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Abstract. The goal of the present paper is to provide a systematic amp@hensive
study ofrational stochastic languagesver a semirings € {Q, Q",R,R"}. A rational
stochastic language is a probability distribution overesefmonoidX* which is rational
over K, that is which can be generated by a multiplicity automattn ywarameters in
K. We study the relations between the classes of rationahastic languageS;&(X).

We define the notion ofesidual of a stochastic language and we use it to investigate
properties of several subclasses of rational stochastigukges. Lastly, we study the
representation of rational stochastic languages by mdamnsitiplicity automata.

1 Introduction

In probabilistic grammatical inference, data often ansthie form of a finite sequence
of wordswy, ..., w, over some predefined alphabgt These words are assumed to
be independently drawn according to a fixed but unknown foitibadistribution over
X7*. Probability distributions over free monoids* are calledstochastic language#\
usual goal in grammatical inference is to try to infer an agpmation of this distri-
bution in some class of probabilistic models, suclp@babilistic automataA proba-
bilistic automaton (PA) is composed ofaucture which is a finite automaton (NFA),
and parametersassociated with states and transitions, which represenpribbabil-
ity for a state to be initial, terminal or the probability fartransition to be chosen.
It can easily be shown that probabilistic automata have dngesexpressivity as Hid-
den Markov Models (HMM), which are heavily used in statiatinference [DDEQ5].
Given the structured of a probabilistic automaton and a sequence of waéidsom-
puting parameters fad which maximize the likelihood of is NP-hard [AW9P]. In
practical cases however, algorithms based on the EEMpédctation-Maximization
method [DLR7}] can be used to compute approximate valuesh®other hand, in-
ferring a probabilistic automaton (structure and paramsgfeom a sequence of words
is a widely open field of research. Most results obtained saifdy deal with re-
stricted subclasses of PA, such as Probabilistic DetestignAutomata (PDA), i.e.
probabilistic automata whose structure is determini€bEA) or Probabilistic Resid-
ual Automata (PRA), i.e. probabilistic automata whosecstme is a residual finite
state automaton (RFSA)CA94,CPRI,dIH{f00,ELDIp02,JE04].

In other respects, it can be noticed that stochastic lareguage particular cases
of formal power seriesand that probabilistic automata are also particular cages o
multiplicity automatanotions which have been extensively studied in the fieldof f
mal language theorf[SS18,BRB4,S4k03]. Therefore, stichianguages which can
be generated by multiplicity automata are special casestiohal languagesWe call
themrational stochastic languagedhe goal of the present paper is to provide a sys-
tematic and comprehensive studyrafional stochastic languageso as to bring out




properties that could be useful for a grammatical infergmagpose. Indeed, consid-
ering the objects to infer as special cases of rational lagesi makes it possible to
use the powerful theoretical tools that have been develapéaiat field and hence,
give answers to many questions that naturally arise wherkiagiwith them: is it
possible to decide within polynomial time whether two probstic automata gener-
ate the same stochastic language? does allowing negatf¥ficEnts in probabilistic
automata extend the class of generated stochastic largfiage a rational stochastic
language which takes all its valuesQralways be generated by a multiplicity automata
with coefficients inQ? and so forth. Also, studyingtional stochastic language®r
themselves, considered as objects of language theons telwring out notions and
properties which are important in a grammatical infereresppctive: for example, we
show that the notion of residual language (or derivative)pgportant for grammatical
inference [DLTOY,DLTOK], has a natural counterpart fochtastic language§ [DEP3],

which can be used to express many properties of classeschiastiic languages.

Formal power serietake their values in a semirinig: let us denote by<' ((X)) the
set of all formal power series. Here, we only consider sema®, R, QT andR ™. For
any such semirinds, we define the se§}¢/(X) of rational stochastic languages as the
set of stochastic languages ovemwhich are rational languages ov&r. For any two
distinct semiringsk” and K, the corresponding sets of rational stochastic languages
are distinct. We show th& is a Fatou extension @ for stochastic languages, which
means that any rational stochastic language @&vetich takes its values i) is also
rational overQ. However R+ is not a Fatou extension @ for stochastic languages:
there exists a rational stochastic language @erwhich takes its values i@+ and
which is not rational ove@™.

For any stochastic languagever X and any word: such thap(uX™) # 0, let us
define the residual language ! p of p with respect tas by u ! p(w) = p(uw) /p(uX*):
residual languages clearly are stochastic languages. e stat the residual lan-
guages of a rational stochastic languag®er K are also rational ovek’. The residual
subsemimodulgRes(p)] of K ((X')) spanned by the residual languages of any stochas-
tic languagep may be used to express the rationalitypop is rational iff [Res(p)] is
included in a finitely generated subsemimodulesof(X’)). But whenK is positive,
i.e. K = Q" or K = R, it may happen thatRes(p)] itself is not finitely generated.
We study the properties of two subclassesSgft(¥): the setS/"9“" () composed
of rational stochastic languages ovémwhose residual subsemimodule is finitely gen-
erated and the séi}?”(Z) composed of rational stochastic languages dvewrhich
have finitely many residual languages. We show that for artiexde two classe® ™
is a Fatou extension @*: any stochastic language %i”ge”(z’) (resp. ofSH{i"(E))
which takes its values i@ is an element os(éTge"(E) (resp. ofS(éT(E)). We also

fingen

show that for any element of Sy (X)), there exists a uniqgue minimal subset of
residual languages @fwhich generate§Res(p)].

Then, we study the representation of rational stochastiguages by means of
multiplicity automata. We first show that the set of muligjity automata with parame-
ters inQ which generate stochastic languages is not recursive.dvergit contains no
recursively enumerable subset capable to generate thewhbbf rational stochastic
languages oveR. A stochastic languageis a formal series which has two properties:
(i) p(w) > 0 for any wordw, (ii) >, p(w) = 1. We show that the undecidability
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comes from the first requirement, since the second one caedded within poly-
nomial time. We show that the set of stochastic languageshmban be generated
by probabilistic automata with parameters@1 (respR™) exactly coincides with
S@?(Z) (resp.S;%(X)). A probabilistic automatont is called a Probabilistic Resid-
ual Automaton (PRA) if the stochastic languages associatits states are residual
languages of the stochastic languagasgenerated byd. We show that the set of
stochastic languages that can be generated by probabiésidual automata with pa-
rameters i+ (respR™) exactly coincides WithSéTge"(E) (resp.SﬂéTf’e"(Z)). We
do not know whether the class of PRA is decidable. Howeverdegeribe two decid-
able subclasses of PRA capable of generaﬂﬁfﬂge"(z) whenK = QT orK = R™:
the class of{-reduced PRA and the class of prefixial PRA. The first one ples/min-
imal representation in the class of PRA but we show that thealneeship problem is
PSPACE-complete. The second one produces more cumberspmesentation but
the membership problem is polynomial. Finally, we show tifwt set of stochastic
languages that can be generated by probabilistic detesticigiutomata with parame-
ters inQ* (respR™) exactly coincides witls]'"(X), which is also equal t&/" (%)
(resp.SL* (%), which is also equal t6}™ ().

