence is that

∑

w∈Σ∗

rA,q(w) ≤ 1 and
∑

w∈Σ∗

rA(w) =
∑

w∈Σ∗

∑

q∈Q

ι(q)rA,q(w) ≤ 1.

Let n = |Q|. SinceA is trimmed, there exists a wordu ∈ Σ≤n−1 such thatrA,q(u) >
0. Therefore, there existsα < 1 such thatϕ(q,Σn, Q) < α. It can easily be shown, by
induction on the integerk, thatϕ(q,Σkn, Q) < αk.

Now, whenA is a PA, we have
∑

w∈Σ∗

rA,q(w) ≥
∑

|w|<kn

rA,q(w) = 1 − ϕ(q,Σkn, Q) > 1 − αk

for any integerk. Therefore,
∑

w∈Σ∗

rA,q(w) = 1.

Finally,
∑

w∈Σ∗

rA(w) =
∑

w∈Σ∗

∑

q∈Q

ι(q)rA,q(w) =
∑

q∈Q

ι(q) = 1.

⊓⊔

It can easily be deduced from Proposition 2 that aR+-reduction of a PA is still a PA
(the property is false in general for a semi-PA).

A Probabilistic Residual Automaton (PRA)is a PA〈Σ,Q,ϕ, ι, τ〉 such that for any
q ∈ Q, there exists a wordu such thatrA,q = u−1rA. Check that aR+-reduction of a
PRA is still a PRA, since the series associated with the states remain unchanged within
a reduction.

A Probabilistic Deterministic Automaton (PDA)is a PA whose support is deter-
ministic. Check that a PDA is a PRA. Therefore, aR+-reduction of a PDA is a PRA,
but since reduction introduces non-determinism, it is no longer a PDA.

For any classC of K-multiplicity automata, let us denote bySC
K(Σ) the class of

all stochastic languages which are recognized by an elementof C.

9



A 1 q0 q1
a, 0.5 1

b, 0.5

B 1 q0 q1
a, 0.4; b, 0.4

b, 0.2

1

C 0.5 q0 q1

0.4

b, 0.2

a, 0.4; b, 0.4

b, 0.5
0.5

D 0.5 q0 q1

0.4

b, 0.2

a, 0.4; b, 0.4

a, 0.2; b, 0.3
0.5

Fig. 2. Let us precise notations on automatonA: q0 is the unique initial state and
ι(q0) = 1, q1 is the unique terminal state andτ(q1) = 1, ϕ(q0, a, q1) = 0.5,
ϕ(q0, b, q0) = 0.5 and any other transitions satisfyϕ(q, x, q′) = 0. A is a PDA;B
is a PRA sincerB,q0 = rB andrB,q1 = a−1rB ; C is also a PRA sincerC,q0 = ab−1rC

andrC,q1 = a−1rC ; it can easily be shown thatD is not a PRA.

2.4 Equivalent representations of rational series

Stable finitely generated subsemimodules, linear representations and multiplicity au-
tomata provide us with several representations of rationalseries. The following clas-
sical claims show that they are equivalent: in particular, aseriesr overK is rational
iff there exists aK-multiplicity automatonA such thatr = rA. Moreover, any one of
these representations can efficiently be derived from any other one.

Claim 1 LetM be a stable subsemimodule ofK〈〈Σ〉〉 generated byr1, . . . , rn and con-
taining the seriesr. Let αi andαx

i,j be coefficients inK defined for any letterx
and any1 ≤ i, j ≤ n such that

r =

n
∑

i=1

αiri andẋri =

n
∑

j=1

αx
i,jrj .

Let (λ, µ, γ) be the linear representation defined byλ[1, i] = αi, µ(x)[i, j] = αx
i,j

andγ[i, 1] = ri(ε) for any1 ≤ i, j ≤ n and anyx ∈ Σ. Then(λ, µ, γ) is a linear
representation ofr.

Claim 2 Let(λ, µ, γ) be ann-dimensional linear representation ofr and letA = 〈Σ,Q,ϕ, ι, τ〉
be the MA defined byQ = {1, . . . , n}, ι(i) = λ[1, i], τ(i) = γ[i, 1] andϕ(i, x, j) =
µ(x)[i, j]. Thenr = rA.

Claim 3 LetA = 〈Σ,Q,ϕ, ι, τ〉 be an MA and letM be the subsemimodule generated by
{rA,q|q ∈ Q}. ThenM is a stable subsemimodule ofK〈〈Σ〉〉 which containsrA.

10



The proofs of these claims are classical. We give them for sake of completness.

Proof (Claim 1).Let us prove by induction on the length of the wordw that for any
wordw, µ(w)γ = (r1(w), . . . , rn(w))t. From definition,µ(ε)γ = γ = (r1(ε), . . . , rn(ε))t.

Suppose that the relation is proved for all words of length≤ n and letw ∈ Σn and
x ∈ Σ.

µ(xw)γ = µ(x)µ(w)γ

= µ(x)(r1(w), . . . , rn(w))t by induction hypothesis

=





n
∑

j=1

αx
1,jrj(w), . . . ,

n
∑

j=1

αx
n,jrj(w)





t

= (ẋr1(w), . . . , ẋrn(w))t

= (r1(xw), . . . , rn(xw))t .

Now, for any wordw,

λµ(w)γ = λ(r1(w), . . . , rn(w))t =

n
∑

i=1

αiri(w) = r(w).

⊓⊔

Proof (Claim2).For any wordw, we have

rA(w) =

n
∑

i,j=1

ι(i)ϕ(i, w, j)τ(j) =

n
∑

i,j=1

= λ[1, i]µ(w)[i, j]γ[i, 1] = λµ(w)γ.

⊓⊔

Proof (Claim3).First note thatrA =
∑

q∈Q ι(q)rA,q and therefore,rA ∈ M .
Next, for any letterx, any wordw and any stateq ∈ Q,

ẋrA,q(w) = rA,q(xw) =
∑

q′∈Q

ϕ(q, x, q′)rA,q′(w)

and therefore,
ẋrA,q =

∑

q′∈Q

ϕ(q, x, q′)rA,q′ .

M is a stable subsemimodule ofK〈〈Σ〉〉. ⊓⊔

These equivalent characterizations make it possible to transfer definitions from one
representation mode to another: check that ann-dimensional linear representation of
a rational series overK is reduced if and only iff the corresponding multiplicity au-
tomaton isK-reduced.Also, results obtained using one representationcan immediatly
be transfered to the other ones.
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2.5 Computing equivalence and reduction of MA

Deciding whether two NFA are equivalent is a PSPACE-complete problem. However,
deciding whether two MA are equivalent can be achieved within polynomial time.

Proposition 3. It is decidable within polynomial time whether two MAs overR are
equivalent.

Proof. LetA andA′ be two MA and let(λ, µ, γ) (resp.(λ′, µ′, γ′)) be ann-dimensional
(resp.n′-dimensional) linear representation of the rational series rA (resp.rA′). For
any wordw let θ(w) = (µ(w)γ, µ′(w)γ′). Let E be the vector subspace ofRn+n′

spanned by{θ(w)|w ∈ Σ∗} and letT be the linear mapping fromRn+n′
to R defined

by T (u, u′) = λu − λ′u′ for any u ∈ Rn andu′ ∈ Rn′
. The seriesrA andrA′ are

equal, i.e.A andA′ are equivalent, iff∀(u, u′) ∈ E,T (u, u′) = 0, property which can
be checked within polynomial time. ⊓⊔

The following algorithm decides the equivalence of two MA:

Input: A, A′ MA
B = {ε}, S = {x|x ∈ Σ}
while S 6= ∅ do

let v be the smallest element in S and let S = S \ {v}
if θ(v) does not belong to the subspace spanned by θ(B)

then
B = B ∪ {v} and S = S ∪ {vx|x ∈ Σ}

end if
end while
while B 6= ∅ do

let v ∈ B and let B = B \ {v}
if T (θ(v)) 6= 0 then

output no ; exit
end if

end while
output yes.

The first part of the algorithm computes a basis ofE; the second part checks
whetherT (E) = {0}.

Note that whenA and A′ are not equivalent, the previous algorithm provides a
wordu such thatrA(u) 6= rA′(u) and whose length is≤ |Q| + |Q′|.

Proposition 4. LetA0, A1, . . . , An be MAs overR. It is decidable within polynomial
time whether there existsα1, . . . , αn ∈ R such thatrA0 =

∑n
i=1 αirAi

. More pre-
cisely, all such tuples of parameters(α1, . . . , αn) are solutions of a linear system
computable within polynomial time.

Proof. Consider the following algorithm.

Let Eq = {rA0(ε) =
∑n

i=1 xirAi
(ε)}

#Eq is a set of independent equations on variables x1, . . . , xn.
While Eq has a solution (α1, . . . , αn) such that rA0 6=∑n

i=1 αirAi

12



Let u be a word such that rA0(u) 6=∑n
i=1 αirAi

(u)
Eq = Eq ∪ {rA0(u) =

∑n
i=1 xirAi

(u)}
Output : Eq

From Proposition 3, ifrA0 6=∑n
i=1 αirAi

, a wordu such thatrA0(u) 6=∑n
i=1 αirAi

(u)
and whose length is≤∑n

i=0 |Qi| can be found within polynomial time (where|Qi| is
the number of states ofAi). The algorithms ends sinceEq has at mostn + 1 elements.
It is clear that(α1, . . . , αn) is a solution ofEq iff rA0 =

∑n
i=1 αirAi

. ⊓⊔

A similar result holds when we ask for positive coefficients.

Proposition 5. LetA0, A1, . . . , An be MAs overR. It is decidable within polynomial
time whether there existsα1, . . . , αn ∈ R+ such thatrA0 =

∑n
i=1 αirAi

.

Proof. Add the constraintsx1 ≥ 0, . . . , xn ≥ 0 to the systemEq in the previous
algorithm. A polynomial linear programming algorithm willthen find a solution ofEq
or decide thatEq has no solution. ⊓⊔

As a consequence of these propositions, it can efficiently bedecided whether an
MA A is K-reduced .

Proposition 6. LetA = 〈Σ,Q,ϕ, ι, τ〉 be aK-MA. It is decidable within polynomial
time whetherA is K-reduced; ifA is notK-reduced, aK reduction can be computed
within polynomial time.

Proof. For anyq ∈ Q, check whether there exist coefficientsαq′ ∈ K for q′ ∈ Q′ =
Q \ {Q} such thatrA,q =

∑

q′∈Q′ αq′rA,q′ . If so, use these coefficients to compute a
K-reduction ofA. ⊓⊔

3 Rational stochastic languages

The objects we study arerational stochastic languages, i.e. stochastic languages which
are also rational series. A rational stochastic language can always be generated by us-
ing a multiplicity automaton. But depending on the setK of numbers used for the
parameters, we obtain different setsSrat

K (Σ) of rational stochastic languages. In the
following, we suppose thatK ∈ {R, R+, Q, Q+}. First, we study the relations be-
tween all these classes of rational stochastic languages and next, we give a characteri-
zation ofSrat

K (Σ) in terms of stable subsemimodules ofS(Σ).

3.1 Relations between classes of rational stochastic languages

Let us begin by the simplest inclusions.

Proposition 7.

Srat
Q+(Σ) ⊆ Srat

Q (Σ) ( Srat
R (Σ) andSrat

Q+(Σ) ( Srat
R+ (Σ) ⊆ Srat

R (Σ).

Moreover,
Srat

R+ (Σ) \ Q〈〈Σ〉〉 6= ∅.
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Proof. Let K1 be a subsemiring ofK2. We haveKrat
1 〈〈Σ〉〉 ⊆ Krat

2 〈〈Σ〉〉 and hence,
Srat

K1
(Σ) ⊆ Srat

K2
(Σ).

Now, let r be the rational series defined onΣ = {a} by r(ε) =
√

2/2, r(a) =
1−

√
2/2 andr(an) = 0 for anyn ≥ 2. Clearly,r ∈ Srat

R+ (Σ)\Q〈〈Σ〉〉 which implies
thatSrat

Q (Σ) ( Srat
R (Σ) andSrat

Q+(Σ) ( Srat
R+ (Σ). ⊓⊔

A rational stochastic language overR which only takes rational values is a rational
stochastic language overQ.

Proposition 8.
Srat

R (Σ) ∩ Q〈〈Σ〉〉 = Srat
Q (Σ).

Proof.

Recall thatR is a Fatou extension ofQ: any rational series overR which only takes
rational values is a rational series overQ i.e.

Rrat〈〈Σ〉〉 ∩ Q〈〈Σ〉〉 = Qrat〈〈Σ〉〉.

As a consequence,

Srat
R (Σ) ∩ Q〈〈Σ〉〉 = S(Σ) ∩ Rrat〈〈Σ〉〉 ∩ Q〈〈Σ〉〉

= S(Σ) ∩ Qrat〈〈Σ〉〉
= Srat

Q (Σ).

⊓⊔
It has also been proved thatR+ is not a Fatou extension ofQ+: Q+rat〈〈Σ〉〉 (

R+rat〈〈Σ〉〉 ∩Q+〈〈Σ〉〉. We prove below that this result can be extended to stochastic
languages: there exists a rational stochastic language over R+ which takes only rational
values and which is not a rational stochastique language over Q+.

Proposition 9. Srat
Q+(Σ) ( Srat

R+ (Σ) ∩ Q+〈〈Σ〉〉.

Proof. We use an element inR+rat〈〈Σ〉〉 ∩ Q+〈〈Σ〉〉 \ Q+rat〈〈Σ〉〉 described in
[BR84] to prove the proposition.

Consider the multiplicity automatonA = 〈Σ,Q,ϕ, ι, τ〉 whereΣ = {a, b}, Q =
{q0, q1}, ι(q0) = ι(q1) = 1, ϕ(q0, a, q0) = α2, ϕ(q0, b, q0) = α−2, ϕ(q1, a, q1) =
α−2, ϕ(q1, b, q1) = α2 whereα = (

√
5 + 1)/2, ϕ(qi, x, qj) = 0 for anyx ∈ Σ when

i 6= j andτ(q0) = τ(q1) = 1 (see Figure 3).
Let rA be the rational series generated byA. Let w ∈ Σ∗. We haverA(w) =

α2n + α−2n wheren = |w|a − |w|b. Check that for any integern, α2n + α−2n ∈ N.
Hence,rA ∈ R+rat〈〈Σ〉〉 ∩ Q+〈〈Σ〉〉. It is shown in [BR84] thatrA 6∈ Q+rat〈〈Σ〉〉.

Now let A′ = 〈Σ,Q,ϕ′, ι′, τ ′〉 where for any statesq and q′ and any letterx,
ι′(q) = 1/2, ϕ′(q, x, q′) = ϕ(q, x, q′)/4 and τ ′(q0) = τ ′(q1) = 1/4. Check that
α2 + α−2 = 3. Then,A′ is a probabilistic automaton. Letp be the stochastic language
generated byA. We have

p(w) =
1

22|w|+3

(

α2n + α−2n
)

wheren = |w|a − |w|b
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and hence
p ∈ Srat

R+ (Σ) ∩ Q+〈〈Σ〉〉.
Let s be the series defined bys(w) = 22|w|+3. Clearly, s ∈ Q+rat〈〈Σ〉〉 and

rA = s ⊙ p (Hadamard product). Recall that whenK is commutative, the Hadamard
product of two rational series is a rational series. Therefore rA 6∈ Q+rat〈〈Σ〉〉 ⇒ p 6∈
Q+rat〈〈Σ〉〉 and hence,p 6∈ Srat

Q+(Σ). ⊓⊔

A q0
1 1

a, α2; b, α−2

1 1q1

a, α−2; b, α2

A′ q0
1/2 1/4

a, α2

4 ; b, α−2

4

1/2 1/4q1

a, α−2

4 ; b, α2

4

A′′
ε

1/4

a

1/4

1

b, 3
4

a, 3
8 ; b, −3

8

a, −1
6 ; b, 1

6

a, 3
4

Fig. 3. A′ generates a rational stochastic languagepA′ which takes all its values in
Q. However,pA′ is not a rational stochastic language overQ+. A′′ is a multiplicity
automaton overQ which generatespA′ .

Remark that sincep is a rational stochastic language which takes all its valuesin Q,
p is a rational stochastic language overQ, from Prop 8. Letp0 = pA′,q0 andp1 = pA′,q1

be the stochastic languages generated from the statesq0 andq1 of automatonA′. It can
easily be shown that

{

p = 1
2p0 + 1

2p1

a−1p = α2

3 p0 + α−2

3 p1

These relations makes it possible to base onp anda−1p an automata which recognizes
p. Check that

ȧp =
3

8
p, ḃp =

3

4
p − 3

8
a−1p, ȧa−1p =

−1

6
p − 3

4
a−1p andḃa−1p =

1

6
p +

3

4
a−1p.

These relations can be used to prove that the automatonA′′ in Fig. 3 generatesp.
Now, we prove that there exists a rational stochastic language overQ which is not

rational overR+. In particular, it cannot be generated by a probabilistic automaton.