We recall some properties on rational series, stochastguiges and multiplicity
automata in Sectiof] 2. We define and study rational stochiastjuages in Sectidh 3.
The relations between the classes of rational stochastigitges are studied in Sub-
section[3.]l. Properties of the residual languages of raltistochastic languages are
studied in Subsectioh 3.2. A characterisation of ratiot@itegstic languages in terms
of stable subsemimodule is given in Subsecfioh 3.3. Clag58&”" () andS{™ (¥)
are defined and studied in Subsect[or] 3.4. The represemtaticational stochastic
languages by means of multiplicity automata is given in ida.

2 Preliminaries

2.1 Rational series

In this section, we recall some definitions and results oiomat series. For more
information, we invite the reader to consylt [S§78, BRSAR4

Let X be a finitealphabet and X* be the set of words of'. The empty word is
denoted by and the length of a word is denoted byu|. The number of occurrences
of the letterz in the wordw is denoted byw|,.. For any integek, we denote byC” the
set{u € X* | |u| = k} and by X <F the set{u € X* | |u| < k}. We denote by the
length-lexicographic order oi*. For any wordu € X* and any languagé C X*,
letul = {uv € X*|v € L} andu™'L = {v € Y*|luv € L}. A subsetP of ¥* is
prefixial if for any u,v € X*, uv € P = u € P.

A semiringis a setK with two binary operations- and- and two constant elements
0 and 1 such that

(K,+,0) is a commutative monoid,
(K,-,1) is amonoid,
the distribution laws - (b+c¢) =a-b+a-cand(a+b)-c=a-c+b-chold,

1.
2.
3.
4. 0-a =a-0 =0 foreverya.



A semiring ispositiveif the sum of two elements different from 0 is different from
0.

The semirings we consider here are the field of rational nust@ethe field of
real number®, Q* andR*, respectively the non negative elementoandR; Q™
andR* are positive semirings.

Let X be a finite alphabet anll a semiring. Aformal power seriegs a mapping:
of X* into K. The values-(w) wherew € X* are referred to as theoefficientof the
series, ana is written as a formal sum= " _ .. r(w)w. The set of all formal power
series is denoted b¥( ((X)). Givenr, the subset ot defined by{w|r(w) # 0} is
the supportof » and denoted byupp(r). A polynomialis a series whose support is
finite. The subset o ((X)) consisting of all polynomials is denoted By().

We denote by 0 the series all of whose coefficients equal 0. &detd by 1 the
series whose coefficient far equals 1, the remaining coefficients being equal to 0.
The sumof two seriesr andr’ in K((X)) is defined byr + ' = >~ _v.(r(w) +
r’(w))w. The multiplication of a series by a scalara € K is defined byar =
> wes+a - r(w)w. The Cauchy product of two seriesandr’ is defined byrr’ =
Swes (Dwiwa—w (w1) - 7' (w2)) w. These operations furniski (X)) with the struc-
ture of a semiring with/<' (X') as a subsemiring. The Hadamard product of two series
randr’ is defined byr © 7' = 3" 5. r(w)r’ (w)w.

A seriesr is quasiregularif r(e) = 0. Quasiregular series have the property that
for everyw € X*, there exist finitely many integeissuch that-!(w) # 0 where the
exponent of 7' refers to the Cauchy product. Lebe a quasiregular series; (resp.
rT)is defined byr* (w) = Yo r(w) (resprt(w) = > ,o; ' (w)).

A subsemiringR of K ((%)) is rationally closedif »* ¢ R for every quasiregu-
lar element- of R. The family K™% ((X)) of K-rational series ovek is the smallest
rationally closed subset df ((X)) which contains all polynomials. Whefi is com-
mutative, the Hadamard product of two rational series idiarral series.

Let K be a semiring and let:, n be two integers. Let us denote By *" the set
of m x n matrices whose elements belongitoand byI,,, the matrix whose diagonal
elements are equal to 1 and whose all other elements aréNodd.that/K™ > forms
a semiring.

A seriesr is recognizablef there exists a multiplicative homomorphigm: X* —
K™" n > 1, and two matrices\ € KlX",v e K™ such that for everyy € ¥*,
r(w) = Au(w)y. The tuple(\, i, ) is called an: dimensionalinear representation
of r. A linear representation ofis said to beeducedif its dimension is minimal.

Let us denote bys"<((X)) the set of all recognizable series.

Theorem 1. [Ech6]] The familiegs " (X)) and K™¢((X)) coincide.

Let K be a semiring. Then a commutative monoid V is calleld-emimoduléf
there is an operationfrom K x V into V' such that for any, b € K,v,w € V,
1. (ab)-v=a-(b-v),
2. (a+b)-v=a-v+b-vanda- (v+w)=a-v+a-w,
3.1-v=vand0-v =0.

If S is a subset of &’-semimoduleV, the subsemimoduléS] generated byS is
the smallest of all subsemimodules WBfcontainingS. It can be proved thats] =
{a1s1+ ...+ apspln € N* a; € K, s; € S}.
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Let us consider the semimodulé™" of all functionsF : ¥* — K. For any word
u of X* and any functiorf” of K*", we define a new functionF by . F (v) = F(uv)
for any wordv. The operator transforming into «.F is linear: for anyF,G € K~
anda € K, u(a-F) = a-uF andu(F + G) = oF + uG. A subsetB of K+ is
calledstableif the conditionsu € X* and F' € B imply thataF' € B.

Theorem 2. [FTi74}Jac7%] Suppose thak  is a commutative semiring andbelongs
to K ((X')). Then the following three conditions are equivalent:

1. r belongs taK " ((X)));

2. the subsemimodule &f((X)) generated byur|u € X*} is contained in a finitely
generated stable subsemimodulgof ;

3. r belongs to a finitely generated stable subsemimodulé-of.

When K is not a field, it may happen that a serieselongs to a finitely generated
stable subsemimodule &f ((X')), and hence is a rational series, while the stable sub-
semimodule generated Hyir|u € X*} is not finitely generated. An example of this
situation will be provided on Examp[é 1.

Two linear representation(s,, 1, y) and(\, i/, ~) of arational series aresimilar
if there exists an inversible matrix € K™*" such that\’ = Am, 'w = m™' pwm
for any wordw and~y’ = m™1.

Theorem 3. [Ech6][FIi7#] Assume thak is a commutative field. Then any two re-
duced linear representation(s\, i1, y) and (X', i/, v") of a rational series are similar.
The dimension of any reduced linear representation i3falso the dimension of the
vector subspace generated pyr|u € X*}.

Let K be a subsemiring of{’. K’ is said to be a&atou extensiorof K if ev-
ery rational series oveK’ with coefficients inK is a rational series ovek. It has
been shown in[[Fli14] that whe and K’ are commutative fields thek” is a
Fatou extension of<. Therefore,R is a Fatou extension df: any rational series
over R which only takes rational values is a rational series d@erR"*((X)) N
Q(X)) = Qrat((X)). It has also been proved th&t" is not a Fatou extension of

QT QT((Z)) ¢ RTH(Z)) NQT((Z)).