Proposition 10. Srat
Q (Σ) \ Srat

R+ (Σ) 6= ∅.
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Proof. Let Σ = {a, b} and for anyw ∈ Σ∗, let r and s be the series defined by
r(w) = |w|a ands(w) = |w|b. They are rational overQ since they belong to a stable
finitely generated subsemimodule ofQ〈〈Σ〉〉. Indeed,

ȧr = r + 1, ḃr = r, ȧs = s andḃs = s + 1.

Hence, the seriesr−s and(r−s)2 where the exponent refers to the Hadamard product
are also rational overQ. For anyn ∈ N, letσn =

∑

w∈Σn(r−s)2(w) ≤ n2 ·2n. Check
that

σn = n2n andσ =
∑

n≥0

σn

22n
= 2.

Now, let t be the series defined by

t(w) =
(r − s)2(w)

σ · 22|w|
.

t is a rational stochastic languages overQ. Its support is the setsupp(t) = {w ∈
Σ∗ | |w|a 6= |w|b} which is known to be not rational. Ift were rational overR+, it
support would be rational. Therefore,t ∈ Srat

Q (Σ) \ Srat
R+ (Σ). ⊓⊔

All these results can be summarized on diagram 4.

R+〈〈Σ〉〉

Q+〈〈Σ〉〉

S(Σ) S(Σ) ∩ Q+〈〈Σ〉〉

Srat

R+ (Σ)

Srat

Q+ (Σ)

Srat
R (Σ)

Srat

R+ (Σ) ∩ Q+〈〈Σ〉〉

Srat
Q (Σ) = Srat

R (Σ) ∩ Q+(Σ)

Fig. 4. Inclusion relations between classes of rational stochastic languages.

3.2 Residual languages of rational stochastic languages

Recall that given a stochastic languagep ∈ S(Σ) and a wordu ∈ res(p), i.e. such
thatp(uΣ∗) 6= 0, the residual language ofp wrt u is the stochastic language defined
by

u−1p(w) =
p(uw)

p(uΣ∗)
·

Whenp takes its values inQ+, it is not true in general thatu−1p takes also its values
in Q+.
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Consider two series(αn)n∈N and(βn)n∈N overQ+ and such that
∑

n αn =
√

2/2
and

∑

n βn = 4/5 −
√

2/2. Now, consider the seriesr ∈ Q+〈〈{a, b}〉〉 defined by
r(ε) = 1/5, r(an) = αn−1, r(bn) = βn−1 for n ≥ 1 andr(w) = 0 otherwise. It is
easy to check thatr is a stochastic language which takes its values overQ+ and that
a−1r(ε) =

√
2α0. Therefore,a−1r 6∈ Q〈〈Σ〉〉.

We prove below that whenp is a rational stochastic language overK, all its residual
languages are also rational overK. Moreover, the setRes(p) = {u−1p|u ∈ res(p)}
generates the same subsemimodule ofK〈〈Σ〉〉 as the set{u̇p|u ∈ Σ∗}.

We need before two linear algebra technical lemmas to prove this result.

Lemma 1. Letf : Qn → Qn be a linear mapping and lett ∈ Qn such that
∑

k≥0 fkt
converges tou. Thenu ∈ Qn.

Proof. Let F be the vector subspace ofQn generated by{fkt|k ∈ N}. There exists
an integerd such thatf0t = t, . . . , fd−1t is a basis ofF . As the sum

∑

k≥0 fkt

converges,fkt converges to 0 whenk tends to infinity. Therefore, for anyv ∈ F ,
fkv also converges to 0 whenk tends to infinity. Letv ∈ F such thatfv = v. We
have alsofkv = v for any integerk and hence,v = 0. Let g : F → F defined by
g(v) = v−fv. The linear mappingg is one-to-one and for anyv ∈ F and any integer
k,

v + fv + . . . + fkv = g−1(1 − fk+1)(v).

Therefore,

u = g−1t andu ∈ Qn.

We use Lemma 1 to show that if{r1, . . . , rn} generates a stable subsemimodule
of Q〈〈Σ〉〉 and if each sum

∑

w∈Σ ri(w) converges toσi then eachσi ∈ Q.

Lemma 2. Let M be a stable subsemimodule ofQ〈〈Σ〉〉 generated by{r1, . . . , rn}
and letσk

i =
∑

w∈Σk ri(w) for any1 ≤ i ≤ n and any integerk. Suppose that for any
1 ≤ i ≤ n, the sums

∑

k≥0 σk
i converges toσi. Thenσi ∈ Q for any1 ≤ i ≤ n.

Proof. Let t = (r1(ε), . . . , (rn(ε)))t. As M is stable, there existαx
i,j ∈ Q for any

1 ≤ i, j ≤ n and anyx ∈ Σ such thatẋri =
∑n

j=1 αx
i,j · rj . LetB ∈ Qn×n defined by

B[i, j] =
∑

x∈Σ αx
i,j . Let us prove by induction onk that for any integerk, we have

(σk
1 , . . . , σk

n)t = Bkt. The property is true fork = 0 as for any integeri, σ0
i = ri(ε).
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Now,

σk+1
i =

∑

w∈Σk,x∈Σ

ri(xw)

=
∑

w∈Σk,x∈Σ

ẋri(w)

=
∑

w∈Σk,x∈Σ,j∈{1,...,n}

αx
i,j · rj(w)

=
∑

j∈{1,...,n}

(

∑

x∈Σ

αx
i,j

)

·
∑

w∈Σk

rj(w)

=
∑

j∈{1,...,n}

B[i, j]σk
j

=
∑

j∈{1,...,n}

B[i, j](Bkt)[j] by induction hypothesis

= (Bk+1t)[i].

Therefore,Bkt converges to(σ1, . . . , σn)t. From Lemma 1,σi ∈ Q for any1 ≤
i ≤ n. ⊓⊔
Lemma 3. Let p ∈ Srat

K (Σ). For any wordu ∈ res(p),
∑

w∈Σ∗ p(uw) ∈ K. More-
over, the setRes(p) generates the same subsemimodule ofK〈〈Σ〉〉 as the set{u̇p|u ∈
Σ∗}.

Proof. Let p ∈ Srat
K (Σ). For any word u,

∑

w∈Σ∗ p(uw) ∈ R+ sincep is a stochastic
language. Suppose now thatK = Q or K = Q+. The set{u̇p|u ∈ Σ∗} gener-
ates a finite vector subspaceP of Q〈〈Σ〉〉. Let {u̇1p, . . . , u̇np} be a finite subset of
{u̇p|u ∈ Σ∗} which generatesP. Let σi =

∑

w∈Σ∗ u̇ip(w) for any i = 1, . . . , n.
From Lemma 2, eachσi ∈ Q. Now, for anyu ∈ Σ∗, there existsα1, . . . , αn ∈ Q such
that u̇p =

∑n
i=1 αiu̇ip. Therefore,

∑

w∈Σ∗ p(uw) =
∑n

i=1 αiσi ∈ Q+.
So, for anyK and anyu ∈ res(p), there exists an inversible elementαu of K such

thatu̇p = αu · u−1p. In consequence, the setRes(p) generates the same subsemimod-
ule ofK〈〈Σ〉〉 as the set{u̇p|u ∈ Σ∗}. ⊓⊔

For any stochastic languagep overK, let us denote by[Res(p)] the subsemimod-
ule ofK〈〈Σ〉〉 generated byRes(p) and let us call it theresidual subsemimoduleof p.
Note that[Res(p)] is stable.

Proposition 11. Letp ∈ Srat
K (Σ). For any wordu ∈ res(p), u−1p ∈ Srat

K (Σ).

Proof. From Lemma 3, the residual stochastic languagesu−1p belong to the same
stable subsemimodules ofK〈〈Σ〉〉 asp. Therefore, they are rational overK. ⊓⊔

3.3 Characterization ofSrat

K
(Σ) in terms of stable subsemimodules

We show in this section that a seriesp overK is a rational stochastic language if and
only if there exists a finite subsetS in S(Σ) which generates a stable subsemimodule
of K〈〈Σ〉〉 and such thatp ∈ convK(S).

The≪ if part ≫ is easy to prove.
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Proposition 12. Letp ∈ K〈〈Σ〉〉. Suppose that there exists a finite subsetS in S(Σ)
which generates a stable subsemimodule ofK〈〈Σ〉〉 and such thatp ∈ convK(S).
Thenp ∈ Srat

K (Σ).

Proof. Let {p1, . . . , pn} be a finite subset ofS(Σ) which generates a stable subsemi-
module ofK〈〈Σ〉〉 and letp =

∑n
i=1 αipi whereαi ≥ 0 for i = 1, . . . , n and

∑n
i=1 αi = 1. From Theorem 2,p is a rational series overK andp is a stochastic lan-

guage sincep(w) =
∑n

i=1 αipi(w) ≥ 0 for any wordw andp(Σ∗) =
∑n

i=1 αipi(Σ
∗) =

1. ⊓⊔

The converse proposition is easy to prove whenK = Q or K = R. It is slightly
more complicated whenK is not a field.

Proposition 13. Let p ∈ Srat
K (Σ). Then there exists a finite subsetS in S(Σ) which

generates a stable subsemimodule ofK〈〈Σ〉〉 and such thatp ∈ convK(S).

Proof. Let p ∈ Srat
K (Σ).

WhenK = Q or K = R, K is a commutative field,K〈〈Σ〉〉 is a vector space
and subsemimodules ofK〈〈Σ〉〉 are vector subspaces ofK〈〈Σ〉〉. From Lemma 3, the
subspaces generated by{u̇p|u ∈ Σ∗} and{u−1p|u ∈ Σ∗} coincide. From Theorem 2,
{u−1p|u ∈ Σ∗} generates a stable finite vector subspaceP of K〈〈Σ〉〉. Let S be
a finite subset of{u−1p|u ∈ res(p)} which containsp and generatesP. Clearly,
S ⊆ S(Σ) andp ∈ convK(S).

Let K = Q+ or K = R+. From Theorem 2, letR = {r1, . . . , rn} be a fi-
nite subset ofK〈〈Σ〉〉 which generates a stable subsemimoduleM containingp. We
may suppose that0 6∈ R asR andR \ {0} generate the same subsemimodule. Let
S = {r ∈ R|∑w∈Σ∗ r(w) < ∞}. First, let us show thatS also generates a stable
subsemimodule containingp. Let T = R \ S. Let s ∈ S and letu ∈ Σ∗. As M
is stable, we can writėus =

∑

r∈R αu
r r, where the coefficientsαu

r belong toK. As
s ∈ S,

∑

w∈Σ∗ u̇s(w) < ∞. Therefore,r ∈ T ⇒ αu
r = 0 andS generates a stable

subsemimodule. In a similar way, we can writep =
∑

r∈R βrr and asp is a stochastic
language,r ∈ T ⇒ αr = 0 andp belongs to the semimodule generated byS.

Now, let S′ = {
(
∑

w∈Σ∗ s(w)
)−1 · s|s ∈ S}. Clearly, each element ofS′ is a

stochastic language and an element ofK〈〈Σ〉〉 ( by using Lemma 2 whenK = Q+).
S′ generates the same stable semimodule asS. We can writep =

∑

s∈S′ βss, where
the coefficientsβs belong toK. As p and each element ofS′ is a stochastic language,
we have

∑

s∈S′ βs = 1 and hence,p ∈ convK(S′). ⊓⊔

Putting together the previous propositions, we obtain the following theorem:

Theorem 4. Let K ∈ {R, Q, R+, Q+}. A seriesp over K is a rational stochastic
language if and only if there exists a finite subsetS in S(Σ) which generates a stable
subsemimodule ofK〈〈Σ〉〉 and such thatp ∈ convK(S).

Proof. Apply Propositions 12 and 13. ⊓⊔
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3.4 Subclasses of rational languages defined in terms of properties of their set
of residual languages

Let p be a rational stochastic language overK. The setRes(p) composed of the
stochastic residual languages ofp is included in a stable finitely generated subsemi-
module ofK〈〈Σ〉〉 but it may happen that the residual subsemimodule[Res(p)] of p
is notfinitely generated. See Example 1 for instance. In the opposite, a stochastic lan-
guage whose residual subsemimodule is finitely generated isrational. Therefore, two
subclasses ofSrat

K (Σ) can be naturally defined:

– the setSfingen
K (Σ) composed of rational stochastic languages overK whose resid-

ual subsemimodule is finitely generated;

– the setSfin
K (Σ) composed of rational stochastic languages overK such thatRes(p)

is finite.

Stochastic languages with finitely many residual languages. Every stochastic lan-
guages with finitely many residual languages can be described by using positive pa-
rameters only. In consequence, we obtain a Fatou-like property: every stochastic lan-
guage with finitely many residual languages and which takes its values inQ is rational
overQ+. Of course, for anyK, there exist rational stochastic languages overK whose
residual subsemimodule is finitely generated and which havenot finitely many residual
languages.

Proposition 14. 1. Sfin
R (Σ) = Sfin

R+ (Σ)

2. Sfin
Q (Σ) = Sfin

Q+ (Σ) = Sfin
R (Σ) ∩ Q+〈〈Σ〉〉.

3. For anyK ∈ {R, Q, R+, Q+}, Sfin
K (Σ) ( Sfingen

K (Σ).

Proof. 1. It is sufficient to show thatSfin
R (Σ) ⊆ Sfin

R+ (Σ) in order to prove the first

equality. Letp ∈ Sfin
R (Σ) and letRes(p) = {u−1

1 p, . . . , u−1
n p} be the set of

residual languages ofp. For anyu ∈ Σ∗ and anyi ∈ {1, . . . , n}, there existsj ∈
{1, . . . , n} such thatu̇u−1

i p = u−1
i p(uΣ∗)u−1

j p. Sinceu−1
i p(uΣ∗) ≥ 0, Res(p)

generates a stable subsemimodule ofR+〈〈Σ〉〉. Sincep ∈ Res(p), p ∈ Sfin

R+ (Σ)
from Theorem 4.

2. The proof of the first equality goes in a similar way, with the complementary argu-
ment thatu−1

i p(uΣ∗) ∈ Q from Lemma 3.

Now, let p ∈ Sfin
R (Σ) ∩ Q+〈〈Σ〉〉. From Prop. 8,p ∈ Srat

Q (Σ). Therefore,p ∈
Sfin

Q (Σ).

3. Consider the probabilistic automaton defined on Fig. 5. Itdefines a stochastic lan-
guagep overQ+. Let us show thatp ∈ Sfingen

Q+ (Σ) \ Sfin

Q+ (Σ) .

First, let us show by induction onn that for any integern, there existαn, βn ∈ Q+

such thatȧnp = αnp + βnȧp. This is true whenn = 0: takeα0 = 1 andβ0 = 0.
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A 1 q0 q1

a, 1/2

a, 1/2

a, 1/2

1/2

Fig. 5.The automatonA generates a stochastic language overQ+ whose residual sub-
semimodule is finitely generated but which has infinitely many residual languages.

Suppose that the relation holds for the integern. For any wordu, we have:

˙
an+1p(u) = ȧnp(au)

= αnp(au) + βnȧp(au) by induction hypothesis

=
αn

2
ȧp(u) + βn

(

1

2
p(u) +

1

2
ȧp(u)

)

by remarking thatp = pq0

andȧp = pq1.

So we can takeαn+1 = βn/2 andβn+1 = (αn + βn)/2 which belong toQ+

from induction hypothesis. Therefore the module[Res(p)] is finitely generated
from Lemma 3:p ∈ Sfingen

Q+ (Σ) and therefore,p ∈ Sfingen
K (Σ) for any K ∈

{R, Q, R+, Q+}.
Let γn = (an)−1p(ε). We have

γn =
αnp(ε) + βnȧp(ε)

αn + βn
=

αn

2(αn + βn)
.

Check thatγn satisfies the following induction relation:

γn+1 =
1 − 2γn

4(1 − γn)
.

The sequence(γn) converges to the irrational number(3 −
√

5)/4 and therefore,
γn = (an)−1p(ε) takes an infinite number of values, which implies thatp has
infinitely many residual languages. ⊓⊔

Stochastic languages whose residual subsemimodule is finitely generated . When
K is a field, every rational stochastic language is finitely generated. This property
is no longer true whenK ∈ {R+, Q+}. In consequence, some stochastic languages
whose residual subsemimodule is finitely generated cannot be generated by using only
positive parameters.

We prove also a Fatou-like property: every stochastic language overR+ whose
residual subsemimodule is finitely generated and which takes its values inQ is rational
overQ+. But we first need the following technical lemmas.
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Lemma 4. Let k, n ∈ N and letαi, β
j
i ∈ Qfor 1 ≤ i ≤ n and1 ≤ j ≤ k. Consider

the variablesx1, . . . , xk and the system(S) composed of then following inequations

αi +

k
∑

j=1

xjβ
j
i ≥ 0

for i = 1, . . . , n. If (S) has a solution, then it has also a solution which satisfies

αi +

k
∑

j=1

xjβ
j
i ∈ Q+

for i = 1, . . . , n.

Proof. By induction onn.