2.2 Stochastic languages

A stochastic languages a formal seriep which takes its values iR* and such that
> wes+ P(w) = 1. For any stochastic languageand any languagé C X*, the sum
> wer P(w) is defined without ambiguity. So, let us dendtg ., p(w) by p(L). The
set of all stochastic languages oveis denoted bys5(Y'). For any stochastic language
p and any word: such thap(uX*) # 0, we define the stochastic language'p by

u p(w) = :

u~1pis called theresidual languagef p wrt u. Let us denote byes(p) the set{u €
I* Y wess p(uw) # 0} and by Res(p) the set{u'p|u € res(p)}. For anyK €
{R,RT,Q,Q"}, defineSi#t(X) = K™ ((X)) N S(X), the set of rational stochastic
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languages oveK. Let S = {s1,...,s,} be afinite subset af(X'). The convex hull
of S'in K((X)) is defined byconvg (S) = {s € K((X))|s=a1-s1+ ...+ an - sy
where eacly; € K, «; > 0anda; +. . .+a, = 1}. Clearly, any element eonvg (S)
is a stochastic language.

Example 1.Let ' = {a}, and letp;, po andp be the rational stochastic languages
overR™ defined onx* by

pi(a™) =27 po(a™) = 3. 27 andp = (py + pa)/2.

Check that
= _ Pl p2 = 2"p1tpo
a"pr = 5 0"P2 = ooy anda”p = ot
and .
_2"pitpo

1 1 1
(@) 'p1=p1,(a") pa=peand(a”)” p= ]

Let V be the vector subspace &f((Y)) generated by; andpy: V is represented
on Figure[ll. The subsemimodule Bff (X)) generated by, and p, corresponds

p3 S(Z)nv

Fig. 1. The stable subsemimodule Bff (X)) generated by is equal toV,: it does
not contains the halfling)p; ) and it is not finitely generated.

to the closed halfconé delimited by the halflinesOp;) and[Op,). The line(p1p2)
is composed of the rational seriesn V which satisfy) . r(w) = 1. Letq =
ap1 + (1 — a)pe. The constraing(a™) > 0 is equivalent to the inequality

(2" —3)a+3>0.
The serieg such thay(a™) > 0 for any integem must satisfy

0<a<3.



Let p3 = 3p; — 2p2. The stochastic languages ¥hare the points of the lin€p,ps)
which lie betweerp, andps.

Let V), be the subsemimodule B ((X)) generated byup|u € X*}. Check that
V, = {t(ap1+(1—a)p2)|1/2 < a < 1,t € R} and that), is not finitely generated.

2.3 Automata

A non deterministic finite automatgiNFA) is a tuple(X, Q, Qr, Qr, ) whereQ is
a finite set of stateg); C (@ is the set of initial state€)r C Q@ is the set of final
states is thetransition functiondefined from@Q x ¥ to 2¢. Let ¢ also denote the
extended transition function defined fr@f x X* to 29 by 6(q, €) = {¢}, d(q, wz) =
Uges(quw)0(d'sz) andd(R,w) = Ugerd(q,w) foranyqg € Q, R € Q,z € ¥ and
w € X*. An NFA is deterministic(DFA) if Q; contains only one elemengt and if
Vg e Q,Vr e X, |0(q,x)] <1.

Let K be a semiring. AK-multiplicity automaton (MAjs a 5-tuple(X, Q, ¢, ¢, T)
where(Q is a finite set of stateg; : Q x X' x () — K is the transition function, : Q —
K is the initialization function and : Q — K is the termination function. LeD; =
{q € Ql(q) # 0} be the set ofitial statesand@r = {q € Q|7(q) # 0} be the set
of terminal statesThesupportof an MA (X, Q, ¢, ¢, 7) isthe NFA(X  Q, Q1, Qr, )
whered(q,z) = {¢' € Qle(q,x,q") # 0}. We extend the transition functiop to
Q x 5* x Qby (g, wr,r) = Y0 0(q,w, 5)¢(s, ,7) andp(q,e,r) = 1if g =
and0 otherwise, for any, r € Q, x € X andw € X*. For any finite subsef c X*
and anyR? C @, definep(q, L, R) = >~ e e P(qw, 7).

Forany MAA = (¥ Q, p,t,7), we define the series; by

ra(w) =Y da)p(q, w,r)r(r).

q,reEQ

For anyg € @, we define the seriesy , by 74 (w) = >, co (g, w,r)7(r).

If the semiring K is positive, it can be shown that the support of the series
defined by ai-multiplicity automaton is equal to the language definedhzydupport
of A. In particular,supp(r4) is a regular language. This property is false in general
when K is not positive.

Two MA A and A’ areequivalentif they define the same series, i.erjf = r /.

Let A = (¥,Q,¢,t,7) be aK-MA and letq € Q. Suppose that there exist
coefficientsa, € K for ¢’ € Q" = Q \ {g} such thatry , = > /coragray- Let
A =(X,Q, ¢/, ") where

— ¢ (r,z,8) = o(r,z,8) + asp(r,z,q) foranyr,s € Q" andz € X,
V() = u(r) + are(q) foranyr € Q'
—T( ) =7(r)foranyr € Q'.

The multiplicity automatonA’ is called aK-reductionof A. A multiplicity au-
tomatonA is called K -reducedif it has no K -reduction.

Proposition 1. Let A = (X, Q, ¢, ¢, 7) be aK-MA and letA’ = (X, Q', ¢',//, ') be
a K-reduction ofA. Then, for any state’ € Q', rary = 74,4. AS a consequence,
TAr =TA.



Proof. Let @' = @Q \ {¢} and leta, € K for any¢ € Q' such thatr,, =
> yeq @qTay- FOrany state € Q', we have

rare(e) =7'(r) =7(r) =ra,(e).

Now, assume that for any wora of length < k and any stater € Q' we have
rarr(w) =rar(w). Letz be a letter, we have:

TA Z QD rT,s TA’ ( ) = Z (@(T’st) + OZSSD(T’:C’Q)) TA7S(w)

seq)’ s€qQ’

= Z TS TAS w) + ¢(r,z,q) Z O‘STAS(U’)
SEQ’ seQ’

= Z TS 7”,48 w) + LP(T,HU,C])TA,q(w)
seQ’

=3 @ 5)ra(w) = ra(zw).
sEQ

Hence,r 4/, = ra, for anyr of Q'. Moreover,

T = Z V(s)ras = Z (¢(s) + ast(q)) ras

seqQ’ seQ’
= Z s)ra,s +u(q) ZO(STA,SZZL(S)TA75:TA.
seQ’ sEQ’ s€EQ

O

A stateq € (@ is accessiblg(resp.co-accessibleif there existsqy € Qr (resp.
g € Qr) andu € X* such thatp(qo,u,q) # 0 (resp.¢(q,u,q) # 0). An MA is
trimmedif all its states are accessible and co-accessible. GivaMAam, a trimmed
MA equivalent toA can efficiently be computed from.

From now, we only consider trimmed MA.

We shall consider several subclasses of multiplicity aatiayndefined as follows:

A semi Probabilistic Automaton (semi-Pi&)an MA (X', Q), ¢, ¢, 7) such that, ¢
andr take their values i0, 1], such thad _ ., «(¢) < 1 and for any state, 7(q) +
(g, X, Q) < 1. Semi-PA generate rational series oRer.

A Probabilistic Automaton (PAjs a trimmed semi-PAX, Q, ¢,¢,7) such that
>_qcq t(¢) = 1 and for any stat, 7(¢q) + (¢, X', Q) = 1. Probabilistic automata
generate stochastic languages.

Proposition 2. Let A = (¥, Q, ¢, ¢, 7) be aK-semi-PA (resp. d(-PA). Forq € Q,
Y owess TAq(w) < 1(resp.y” o v.7a4(w) = 1). Asaconsequencd,, . ra(w) <
1 (resp.)_,cxxra(w) = 1).