– Letn = 1. Letµ1, . . . , µk be such thatα1+
∑k

j=1 µjβ
j
1 ≥ 0. If α1+

∑k
j=1 µjβ

j
1 =

0, we are done. Ifα1 +
∑k

j=1 µjβ
j
1 > 0, there existsµ′

1, . . . , µ
′
k ∈ Q such that

α1 +
∑k

j=1 µ′
jβ

j
1 > 0 sinceQ is dense inR and sinceα1 +

∑k
j=1 µjβ

j
1 is a

continuous expression of theµi.
– Let n > 1 and letµ1, . . . , µk be such thatαi +

∑k
j=1 µjβ

j
i ≥ 0 for any1 ≤ i ≤ n.

If αi +
∑k

j=1 µjβ
j
i > 0 for any integeri, then there existsµ′

1, . . . , µ
′
k ∈ Q such

that αi +
∑k

j=1 µ′
jβ

j
i > 0 for any i, by using the same argument as previously.

Otherwise, there exists at least an integeri such thatαi +
∑k

j=1 µjβ
j
i = 0.

• If eachβj
i = 0, thenαi is also null and this equation can be ruled out from the

system without modifying its solutions. In this case, the induction hypothesis
can be directly applied.

• If there existsj such thatβj
i 6= 0, thenµj can be expressed as a function of

the otherµi: µj = −(αi +
∑

l 6=j µlβ
l
i)/β

j
i , xj can be replaced with−(αi +

∑

l 6=j xlβ
l
i)/β

j
i in all the other inequations and the induction hypothesis can

be applied.
⊓⊔

Lemma 5. Letr0, r1, . . . , rn ∈ Q〈〈Σ〉〉 and letα1, . . . , αn ∈ Q, β1, . . . , βn ∈ R+ be
such that

r0 =
n
∑

i=1

αiri =
n
∑

i=1

βiri.

Then, there existsγ1, . . . , γn ∈ Q+ such that

r0 =

n
∑

i=1

γiri.

Proof. The set of parameters{(λ1, . . . , λn) ∈ Rn|∑n
i=1 λiri = 0} is a vector sub-

space ofRn. Since the seriesr1, . . . , rn take their values inQ, there existk vectors
(t11, . . . , t

1
n), . . . , (tk1 , . . . , tkn) ∈ Qn, with k ≤ n, such that for any(λ1, . . . , λn) ∈ Rn,

n
∑

i=1

λiri = 0 iff ∃µ1, . . . , µk ∈ R s.t.λi =
k
∑

j=1

µjt
j
i for anyi = 1, . . . , n.
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Hence, for any(λ1, . . . , λn) ∈ Rn,

r0 =

n
∑

i=1

λiri iff ∃µ1, . . . , µk ∈ R s.t.λi = αi +

k
∑

j=1

µjt
j
i for anyi = 1, . . . , n.

In particular, there existµ1, . . . , µk such thatβi = αi +
∑k

j=1 µjt
j
i ≥ 0 for anyi =

1, . . . , n.
Consider the system composed of then inequationsαi +

∑k
j=1 xjt

j
i ≥ 0 for

i = 1, . . . , n. It has a solution and from the previous Lemma, it has also a solution
(µ1, . . . , µk) which satisfiesαi +

∑k
j=1 µjt

j
i ∈ Q+ for i = 1, . . . , n. ⊓⊔

Proposition 15. 1. WhenK ∈ {R, Q}, Sfingen
K (Σ) = Srat

K (Σ).

2. WhenK ∈ {R+, Q+}, Sfingen
K (Σ) ( Srat

K (Σ).

3. Sfingen

Q+ (Σ) = Sfingen

R+ (Σ) ∩ Q+〈〈Σ〉〉.

Proof. 1. WhenK ∈ {R, Q}, K is a commutative field. As a consequence, any vec-
tor subspace of a finitely generated vector subspace ofK〈〈Σ〉〉 is finitely generated
itself. Therefore, for anyp ∈ Srat

K (Σ), the residual subsemimodule ofp is finitely
generated.

2. Example 1 describes a rational stochastic language whoseresidual subsemimodule
is not finitely generated.

3. Let p ∈ Sfingen

R+ (Σ) ∩ Q+〈〈Σ〉〉. Let S = {r1, . . . , rn} ⊆ Res(p) be a finite
subset which generates the same subsemimodule asRes(p) in R+〈〈Σ〉〉. From
Prop. 8,p ∈ Srat

Q (Σ) and from Prop. 11, eachri ∈ Srat
Q (Σ). S also generates

the same subsemimodule asRes(p) in Q〈〈Σ〉〉. From Lemma 5, for any wordu
and any indexi, there existsγi,u

1 , . . . , γi,u
n ∈ Q+ such thatu̇ri =

∑n
j=1 γi,u

j rj .

Therefore,S generates a stable subsemimodule ofQ+〈〈Σ〉〉. Also from Lemma 5,
there existsγ1, . . . , γn ∈ Q+ such thatp =

∑n
i=1 γiri. Therefore,p ∈ convQ+(S)

andp ∈ Sfingen

Q+ (Σ).
⊓⊔

Remark thatSfingen

Q+ (Σ) ( Sfingen
R (Σ)∩Q+〈〈Σ〉〉 sinceSfingen

Q+ (Σ) ( Srat
Q (Σ) =

Srat
R (Σ) ∩ Q+〈〈Σ〉〉 = Sfingen

R (Σ) ∩ Q+〈〈Σ〉〉
Finaly, we show that whenK is positive, finitely generated stochastic languages

overK have a unique normal representation in terms of stable subbsemimodules gen-
erated by residual languages which is minimal with respect to inclusion.

Proposition 16. Let K = Q+ or K = R+ and let p ∈ Sfingen
K (Σ). Then, there

exists a unique finite subsetR ⊆ Res(p) which generates a stable subsemimodule of
K〈〈Σ〉〉, such thatp ∈ convK(R) and which is minimal for inclusion.

Proof. Let K = Q+ or K = R+ and letp ∈ Sfingen
K (Σ). Let R = {r1, . . . , rn}

andS = {s1, . . . , sm} be two minimal subsets ofRes(p) generating[Res(p)]. Let
ri0 ∈ R. We are to prove thatr0 ∈ S.

There existα1
i0

, . . . , αn
i0
∈ K such thatri0 =

∑m
i=1 αi

i0
si.

There existβj
i ∈ K for any 1 ≤ i, j ≤ n such thatsi =

∑n
j=1 βj

i rj for any
1 ≤ i ≤ m.
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Therefore,

ri0 =

m
∑

i=1

αi
i0

n
∑

j=1

βj
i rj =

n
∑

j=1

(

m
∑

i=1

αi
i0

βj
i

)

rj .

If
∑m

i=1 αi
i0

βi0
i < 1, then we could expressri0 as a convex combination of the

otherri andR would not be minimal for inclusion. Therefore,
∑m

i=1 αi
i0

βi0
i = 1.

Since
∑m

i=1 αi
i0

= 1 and eachβj
i ∈ [0, 1], for any indexi such thatαi

i0
6= 0,

we must haveβi0
i = 1. Therefore, for any indexi such thatαi

i0
6= 0, we must have

si = ri0 . As such an index must exist,ri0 ∈ S.
Since no condition has been put onri0 , thenR ⊆ S and finally,R = S. ⊓⊔

Srat
Q (Σ) = Srat

R (Σ) ∩ Q+(Σ) = S
fingen
Q

(Σ)

S
fingen

Q+
(Σ) = S

fingen

R+
(Σ) ∩ Q+〈〈Σ〉〉

S
fin
Q

(Σ) = S
fin

Q+
(Σ) = S

fin
R

(Σ) ∩ Q〈〈Σ〉〉

R+〈〈Σ〉〉

Q+〈〈Σ〉〉

Srat

Q+ (Σ)

S(Σ)

Srat
R (Σ) = S

fingen
R

(Σ)

Srat

R+ (Σ)

S
fingen

R+
(Σ)

S
fin
R

(Σ) = S
fin

R+
(Σ)

Fig. 6. Inclusion relations between classes of classes of rationalstochastic languages,
includingSfingen

K (Σ) andSfin
K (Σ).