Proof. For any integek and anyy € @@, we have

> ragw) +e(g, 2¥2,Q)

|w|<k+1

= > ragw) + Y olg, S () + Y ele, B r)e(r 2,Q)

|w|<k req re@

= ragw) + > wlg, B ) (r) + o(r, £,Q))-

|lw|<k reqQ

From this relation, it is easy to infer by induction érthat

Y ragw) + > elq, 5 r) <1 (resp. = 1)

|lw|<k reqQ

when A is a semi-PA (resp. a PA).
A first consequence is that

Z raq(w) < 1and Z ra(w) = Z Z L(q)raq(w) < 1.

wer* wer* weX* geQ

Letn = |Q|. SinceA is timmed, there exists a worde <"~1 such that 4 ,(u) >
0. Therefore, there exists < 1 such thatp(q, X", Q) < «. It can easily be shown, by
induction on the integek, thaty(q, 2%, Q) < oF.

Now, whenA is a PA, we have

Y ragw) > D rag(w)=1-p(g2",Q) > 1-d

wel* |lw|<kn

for any integerk. Therefore,

Z raq(w) =1.

wer*
Finally,
S oraw)= > > ug)ragw) = ulg) = 1.
wer* wWEX* geQ 7€Q

O

It can easily be deduced from Proposit{dn 2 tha@ areduction of a PA is still a PA
(the property is false in general for a semi-PA).

A Probabilistic Residual Automaton (PR&)a PA(X, Q, ¢, ¢, 7) such that for any
q € Q, there exists a word such that-4 , = u~1r 4. Check that & *-reduction of a
PRA s still a PRA, since the series associated with thestataeain unchanged within
a reduction.

A Probabilistic Deterministic Automaton (PDA9 a PA whose support is deter-
ministic. Check that a PDA is a PRA. ThereforéRa-reduction of a PDA is a PRA,
but since reduction introduces non-determinism, it is myé&y a PDA.

For any clasg” of K-multiplicity automata, let us denote hﬁﬁ(Z) the class of
all stochastic languages which are recognized by an eleofignt
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b,0.5 ' a,0.2:5,0.3

Fig. 2. Let us precise notations on automatdn ¢, is the unique initial state and
t(qo) = 1, ¢1 is the unique terminal state andq;) = 1, ¢(q0,a,q1) = 0.5,
©(q0,b,90) = 0.5 and any other transitions satisfy(¢, z,¢') = 0. A is a PDA; B
isa PRAsince s 4, = rg andrpq, = a 'rp; Cis also a PRA sincec 4, = ab™'r¢
andrg g, = a~'rc; it can easily be shown thd? is not a PRA.

2.4 Equivalent representations of rational series

Stable finitely generated subsemimodules, linear reptasens and multiplicity au-
tomata provide us with several representations of ratieegks. The following clas-
sical claims show that they are equivalent: in particulaseadesr over K is rational
iff there exists ai-multiplicity automatonA such that- = r 4. Moreover, any one of
these representations can efficiently be derived from amgratne.

Claim 1 LetM be a stable subsemimodule &f((X)) generated by, ...,r, and con-
taining the series. Let ; anda;; be coefficients ink’ defined for any letter:
and anyl < i,j < n such that

n n
r= g o;r; andzr; = E Ty
J=1

i=1

Let (A, 1, v) be the linear representation defined Xy, i = a;, ()i, j] = of ;
and~[i, 1] = r;(e) foranyl < i,j < nandanyz € X. Then(\, u,~) is a linear
representation aof.

Claim 2 Let(\, ,y) be ann-dimensional linear representationvadind letA = (X, Q, ¢, ¢, T)
be the MAdefined by = {1,...,n}, (i) = A[1,1], 7(i) = ~v[i, 1] andp(i, z, j) =
p(z)i, j]. Thenr = r4.

Claim 3 LetA = (X,Q, p,t,7) be an MA and letM be the subsemimodule generated by
{raqlq € Q}. ThenM is a stable subsemimodule &f((X")) which containg-4.
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The proofs of these claims are classical. We give them fog shkompletness.

Proof (Claim 1).Let us prove by induction on the length of the waodthat for any
wordw, p(w)y = (ri(w), ..., r,(w))t. From definitionu(e)y = v = (r1(g), ..., ra(e))t.
Suppose that the relation is proved for all words of length and letw € X~™ and

x e X,

I
-~
(]
o
—R
<.
S
&
3
Q
EE
<
i
S
N——

Jj=1 . J
= (ir1(w), ... drn(w))"
= (ri(zw), ..., rp(zw))’

Now, for any wordw,

Me(w)y = A(ry(w), ..., (w)) = Zairi(w) = r(w).

i=1

Proof (Claim2).For any wordw, we have

n n

ra(w) =Y Wi)eli,w, )7(i) = > = AL ilu(w)[i, 7], 1] = Au(w)y.

i,j=1 i,j=1

Proof (Claim3).First note that s =} ., t(¢)ra,, and thereforey 4 € M.
Next, for any letterr, any wordw and any state € @,

iT‘A,q(w) = TA,q(xw) = Z go(q,x,q')rAq/ (’U))
7eqQ
and therefore,
Era, = Z o(q, 2,4 ) ray.
q7eQ

M is a stable subsemimodule &f((X)). O

These equivalent characterizations make it possible nsfiea definitions from one
representation mode to another: check thahatimensional linear representation of
a rational series oveK is reduced if and only iff the corresponding multiplicity-au
tomaton isK -reduced.Also, results obtained using one representatinnmmediatly
be transfered to the other ones.
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2.5 Computing equivalence and reduction of MA

Deciding whether two NFA are equivalent is a PSPACE-coregbebblem. However,
deciding whether two MA are equivalent can be achieved wigldlynomial time.

Proposition 3. It is decidable within polynomial time whether two MAs olfeare
equivalent.

Proof. Let A andA’ be two MA and let(\, i, ) (resp.(\, 1/, ~")) be amn-dimensional
(resp.n’-dimensional) linear representation of the rational serig (resp.r4/). For
any wordw let 6(w) = (u(w)y, /' (w)y'). Let E be the vector subspace Bf**"
spanned by{#(w)|w € X*} and letT be the linear mapping froR”*" to R defined
by T'(u,u/) = M — N/ for anyu € R™ andu/ € R". The series 4 andr 4 are
equal, i.e.A and A’ are equivalent, iff/(u,v’) € E,T(u,u') = 0, property which can
be checked within polynomial time. O

The following algorithm decides the equivalence of two MA:

Input: A, A MA
B={c},S={zjlxr € X}
while S#( do
let v be the snallest element in S and let S=5)\{v}
if O(v) does not belong to the subspace spanned by 60(B)
t hen
B=BU{v} and S=SU{vx|z € X}
end if
end while
while B#0 do
let veB and let B= B\ {v}
if T(0())#0 then
output no ; exit
end if
end while
out put yes.

The first part of the algorithm computes a basisKfthe second part checks
whetherT'(E) = {0}.

Note that whend and A" are not equivalent, the previous algorithm provides a
word u such that 4 (u) # r4/(u) and whose length is' |Q] + |Q'].

Proposition 4. Let Ay, Ay, ..., A, be MAs oveiR. It is decidable within polynomial
time whether there exists;, ..., a, € R such thatry, = > | a;74,. More pre-
cisely, all such tuples of parametefa;, ..., «a,) are solutions of a linear system
computable within polynomial time.

Proof. Consider the following algorithm.

Let Eq= {TAO (8) - Z?:l LiT'A; (8)}
#Eq is a set of independent equations on variables zq,...,z,.
Wil e Eq has a solution (ap,...,a,) such that ra, # > " a;ra,

12



Let u be a word such that ra,(u) #> " a;ra,(u)
Eq=EqU{ra,(u) = 3y wira, (u)}
Qut put : Eq

From Propositiof]3, if 4, # > i a;ra,, awordu such that 4, (u) # > 7, a;ra, (u)
and whose length is' "7 |Q;| can be found within polynomial time (whef);| is
the number of states of;). The algorithms ends sindéq has at most + 1 elements.
Itis clear that(ay, . .., a,) is a solution ofEq iff ra, = > 7 | a;ra,. 0

A similar result holds when we ask for positive coefficients.

Proposition 5. Let Ay, A1, ..., A, be MAs oveiR. It is decidable within polynomial
time whether there existsy, ..., a, € RT such thatr4, = > 1" | ;4.

Proof. Add the constraints;; > 0,...,x, > 0 to the systemEq in the previous
algorithm. A polynomial linear programming algorithm wtitlen find a solution ofJq
or decide thatzq has no solution. O

As a consequence of these propositions, it can efficientlgeméded whether an
MA A is K-reduced .

Proposition 6. Let A = (¥, Q, ¢, ¢, 7) be aK-MA. It is decidable within polynomial
time whether4 is K-reduced; ifA is not K -reduced, ai reduction can be computed
within polynomial time.

Proof. For anyq € @, check whether there exist coefficients € K for ¢’ € Q' =
Q\{Q} suchthatrs, = > o agray- If SO, use these coefficients to compute a
K-reduction ofA. O

3 Rational stochastic languages

The objects we study arational stochastic languagese. stochastic languages which
are also rational series. A rational stochastic languagealveays be generated by us-
ing a multiplicity automaton. But depending on the $étof numbers used for the
parameters, we obtain different s&t§*(X) of rational stochastic languages. In the
following, we suppose thak € {R,R",Q,Q"}. First, we study the relations be-
tween all these classes of rational stochastic languagkesext, we give a characteri-
zation of S;#! (X)) in terms of stable subsemimodules&(fY).

3.1 Relations between classes of rational stochastic larages
Let us begin by the simplest inclusions.
Proposition 7.
S@%(Z) - 3@“(2) C Sp*(X) andS@?f(Z) C Sp(XY) C SEH(E).
Moreover,

S (Z)\ QX)) # 0.
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Proof. Let K be a subsemiring ak». We haveK % ((X)) C K5 ((X)) and hence,
Spet(x) C Spet(x).

Now, letr be the rational series defined oh = {a} by r(c) = v2/2,7(a) =
1—+/2/2andr(a™) = 0 for anyn > 2. Clearly,r € S5%(X)\ Q((X)) which implies
thatSg™ (X)) ¢ Sg™(X) andSy(X) & St (X). 0

A rational stochastic language ov@mhich only takes rational values is a rational
stochastic language ovér.

Proposition 8.
SE(Z) N Q) = SgH(X).

Proof.

Recall thatR is a Fatou extension d@@: any rational series oveR which only takes
rational values is a rational series o¥gi.e.

R™ () NQ((Z)) = Q"*((Z)).
As a consequence,

SE™(Z) NQ(E)) = S(2) NR™{(X)) nQ((X))
=S(2)NQ((2))
— SEH(Z).

O

It has also been proved th&t" is not a Fatou extension @*: Q" ((X)) C

R ((2)) N QT ((X)). We prove below that this result can be extended to stochasti
languages: there exists a rational stochastic languagédverhich takes only rational

values and which is not a rational stochastique language@ve
Proposition 9. S§¥(X) ¢ Sp¥(X) N QT ((X)).

Proof. We use an element il t"* (X)) n QT (X)) \ QT"*((X)) described in
[BR84] to prove the proposition.

Consider the multiplicity automatoA = (¥, Q, ¢, ¢, 7) whereX = {a,b}, Q =
{90, 1}, vlqo) = tlq1) = 1, ©(qo,a,90) = o ¢(qo,b,q0) = a2, ©(q1,a,q1) =
a2, o(q,b,q1) = a® wherea = (V5 +1)/2, ©(gi,z,q;) = 0foranyz € X when
i # jandt(qo) = 7(¢q1) = 1 (see Figurg]3).

Let r4 be the rational series generated BylLet w € X*. We haver,(w) =
o®" + a~?" wheren = |w|, — |w|,. Check that for any integer, o> + a=2" € N.
Hencer s € RT™((X)) N QT ((X)). Itis shown in [BR8Y] that 4 ¢ Q" ((X)).

Now let A" = (¥, Q,¢,/, ") where for any stateg and ¢’ and any letterr,
d(q) = 1/2, ¥ (q,2,4) = v(q,2,¢')/4 and7'(q0) = 7'(¢1) = 1/4. Check that
a® + a2 = 3. Then, A’ is a probabilistic automaton. Lgtbe the stochastic language
generated byl. We have

1 _
P(w) = s (a® + a~2") wheren = |w|, — |wl;

14



and hence

€ SEH(2) NQF ().

Let s be the series defined by(w) = 22“+3. Clearly, s € Qt"*((x)) and
r4 = s ® p (Hadamard product). Recall that whé&his commutative, the Hadamard
product of two rational series is a rational series. Theeefq ¢ Q" (X)) = p ¢

Q" ((%)) and hencep & SK(X). O
a,o?;b, a2 a"2:b,a? 0,4, C%aTQ;baaTQ
' ' A 1/2'1/4 1/21/4

Fig. 3. A’ generates a rational stochastic language which takes all its values in
Q. However,py is not a rational stochastic language o@f. A” is a multiplicity
automaton ovet) which generateg 4.

Remark that sincg is a rational stochastic language which takes all its valu€s
pis arational stochastic language o@rfrom Prop[B. Lepy = pas 4, andp1 = par g,
be the stochastic languages generated from the gtagaslq, of automatond’. It can
easily be shown that

{P = 2100 + 2101
a”'p = 5 Po + 43 Pl

These relations makes it possible to base anda~!p an automata which recognizes
p. Check that

= b—§ —§a aa” — —§a andba ! =1 +3a
ap 8177]9 417 3 b, p 617 4 p p 6]9 4 p.

These relations can be used to prove that the autom#tan Fig. 3 generates.
Now, we prove that there exists a rational stochastic laggwaerQ which is not
rational overR ™. In particular, it cannot be generated by a probabilistimaaton.

Proposition 10. S (X)) \ Sg% (%) # 0.
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Proof. Let ¥ = {a,b} and for anyw € X*, letr and s be the series defined by
r(w) = |w|, ands(w) = |wl|,. They are rational ove®) since they belong to a stable
finitely generated subsemimodule@f(X)). Indeed,

ar=r+1,br =ras=sandbs = s + 1.