4 Multiplicity automata and rational stochastic languages.

In the previous Sections, we have defined several classes of rational stochastic lan-
guages overK ∈ {R, Q, R+, Q+}. In this section, we study the representation of these
classes by means of multiplicity automata: given a subclassC of rational stochastic
languages overK, is there a subset ofK-multiplicity automata both simple to identify
and sufficient to generate the elements ofC? The first result we prove is negative: it is
undecidable whether a given multiplicity automaton overQ generates a stochastic lan-
guage. Moreover, there exist no recursively enumerable subset of multiplicity automata
overQ sufficient to generateSrat

Q (Σ). This result implies that no classes of multiplic-
ity automata can efficiently represent the class of rationalstochastic languages over
Q or R. In the other hand, we show that the class ofK-probabilistic automatarep-
resentsSrat

K (Σ) whenK ∈ {R+, Q+}. Clearly, it can be decided efficiently whether
a given multiplicity automaton is a probabilistic automaton. We show also that the
class ofK-probabilistic residual automatarepresents the classSfingen

K (Σ) for any

24



K ∈ {R, R+, Q, Q+}. We do not know whether the class ofprobabilistic residual au-
tomatais decidable. However, we show that it contains a subclass which is decidable
and sufficient to generateSfingen

K (Σ). Nevertheless, we show that deciding whether a
given MA is in this subclass is a PSPACE-complete. Finally, the class ofprobabilistic
deterministic automataoverR+ (resp.Q+), which is clearly decidable, represents the
classSfin

K (Σ) whenK ∈ {R, R+} (resp.K ∈ {Q, Q+}).
To our knowledge, the decidability of the following problems is still open:

– decide whether a given multiplicity automaton is equivalent to a probabilistic au-
tomaton, or a probabilistic residual automaton or a probabilistic deterministic au-
tomaton;

– decide whether a given probabilistic automaton is equivalent to a probabilistic
residual automaton or a probabilistic deterministic automaton;

– decide whether a given probabilistic residual automaton isequivalent to a proba-
bilistic deterministic automaton.

4.1 The class of MA which generate stochastic languages is undecidable

A MA A generates a stochastic languagepA if and only if

– ∀w ∈ Σ∗, pA(w) ≥ 0 and,
–
∑

w∈Σ∗ pA(w) = 1.

We first show that the second condition can be checked within polynomial time.
We need the following result:

Lemma 6. [Gan66,BT00] LetM be a square matrix with coefficients inQ. It is de-
cidable within polynomial time whetherMk converges to 0 whenk tends to infinity.

Proof. (Sketch) First,Mk converges to 0 whenk tends to infinity if and only if the
spectral radiusρ(M) of M , i.e. the maximum of the magnitudes of its eigenvalues,
satisfiesρ(M) < 1.

Then,M satisfiesρ(M) < 1 iff the Lyapunov equation

MPM t = P

has a positive-definite solution. In that case the solution is unique. Since the Lyapunov
equation is linear in the unknown entries ofP , we can compute a a solutionP in
polynomial time, or decide it does not exist. To check thatP is positive definite, it is
sufficient to compute the determinants of the principal minors ofP and check that they
are all positive. ⊓⊔

Proposition 17. LetA be an MA overQ. It is decidable within polynomial time whether
the sum

∑

k PA(Σk) converges. If the sumPA(Σ∗) =
∑

k PA(Σk) converges, it can
be computed within polynomial time.

Proof. Let A = 〈Σ,Q,ϕ, ι, τ〉 whereQ = {q1, . . . , qn} and letM be the square ma-
trix defined byM [i, j] = [ϕ(qi, Σ, qj)]1≤i,j≤n

. We havePA(Σk) = ιAMkτA where
ιA = (ι(q1), . . . , ι(qn)) andτA = (τ(q1), . . . , τ(qn))t.
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Let E be the subspace ofRn spanned by{MkτA|k ∈ N} and letF be a comple-
mentary subspace ofE in Rn. Let H = {u ∈ E|∀k ∈ N, ιAMku = 0}. Clearly,E
andH are stable underM . Let G be a complementary subspace ofH in E. For any
u ∈ Rn, there exists a unique decomposition of the formu = uF + uG + uH where
uF ∈ F, uG ∈ G anduH ∈ H. Let pF , pH andpG be the projections onF , G andH
defined bypF (u) = uF , pG(u) = ug andpH(u) = uH . Let PF , PH andPG be the
corresponding matrices.

First note that for any integerk ≥ 1 and anyu ∈ E, we havePGMkPGu =
(PGMPG)ku. This is clear whenk = 1. We have

PGMk+1PGu = PGMk(MPGu)

= PGMk[PHMPGu + PGMPGu] sinceMPGu ∈ E

= PGMkPG[PGMPGu] since∀v ∈ H,Mv ∈ H andPG(v) = 0

= (PGMPG)k+1u from induction hypothesis.

Note also that for any integerk and anyu ∈ E,

ιAMku = ιAMk(PGu + PHu) sinceu ∈ E

= ιAMkPGu since∀v ∈ H,Mv ∈ H andιAv = 0

= ιA(PGMkPGu + PHMkPGu) sinceMkPGu ∈ E

= ιAPGMkPGu since∀v ∈ H, ιAv = 0

= ιA(PGMPG)ku.

We show now that
∑

k∈N ιAMkτA is convergent ifflimk→∞(PGMPG)k = 0.

– Suppose thatlimk→∞(PGMPG)k = 0. Then Id − PGMPG is inversible and
∑

k∈N(PGMPG)k converges to(Id − PGMPG)−1. Therefore,
∑

k∈N ιAMkτA

converges toιA(Id − PGMPG)−1τA.
– Suppose now that

∑

k∈N ιAMkτA is convergent.
There existsλ > 0 such that for allu ∈ G, there existsn ∈ N such that|ιAMnu| ≥
λ||u||. Otherwise, there would exist a sequenceuk of elements ofG such that for all
integern, |ιAMn(uk)| < ||uk||/k. Letvk = uk/||uk|| and letvσ(k) a subsequence
which converges tov. Check that we should have||v|| = 1, v ∈ G andιAMnv = 0
for any integern, which is impossible sincev 6= 0.
Let λ satisfying this property. For any integersm andk, there existsnk such that

|ιAMnk(PGMkPG)(MmτA)| ≥ λ||(PGMkPG)(MmτA)|| = λ||(PGMPG)k(MmτA)||.

We have also

ιAMnk(PGMkPG)(MmτA) = ιA(PGMPG)nk(PGMkPG)(MmτA)

= ιA(PGMPG)nk+k(MmτA)

= ιAMnk+k(MmτA)

= ιAMnk+k+mτA.
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If we suppose thatιAMkτA → 0 whenk → ∞, we must have|(PGMkPG)(MmτA)|| →
0 whenk → ∞ for any integerm. As{MmτA} generatesE, PGMkPG converges
to 0.

To sum up,
∑

k PA(Σk) is bounded iff(PGMPG)k converges to 0, which is a
polynomially decidable problem (Lemma 6).

When the sum
∑

k PA(Σk) converges, it is equal toιA(Id−PGMPG)−1τA which
can be computed within polynomial time. ⊓⊔
Example 2.Consider the MAA′′ described on Fig. 3. We have

ιA′′ = (1, 0), τA′′ = (1/4, 1/4)t andM =

(

3
4 0
0 3

4

)

We haveMτA′′ = 3/4τA′′ and therefore,E is the vector space spanned byτA′′ . Let F
be the complementary space ofE spanned by the vector(1,−1)t; we have

H = {0}, G = E,PG =
1

2

(

1 1
1 1

)

, and1 − PGMPG =
1

8

(

5 −3
−3 5

)

Check that the inverse of1 − PGMPG is equal to

1

2

(

5 3
3 5

)

and thatιA(Id − PGMPG)−1τA = 1.

We prove now that it is undecidable whether a multiplicity over Q generates a
stochastic language. In order to prove this result, we use a reduction to a decision
problem aboutacceptor PAs.

An MA 〈Σ,Q,ϕ, ι, τ〉 is anacceptor PAif

– ϕ, ι andτ are non negative functions,
–
∑

q∈Q ι(q) = 1,
– ∀q ∈ Q,∀x ∈ Σ,

∑

r∈Q ϕ(q, x, r) = 1
– there exists a unique terminal statet andτ(t) = 1.

Blondel and Canterini have shown that given an acceptor PAA overQ andλ ∈ Q,
it is undecidable whether there exists a wordw such thatPA(w) < λ ([BC03]).

Theorem 5. It is undecidable whether an MA overQ generates a stochastic language.

Proof. For any rational seriesr overΣ, let us denote byr the rational series defined
by

r =
∑

w∈Σ∗

r(w)

(|Σ| + 1)|w|+1
.

Let A = 〈Σ,Q,ϕ, ι, τ〉 be an acceptor PA overQ and letλ ∈ Q. Let B =
〈Σ,Q,ϕB , ι, τB〉 be the MA defined byϕB(q, x, q′) = ϕ(q, x, q′)/(|Σ| + 1) and
τB(q) = τ(q)/(|Σ| + 1) for any statesq, q′ ∈ Q and anyx ∈ Σ. Remark thatB is
semi PA and thatrB = rA.

The sums =
∑

w∈Σ∗ rB(w) is bounded by 1 from Prop. 2 and can be computed
within polynomial time by using the Prop. 17. Letcλ be the series defined bycλ(w) =
λ for any wordw ∈ Σ∗.
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– If s < λ, then there must exists a word w such thatPA(w) < λ since

∑

w∈Σ∗

λ

(|Σ| + 1)|w|+1
= λ.