Hence, the series— s and(r — s)? where the exponent refers to the Hadamard product
are also rational ove. Foranyn € N, leto,, = >, v (r—s)?(w) < n?-2". Check
that

On

o, =n2" ando = — = 2.
22n
n>0
Now, lett be the series defined by
_ (r=5)*w)
Hw) = o

t is a rational stochastic languages o@rlts support is the setupp(t) = {w €
X* | lw|e # |wlp} which is known to be not rational.  were rational ovefR™, it
support would be rational. Therefores Si* () \ g% (X). O

All these results can be summarized on diagfpm 4.

R ((2))
Qt (=)
S(%) S(2)nQt (o))
szot(x) SEAH(E) = SEH(Z) N et ()
sret() ST () net (D)
o)

Fig. 4. Inclusion relations between classes of rational stoahéamtiguages.

3.2 Residual languages of rational stochastic languages

Recall that given a stochastic langugges S(X') and a wordu € res(p), i.e. such
thatp(uX™) # 0, the residual language @fwrt v is the stochastic language defined
by
—1 p(uw)
u pw) = —F—c~<-
(w) p(uX™)
Whenp takes its values i), it is not true in general that—!p takes also its values

inQ™.
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Consider two seriegy,, )nen and (3, )nen overQ* and such thap, oy, = v/2/2
andy" 3, = 4/5 — v/2/2. Now, consider the series € Q* (({a,b})) defined by
r(e) = 1/5, r(a™) = ap—1, r(b") = By—1 forn > 1 andr(w) = 0 otherwise. It is
easy to check that is a stochastic language which takes its values @erand that
a~r(e) = V2. Thereforea™'r ¢ Q((X)).

We prove below that whemis a rational stochastic language ovérall its residual
languages are also rational ot Moreover, the seRes(p) = {u~"'plu € res(p)}
generates the same subsemimodul& ¢fY')) as the sefup|u € X*}.

We need before two linear algebra technical lemmas to plogeesult.

Lemma l. Letf : Q" — Q" be alinear mapping and lete Q™ such thatz,g20 *t
converges tar. Thenu € Q™.

Proof. Let F be the vector subspace @f* generated by f*t|k € N}. There exists
an integerd such thatft = t,..., f" 't is a basis off". As the sum)_, ., f*t
converges,f*t converges to 0 wheh tends to infinity. Therefore, for any € F,
f*v also converges to 0 whéntends to infinity. Letv € F such thatfv = v. We
have alsof*v = v for any integerk and hencey = 0. Letg : F — F defined by
g(v) = v— fv. The linear mapping is one-to-one and for any € F' and any integer
k,

V4 vt .+ v =g¢7t1 = Y.

Therefore,

u=g¢ 'tandu e Q"

We use Lemm4]1 to show that{f.,...,r,} generates a stable subsemimodule
of Q((X)) and if each sun) _ . 7;(w) converges te; then eachr; € Q.

Lemma 2. Let M be a stable subsemimodule @f(Y)) generated by{ry,...,r,}
and leto? = > wesk mi(w) foranyl < i < nand any integek. Suppose that for any
1 <1¢<n,the sum§:k20 af converges t@;. Theno; € Q foranyl <i < n.

Proof. Lett = (ri(),. .., (ra(¢)))". As M is stable, there exisi}; € Q for any
1 <i,j <nandanyr € ¥ suchthatir; = }>%_, of ;-r;. Let B € Q"™ defined by
Bli,j| = >_,cx af ;. Let us prove by induction oh that for any integek, we have

(o%,...,0F)t = B¥t. The property is true fok = 0 as for any integet, o9 = r;(¢).

rvn
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Now,

Uf“ = Z ri(zw)
weEXk reXx

= Z ari(w)

weEXk e X

= Y @

weXk zeX je{l,...,n}

= > (ZQ;CJ)' > ri(w)
je{lv"'vn} zeX weXk

= ) Bl
je{l,...n}

= Z Bli, j](B*t)[j] by induction hypothesis
je{l,...n}

= (B*1t)[d].

Therefore,B*t converges tdoy,...,0,)t From Lemmd]lg; € Q forany1 <
1 <n. O

Lemma 3. Letp € S;#(X). For any wordu € res(p), >, e+ p(uw) € K. More-
over, the sefRes(p) generates the same subsemimodul& ¢fX)) as the se{up|u €
X

Proof. Letp € S;#(X). Forany word uy_, ... p(uw) € R sincep is a stochastic
language. Suppose now that = Q or K = Q%. The set{up|lu € X*} gener-
ates a finite vector subspageof Q((X)). Let {up,...,u,p} be a finite subset of
{aplu € X*} which generate®. Leto; = Y 5. up(w) foranyi = 1,...,n.
From Lemma[|2, each; € Q. Now, for anyu € X*, there existsyq, ..., o, € Q such
thatup = Y7 | cyt;p. Thereforey” v p(uw) = 31 | a0 € Q.

So, for anyK and anyu € res(p), there exists an inversible element of K such
thattip = a,, - u~!p. In consequence, the sBts(p) generates the same subsemimod-
ule of K((X)) as the sefup|u € X*}. 0

For any stochastic languageover K, let us denote byRes(p)] the subsemimod-
ule of K ((X')) generated byRes(p) and let us call it theesidual subsemimodutef p.
Note that| Res(p)] is stable.

Proposition 11. Letp € S;#4(X). For any wordu € res(p), u™!p € Si(X).

Proof. From Lemmd[]3, the residual stochastic languages p belong to the same
stable subsemimodules &f((X)) asp. Therefore, they are rational ovAf. 0

3.3 Characterization of S72*(X') in terms of stable subsemimodules

We show in this section that a serigever K is a rational stochastic language if and
only if there exists a finite subsétin S(X') which generates a stable subsemimodule
of K ((X)) and such thap € convk(S).

The< if part > is easy to prove.
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Proposition 12. Letp € K ((X)). Suppose that there exists a finite sulfsét S(X)
which generates a stable subsemimodulé<dfx’)) and such thap € convk(S5).
Thenp € S}#4(X).

Proof. Let{p1,...,p,} be afinite subset a$(X") which generates a stable subsemi-
module of K((X)) and letp = >, a;p; wherea; > 0 fori = 1,...,n and
>, a; = 1. From Theorenj]2p is a rational series ovek” andp is a stochastic lan-
guage sincg(w) = > | a;p;(w) > 0forany wordw andp(X*) = Y"1 | a;pi(X*) =
1. O

The converse proposition is easy to prove wiiénr= Q or K = R. It is slightly
more complicated wheH is not a field.

Proposition 13. Letp € S (X). Then there exists a finite subsein S(X) which
generates a stable subsemimoduld<dfY’)) and such thap € convg(S).

Proof. Letp € Si#4(X).

WhenK = Q or K = R, K is a commutative fieldK ((X)) is a vector space
and subsemimodules &f (X)) are vector subspaces Bf((X)). From Lemmd]3, the
subspaces generated fyp|u € X*} and{u"'p|u € X*} coincide. From Theorefj 2,
{u=lplu € X*} generates a stable finite vector subsp&cef K ((X)). Let S be
a finite subset ofu~!plu € res(p)} which containsp and generate®. Clearly,

S C S(X) andp € convg(S).

Let K = Q* or K = R*. From Theoren{]2, leR = {r,...,r,} be a fi-
nite subset of'((X’)) which generates a stable subsemimodulecontainingp. We
may suppose that ¢ R asR and R \ {0} generate the same subsemimodule. Let
S ={r € R|Y ,cx-r(w) < oo}. First, let us show that also generates a stable
subsemimodule containing Let7 = R\ S. Lets € S and letu € X*. As M
is stable, we can writés = Y _p o'r, where the coefficients;' belong toK. As
5 €8, yex-us(w) < oo. Therefore; € T = o) = 0 andS generates a stable
subsemimodule. In a similar way, we can wiite= » . 3.7 and ag is a stochastic
languager € T' = «a,, = 0 andp belongs to the semimodule generatedShy

Now, let 5" = {(3°,cx- s(w))_1 - s|s € S}. Clearly, each element &’ is a
stochastic language and an elemenkdf %)) ( by using Lemm#]2 wheik = Q™).

S’ generates the same stable semimodulg.a#fe can writep = >~ ¢ 0,5, where
the coefficients,; belong toK. As p and each element ¢f is a stochastic language,
we have)_ o 3s = 1 and hencep € convg (S5’). 0

Putting together the previous propositions, we obtain déiewing theorem:

Theorem 4. Let K € {R,Q,R",Q*}. A seriesp over K is a rational stochastic
language if and only if there exists a finite subSeh S(X') which generates a stable
subsemimodule df ((X')) and such thap € convg(S).

Proof. Apply Proposition§ 72 and [L3. 0
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3.4 Subclasses of rational languages defined in terms of pregies of their set
of residual languages

Let p be a rational stochastic language ovér The setRes(p) composed of the
stochastic residual languagesofs includedin a stable finitely generated subsemi-
module of K ((X)) but it may happen that the residual subsemimodiitles(p)] of p

is notfinitely generated. See Example 1 for instance. In the opmasistochastic lan-
guage whose residual subsemimodule is finitely generatedi@mal. Therefore, two
subclasses o}/ (X) can be naturally defined:

— the setS‘{f”ge"(E) composed of rational stochastic languages @vaevhose resid-
ual subsemimodule is finitely generated,;

— the setS‘}?”(E) composed of rational stochastic languages @/such thatRes(p)
is finite.

Stochastic languages with finitely many residual languagesEvery stochastic lan-
guages with finitely many residual languages can be desthieusing positive pa-
rameters only. In consequence, we obtain a Fatou-like pyopsvery stochastic lan-
guage with finitely many residual languages and which taksesiues inQ is rational
overQ™. Of course, for anyx, there exist rational stochastic languages dvervhose
residual subsemimodule is finitely generated and which haténitely many residual
languages.

Proposition 14. 1. Sﬂém(Z) = S[{Rfi"(Z)
2. 85M(®) = SME) = S{™M(Z) nQt (D).
3. ForanyK € {R,Q,R*,Qt}, S{"(¥) ¢ S (x).

Proof. 1. Itis sufficient to show thas/™ () C SHQT(Z) in order to prove the first
equality. Letp € S{™(%) and letRes(p) = {u7'p,...,u;'p} be the set of
residual languages o@f For anyu € X* and anyi € {1,...,n}, there existg €
{1,...,n} such thatiu; 'p = u;lp(uZ*)ujflp. Sinceu; 'p(uX*) > 0, Res(p)
generates a stable subsemimodul®of((Y)). Sincep € Res(p), p € S]{Rfi"(z)
from Theoren{}.

2. The proof of the first equality goes in a similar way, witk tomplementary argu-
ment thatu; 'p(uX*) € Q from Lemma[B.

Now, letp € S{™(3) N Q*((¥)). From Prop[8p Sg(X). Thereforep €
SLM(Z).
3. Consider the probabilistic automaton defined on fig. 8efines a stochastic lan-

guagep overQ™. Let us show thap SéTge"(E) \SéT(Z) .
First, let us show by induction amthat for any integen, there existv,,, 5, € Q™

such thata™p = a,,p + Brap. This is true whem = 0: takeay = 1 and5y = 0.
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Fig. 5. The automatomi generates a stochastic language @erwhose residual sub-
semimodule is finitely generated but which has infinitely ynegsidual languages.

Suppose that the relation holds for the integeFor any wordu, we have:

@ Fp(u) = ap(au)
= app(au) + Brap(aw) by induction hypothesis
ap

1 1 i
= — ap(u) + Bn <§P(u) + 561]9(“)) by remarking thap = py,

andap = pg, .

So we can takev, 11 = 3,/2 andf,+1 = (o, + 3,)/2 which belong toQ ™
from induction hypothesis. Therefore the mod{iees(p)] is finitely generated
from Lemma[B:p € /79" () and thereforep € Sf""(¥) for any K €
{R,Q,R*,Q"}.
Lety, = (a™)~!p(e). We have

B Oznp(E) + ﬁndp(e) Qp

n = —

(07} +ﬂn B 2(04” +ﬁn)

Check thaty,, satisfies the following induction relation:

The sequencéy,, ) converges to the irrational numbg — /5)/4 and therefore,
v = (a™)"!p(e) takes an infinite number of values, which implies tpatas
infinitely many residual languages. O

Stochastic languages whose residual subsemimodule is fadit generated . When
K is a field, every rational stochastic language is finitelyagated. This property
is no longer true whed € {R™,Q"}. In consequence, some stochastic languages
whose residual subsemimodule is finitely generated carengeberated by using only
positive parameters.

We prove also a Fatou-like property: every stochastic lagguoverR™ whose
residual subsemimodule is finitely generated and whichstakevalues i) is rational
overQ*. But we first need the following technical lemmas.
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Lemma4. Letk,n € Nand Ietai,ﬁg € Qfor1 <i<nandl <j < k. Consider
the variablesr, . .., z; and the systeriS) composed of the following inequations

k
Ocz‘—i-zwjﬂg >0

j=1

fori=1,...,n.If (S) has a solution, then it has also a solution which satisfies

k
o +Z$J‘ﬂg € QJF

j=1
fori=1,...,n.
Proof. By induction onn.

— Letn =1.Letuq, ..., ux be such t‘harbq—kzg?:l ,ujﬁ{ >0.If ozﬁ—zg?:l ,ujﬁ{ =
0, we are done.‘ Ity + Zle w3 > 0, there existgs, ..., pu) € Q such that
a + Zle ;61 > 0 sinceQ is dense inR and sincea; + Z?le]ﬂ{ is a
continuous expression of the. ‘
— Letn > 1and Ietu_l, ..., ug be such tham+z;?:1 w3 > 0foranyl <i<mn.
If o; + Zle w3} > 0 for any integeri, then there existg/, ..., u), € Q such
that o; + 2?21 u;ﬂg > 0 for any i, by using the same argument as previously.
Otherwise, there exists at least an integeuch thaty; + 2?21 B = 0.
e If each/ = 0, thenq; is also null and this equation can be ruled out from the
system without modifying its solutions. In this case, thauiction hypothesis

can be directly applied.
o If there existsj such thats! # 0, thenyp; can be expressed as a function of

the othery;: pij = —(ai + 32,4, mﬁﬁ)/ﬁf, x; can be replaced with-(o; +
x5 ﬂ? in all the other inequations and the induction hypothesis ca
l#j [ )

be applied.
0

Lemmabs. Letrg,ry,...,m, € Q((X)) and letay, ..., a, € Q, B1,...,3, € RT be

such that
n n
ro= Y airi =Y B
i=1 i=1

Then, there existsy, ... ,v, € Q" such that

n
ro = E Vil
i=1

Proof. The set of parametefg 1, ..., \,) € R™"[ > |, \ir; = 0} is a vector sub-
space ofR". Since the seriesy, ..., r, take their values i, there existk vectors
(. th), ., (.. tF) € Q, with k < n, such that for any)\y, ..., \,) € R™,

k

n
Z)\ﬂ“i =0 iff g, pup E RSN = Z,ujtg foranyz‘ =1,...,n.
i=1 j=1
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Hence, for any\q, ..., \,) € R",

k

n
rg = Z)\ZTZ iff Jpr, .o pp € RSN =y —{—Z,u]tz forany:=1,...,n.
i—1 j=1

In particular, there existy, ... , 4 such thatd; = o; + S25_ p;t] > 0 foranyi =
1,...,n. '
Consider the system composed of thénequationsa; + Z?Zl z;t] > 0 for
i = 1,...,n. It has a solution and from the previous Lemma, it has also @ieal
(41, - .-, ) Which satisfiesy, + Y5 pjt! € Q* fori=1,... n. O