– If s = λ, the rational series1+ rA − cλ is a stochastic language iffrA(w) ≥ λ for
any wordw.

– If s > λ, the rational series1
s−λ

· rA − cλ is a stochastic language iffrA(w) ≥ λ
for any wordw.

Since in the two last cases, a multiplicity automaton which generates1+rA − cλ (resp.
1

s−λ
· rA − cλ) can easily be derived fromA, an algorithm able to decide whether an

MA generates a stochastic language could be used to solve thedecision problem on
PA acceptors. ⊓⊔

A reduction to the following undecidable problem could havealso been used: it is
undecidable whether a rational series overZ takes a negative value [SS78].

The set of multiplicity automata overQ which generate stochastic languages is not
only not recursive: it contains no recursively enumerable set able to generateSrat

Q (Σ).

Theorem 6. No recursively enumerable set of multiplicity automata over Q exactly
generatesSrat

Q (Σ).

Proof. From Prop. 17, the setA composed of the multiplicity automataA over Q

which satisfyPA(Σ∗) = 1 is recursively enumerable.
The subsetB composed of the elements ofA which satisfy

∃ w ∈ Σ∗PA(w) < 0

is recursively enumerable.
Suppose that there exists a recursive enumerationR0, . . . , Rn, . . . of multiplicity

automata overQ sufficient to generateSrat
Q (Σ) and letw0, . . . , wn, . . . be an enumer-

ation ofΣ∗.
Consider the following algorithm:

Input: a multiplicity automaton A over Q

If pA(Σ∗) = 1 then
For i ≥ 0 do

If pA(wi) < 0 then output NO; exit; EndIf
If A is equivalent to Ri then output YES; exit; EndIf

EndFor
Else

output NO; exit
EndIf

Since the equality
∑

w∈Σ∗ PA(w) = 1 and the equivalence of two multiplicity
automata can be decided, this algorithm would end on any input and decide whether
A generates a stochastic language. Therefore, the enumeration R0, . . . , Rn, . . . cannot
exist. ⊓⊔
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4.2 Probabilistic automata

So,Srat
Q (Σ) andSrat

R (Σ) cannot be identified by any efficient subclass of multiplicity
automata. In the other hand,Srat

Q+(Σ) andSrat
R+ (Σ) can be described by probabilistic

automata which form an easily identifiable subclass of multiplicity automata.

Proposition 18. Let K ∈ {R+, Q+} and letp ∈ K〈〈Σ〉〉. Then,p is a stochastic
language overK iff there exists aK-probabilistic automatonA such thatp = rA.

Proof. The only thing to prove is that ifp ∈ Srat
K (Σ) then there exists aK-probabilistic

automatonA such thatp = rA.
From Theorem 4, there exist a finite subsetS of Srat

K (Σ) which generates a stable
subsemimodule ofK〈〈Σ〉〉 and such thatp ∈ convK(S). Suppose thatS is minimal
for inclusion. For anys, s′ ∈ S and anyx ∈ Σ, let αs and αx

s,s′ ∈ K such that
p =

∑

s∈S αss andẋs =
∑

s′∈S αx
s,s′s

′.
Let A = 〈Σ,S, ϕ, ι, τ〉 be the MA defined by:

– ι(s) = αs,
– τ(s) = s(ε),
– ϕ(s, x, s′) = αx

s,s′

for anys, s′ ∈ S and anyx ∈ Σ. From Claims 1 and 2,p = rA.
SinceS ⊆ Srat

K (Σ), every state ofA is co-accessible and sinceS is minimal, every
state ofA is accessible. Therefore,A is trimmed.

Note that
∑

s∈S ι(s) =
∑

s∈S αs = 1 since elements of{p} ∪ S are stochastic
languages. For anys ∈ S,

τ(s) +
∑

s′∈S,x∈Σ

ϕ(s, x, s′) = s(ε) +
∑

s′∈S,x∈Σ

αx
s,s′

= s(ε) +
∑

x∈Σ

ẋs(Σ∗)

= s(ε) +
∑

x∈Σ

s(xΣ∗)

= 1.

Then,A is a PA. ⊓⊔

4.3 Probabilistic residual automata

For anyK ∈ {R+, Q+}, the classSfingen
K (Σ) can be described by probabilistic resid-

ual automata.

Proposition 19. Let K ∈ {R+, Q+} and letp ∈ K〈〈Σ〉〉. Then,p is a stochastic
language overK whose residual subsemimodule is finitely generated iff there exists a
K-probabilistic residual automatonA such thatp = rA.

Proof. – Let p ∈ Sfingen
K (Σ) and let w1, . . . , wn ∈ res(p) be such thatS =

{w−1
1 p, . . . , w−1

n p} generates[Res(p)]. Let A be the MA associated withS as
in the proof of Prop. 18. Check thatA is a PRA which generatesp.
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– Let A 〈Σ,Q,ϕ, ι, τ〉 be a PRA which generatesp and for anyq ∈ Q, let wq ∈ Σ∗

be such thatrA,q = w−1
q p. From Claim 3,{w−1

q p|q ∈ Q} generates a stable
subsemimoduleM which containsp. Check that[Res(p)] = M .

⊓⊔

Remark that from Prop. 16, there exists a unique minimal subset S of Res(p)
which generates[Res(p)]. A PRA based on this set has a minimal number of states.

We do not know whether the class of PRA is decidable. However,we show that
the class ofR+-reduced PRAis decidable. Since a reduced PRA is a PRA, any PRA is
equivalent to a reduced PRA and therefore, this class is sufficient to generateSfingen

K (Σ).
Let A be a PA and let〈Σ,Q, δ,QI , QT 〉 be the support ofA. If for any state

q ∈ Q, there exists a wordwq such thatδ(QI , wq) = {q}, thenA is a PRA since
w−1

q rA = rA,q. The converse is true whenA is reduced.

Proposition 20. LetA be aR+-reduced PA and let〈Σ,Q, δ,QI , QT 〉 be the support
of A. Then,A is a PRA if and only if for any stateq ∈ Q, there exists a wordw such
that δ(QI , w) = {q}.

Proof. Suppose thatA is a PRA. Letq ∈ Q andw be a word such thatw−1
q rA = rA,q.

Let Qw = δ(QI , w). There exist(αq′)q′∈Qw
such thatw−1rA =

∑

q′∈Qw
αq′rA,q′ .

Sinceq ∈ Qw, (1 − αq)rA,q =
∑

q′∈Qw,q′ 6=q αq′rA,q′ . SinceA is R+-reduced, we
must haveαq = 1 and therefore,Qw = {q}. ⊓⊔

Corollary 1. It can be decided whether aR+-reduced MA is a PRA.

Proof. It can easily be decided whether an MA is a PA. Then, the power set construc-
tion can be used to check whether any state can be uniquely reached by some word.

⊓⊔

From Prop. 6, it can efficiently be decided whether an MA isR+-reduced PA.
But unfortunately, noefficientdecision procedure exist to decide whether it is anR+-
reduced PRA: the decision problem is PSPACE-complete.

Proposition 21. Deciding whether aR+-reduced PA is a PRA is PSPACE-complete.

Proof. We prove the proposition by reduction of the following PSPACE-complete
problem: givenn DFA A1, . . . , An overΣ, let Li be the language recognized byAi

for 1 ≤ i ≤ n, deciding whether∪n
i=1Li = Σ∗ is PSPACE-complete.

Let Ai = 〈Σ,Qi, {qi
0}, Qi

T , δi〉 for 1 ≤ i ≤ n wherei 6= j implies thatQi ∩Qj =
∅. We may suppose thatLi 6= ∅ for 1 ≤ i ≤ n. Consider 3 new statesq0, q1, qf , n + 1
new lettersx1, . . . , xn, λ. Let A = 〈ΣA, QA, QI , QT , δ〉 be an NFA defined by:

– ΣA = Σ ∪ {x1, . . . , xn, λ}
– QA = ∪n

i=1Q
i ∪ {q0, q1, qf},

– QI = {q0, q
1
0, . . . , q

n
0 },

– QT = {q1, qf},
– for any1 ≤ i, j ≤ n, anyq ∈ Qi and anyx ∈ Σ,

• δ(q, x) = δi(q, x),
• δ(q, xj) = {qi

0} if i = j and∅ otherwise,
• δ(q, λ) = {qf} if q ∈ Qi

T and∅ otherwise,
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qf

q0 q1

λ

λ

qi
j qn

jq1
j

λ

λ if qn
j ∈ Qn

T

Fig. 7.The union of the languages recognized by the automataAi is different fromΣ∗

if and only if this automaton is the support of aR+-reduced PRA.
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– for anyx ∈ Σ, δ(q0, x) = {q0}, δ(q1, x) = ∅ andδ(qf , x) = ∅,
– δ(q0, λ) = {q1}, δ(q1, λ) = {q0} andδ(qf , λ) = ∪n

i=1{q1
0, . . . , q

n
0 }.

Check that for anyq ∈ ∪n
i=1Q

i∪{qf}, there exists a wordwq such thatδ(QI , w) =
{q}. If there exists a wordw0 such thatδ(QI , w0) = {q0} thenδ(QI , w0λ) = {q1}.

Now, suppose that∪n
i=1Li 6= Σ∗ and letu ∈ Σ∗ \ ∪n

i=1Li. Thenδ(QI , u) ∩
∪n

i=1Q
i
T = ∅ and therefore,δ(QI , uλ) = {q1} andδ(QI , uλλ) = {q0}.

If ∪n
i=1Li = Σ∗, for anyu ∈ Σ∗, δ(QI , u)∩∪n

i=1Q
i
T 6= ∅,δ(QI , uλ) = {q1, qf}, δ(QI , uλΣ) =

∅ andδ(QI , uλλ) = QI . Therefore, there exists no wordw0 such thatδ(QI , w0) =
{q0}.

That is,∪n
i=1Li 6= Σ∗ if and only if for anyq ∈ QA, there exists a wordwq ∈ Σ∗

A

such thatδ(QI , wq) = {q}.
Now, associate a new letteryq to each stateq ∈ QA and consider the MAB =

〈ΣB , QB , ι, τ, ϕ〉 where

– ΣB = ΣA ∪ {yq|q ∈ QA},
– QB = QA ∪ {qb},
– ι(q) = 1/(n + 1) if q ∈ QI and 0 otherwise,
– τ(q) = 1 if q = qb and 0 otherwise,
– ϕ(q, x, q′) = 1/(

∑

y∈Σ |δ(q, y)| + 1) if q, q′ ∈ QA, x ∈ ΣA andq′ ∈ δ(q, x),
– ϕ(q, yq, qb) = 1/(

∑

y∈Σ |δ(q, y)| + 1),
– ϕ(q, x, q′) = 0 in all other cases.

Check thatB is a PA.B is R+-reduced since for anyq ∈ QA, rB,q(yq′) 6= 0 iff q = q′

and rB,q(ε) = 0. B is a PRA if and only if for anyq ∈ QA, there exists a word
wq ∈ Σ∗

A such thatδ(QI , wq) = {q}.
Putting all together, we see that an algorithm which decideswhetherB is a PRA

could be used to decide whether∪n
i=1Li 6= Σ∗.

As the problem is clearly PSPACE, it is PSPACE-complete. ⊓⊔

It has been shown in [DLT02] that for any polynomialp(·), there exists an NFA
A = 〈ΣA, Q,QI , QT , δ〉 which satisfies the following properties:

– for any stateq of A, there exists a wordw ∈ Σ∗ such thatδ(QI , w) = {q},
– for any stateq of A, all wordsw which satisfyδ(QI , w) = {q} have a length

greater thanp(|Q|).
These NFA are support of PRA which inherit of this property.

So, reduced PRA form a decidable family which is sufficient togenerateSfingen
K (Σ)

but the membership problem for this family is not polynomial. We can restrict this fam-
ily to obtain a polynomially decidable family and still sufficient to generateSfingen

K (Σ).
Let A = 〈Σ,Q, ι, τ, ϕ〉 be a PRA.A is prefixial if for any q ∈ Q, there exists

wq ∈ Σ∗ such thatw−1
q rA = rA,q and such that{wq|q ∈ Q} is prefixial.

It is polynomially decidable whether an MA is a prefixial PRA.
Let A = 〈Σ,Q, ι, τ, ϕ〉 be a PRA, and for anyq ∈ Q, let wq ∈ Σ∗ such that

w−1
q rA = rA,q. Let W = {wq|q ∈ Q} and letW be the smallest prefixial subset of

Σ∗ which containsW . Let B = 〈Σ,W , ι, τ , ϕ〉 be the MA defined by:

– ι(q) = 1 if q = ε and 0 otherwise,
– τ(w) = w−1rA(ε),
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– ϕ(w, x,wx) = w−1rA(xΣ∗) for anyx ∈ Σ,
– ϕ(wq, x, wq′) = ϕ(q, x, q′) if wqx 6∈ W ,
– ϕ(w, x,w′) = 0 in all other cases.

It can be shown thatB is a prefixial PRA equivalent toA.

4.4 Probabilistic Deterministic Automata

For anyK ∈ {R, Q, R+, Q+}, the classSfin
K (Σ) can be described by probabilistic

deterministic automata.

Proposition 22. LetK ∈ {R, Q, R+, Q+} and letp ∈ K〈〈Σ〉〉. Then,p is a stochas-
tic language overK which has finitely many residual languages iff there exists aK-
probabilistic deterministic automatonA such thatp = rA.

Proof. From Prop 14, we can suppose thatK ∈ {R+, Q+} .

– Let p ∈ Sfin
K (Σ) and letRes(p) = {w−1

1 p, . . . , w−1
n p}. Let A be the MA asso-

ciated withS as in the proof of Prop 18. As there existsi ∈ {1, . . . , n} such that
p = w−1

i p, we can suppose thatαs = 1 if s = w−1
i p and 0 otherwise. Letsw−1

i p.
If x 6∈ res(s), then

∑

w∈Σ∗ p(wixw) = 0 and sinceK ∈ {R+, Q+}, this implies
thatp(wixw) = 0 for any wordw. Therefore, in this case, it is possible to choose
αx

s,s′ = 0 for any s′ ∈ Res(p). Whenx ∈ res(s), there existsj ∈ {1, . . . , n}
such thatx−1s = w−1

j p. In this case, we can chooseαx
s,s′ = 1 if s′ = w−1

j p and 0
otherwise.
Then, check thatA is a PDA which generatesp.

– Let A = 〈Σ,Q,ϕ, ι, τ〉 be a PDA which generatesp and letQI = {q0}. For any
w ∈ Σ∗, there eixts only one stateq ∈ Q such thatϕ(q0, w, q) 6= 0. Therefore,
Res(p) ⊆ {rA,q|q ∈ Q} andRes(p) is a finite state.

⊓⊔

Srat
Q (Σ) = Srat

R (Σ) ∩ Q+(Σ) = S
fingen
Q

(Σ)

S
fin
Q

(Σ) = S
fin

Q+
(Σ) = S

fin
R

(Σ) ∩ Q〈〈Σ〉〉

R+〈〈Σ〉〉

Q+〈〈Σ〉〉

S(Σ)

Srat
R (Σ) = S

fingen
R

(Σ)

S
fin
R

(Σ) = S
fin

R+
(Σ)

Srat

R+ (Σ) = SPA

R+ (Σ)

Srat

Q+ (Σ) = SPA

Q+ (Σ)

S
fingen

R+
(Σ) = SPRA

R+ (Σ) S
fingen

Q+
(Σ) = SPRA

Q+ (Σ) = S
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R+
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R (Σ) = SPDA

Q (Σ)

Fig. 8. Inclusion relations between classes of classes of rationalstochastic languages.
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5 Conclusion

In this paper, we have carried out a systematic study of rational stochastic languages,
which are precisely the objects probabilistic grammaticalinference deal with. This
study, and the results we bring out, whether they are original or derived from former
contributions, support our opinion that researches in grammatical inference should
be based and rely on formal language theory. Doing this makesit possible to reuse
powerful tools and general results for inference purposes.Moreover, this approach may
help finding out what particular properties are important for grammatical inference. For
example, a learning sample{w1, . . . , wn} independently drawn according to a target
stochastic languagep provides statistical information on the residual languages of p.
In order to infer an approximation ofp by means of a multiplicity automataA, there
should be a structural link between the states ofA and the observed data and hence,
between the states ofA and the residual languages ofp. This explains why most results
in grammatical inference deal with PDA and PRA, i.e. classesof multiplicity automata
for which there exists a strong connection between the states and the residual languages
of the stochastic languages they generate. This also explains why there is no useful
general inference result about PA: the residual subsemimodule of a rational stochastic
language overR+ or Q+ may be not finitely generated and hence, no finite set of
residual languages can be used to represent it. Moreover, PAadmits no natural normal
form. On the other hand, the residual subsemimodule of rational stochastic languages
overR or Q are finitely generated and admit a basis made of residual languages. Even
if there exists no recursively enumerable subset of MA capable of generating them,
this study has encouraged us to try to find a way to infer these most general stochastic
languages. See [DEH06] for preliminary results. We are alsocurrently working ontree
rational stochastic languages, following a similar approach, in order to deal with tree
probabilistic languages inference. This work is still in progress.
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