Proposition 15. 1. Whenk € {R, Q}, S1™°"(x)) = Stat(x),
2. Whenk e {R*,Q*}, SIM" (%) ¢ Spet(5).
3. SHI(%) = S{TN(E) nQT((X)).

Proof. 1. WhenK € {R,Q}, K is a commutative field. As a consequence, any vec-
tor subspace of a finitely generated vector subspaé&(¢t’)) is finitely generated
itself. Therefore, for any € S;#'(X), the residual subsemimodule pfs finitely
generated.

2. Examplg]L describes a rational stochastic language whsgkial subsemimodule
is not finitely generated.

3. Letp € SIM(2) N QF((D)). Let S = {r1,...,7} C Res(p) be a finite
subset which generates the same subsemimoduleea@) in R ((X)). From
Prop.[8,p € Si*(¥) and from Prop[ 11, each € Si*(X). S also generates
the same subsemimodule Bss(p) in Q((X)). From LemmdJp, for any word
and any index, there exists), ..., " € Q" such thatir; = 77, 77“r;.
Therefore,S generates a stable subsemimodul®df(X)). Also from Lemmdp,
there existsyy, ..., v, € Q" suchthap = Y7 | v;r;. Thereforep € conuvg+ ()
andp € SéTge"(E).

O

Remark thaﬁéﬁwe"(z) C SEMI(2)NQF((2)) sinceSTTI () ¢ SpH(X) =
SEHZ) NQT((E) = S (2) N QD))
Finaly, we show that whelk is positive, finitely generated stochastic languages

over K have a unique normal representation in terms of stable safibsodules gen-
erated by residual languages which is minimal with respeaidlusion.

Proposition 16. Let K = Q* or K = RT and letp € SJ9“"(¥). Then, there
exists a unique finite subs&t C Res(p) which generates a stable subsemimodule of
K ((X)), such thap € convk (R) and which is minimal for inclusion.

Proof. Let K = Q" or K = R* and letp € S{™“"(¥). LetR = {r1,..., 7}
andS = {s1,...,sn} be two minimal subsets aRes(p) generating[Res(p)]. Let
ri, € R. We are to prove thaty € S.

There existy; ,...,a}, € K such that;, = > 7", af s;.

There exis'rﬂf € K foranyl < i,5 < n such thats; = Z?:1 ﬁgrj for any
1< <m.
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Therefore,

m n ) n m )
Tig = Zaﬁo Zﬁfrj = Z <Za§0 f) rj.
i=1 j=1 j=1 \i=1
If >, a;ﬁo 0 < 1, then we could expresg, as a convex combination of the
otherr; and R would not be minimal for inclusion. Thereforg," | o 3;° = 1.
Since) ", oi = 1 and each?’ e [0,1], for any indexi such thata}  # 0,
we must haveﬁfo = 1. Therefore, for any index such thatoz;O =% 0, we must have
s; = 14, As such an index must exist,, € S.

Since no condition has been putap, thenR C S and finally,R = S. O
R ((2))
ot (=)
S(2)
SEH(E) = ST (2) S5*H(E) = SEHH(E) N QT (D) = §{T(D)
S
SHE(®)
sfineen(2) spireen () = s[m (2 nat (o)
s{ (D) = sl s§m ) = sl = s{M (=) nag=)

Fig. 6. Inclusion relations between classes of classes of rat&toahastic languages,
including 39" (¥) andS1" ().

4 Multiplicity automata and rational stochastic languages

In the previous Sections, we have defined several classettiohal stochastic lan-
guages oveK € {R,Q,R™, Q™" }. Inthis section, we study the representation of these
classes by means of multiplicity automata: given a subafasgrational stochastic
languages ovekK, is there a subset df -multiplicity automata both simple to identify
and sufficient to generate the elementg®@fThe first result we prove is negative: it is
undecidable whether a given multiplicity automaton a@egenerates a stochastic lan-
guage. Maoreover, there exist no recursively enumerablgetdd multiplicity automata
over@Q sufficient to generatS@“t(Z). This result implies that no classes of multiplic-
ity automata can efficiently represent the class of ratiet@athastic languages over
Q or R. In the other hand, we show that the classioiprobabilistic automatarep-
resentsS;# (X)) whenK € {R*,Q"}. Clearly, it can be decided efficiently whether
a given multiplicity automaton is a probabilistic automat®e show also that the
class of K-probabilistic residual automataepresents the class/"¢“"(¥) for any
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K € {R,R",Q,Q"}. We do not know whether the classmbbabilistic residual au-
tomatais decidable. However, we show that it contains a subclasshws decidable
and sufficient to generat/"?*" (). Nevertheless, we show that deciding whether a
given MA is in this subclass is a PSPACE-complete. Finallg, ¢class oprobabilistic
deterministic automataverR* (resp.Q™), which is clearly decidable, represents the
classS1™(X) whenK € {R,R"} (resp.K € {Q,Q*}).

To our knowledge, the decidability of the following problsiis still open:

— decide whether a given multiplicity automaton is equivatena probabilistic au-
tomaton, or a probabilistic residual automaton or a prdissici deterministic au-
tomaton;

— decide whether a given probabilistic automaton is equitale a probabilistic
residual automaton or a probabilistic deterministic awton;

— decide whether a given probabilistic residual automataggisvalent to a proba-
bilistic deterministic automaton.

4.1 The class of MA which generate stochastic languages isdecidable
A MA A generates a stochastic languageif and only if

- Yw € X* pa(w) > 0and,
- Zwez* pa(w) = 1.

We first show that the second condition can be checked withlynpmial time.
We need the following result:

Lemma 6. [Gan66[BTOD] LetM be a square matrix with coefficients @. It is de-
cidable within polynomial time whethd@r* converges to 0 whehtends to infinity.

Proof. (Sketch) First,\/* converges to 0 wheh tends to infinity if and only if the
spectral radiug (M) of M, i.e. the maximum of the magnitudes of its eigenvalues,
satisfiesp(M) < 1.

Then, M satisfiesp(M) < 1 iff the Lyapunov equation

MPM! =P

has a positive-definite solution. In that case the soluamique. Since the Lyapunov
equation is linear in the unknown entries Bf we can compute a a solutiaf in
polynomial time, or decide it does not exist. To check tRas positive definite, it is
sufficient to compute the determinants of the principal msrad P and check that they
are all positive. O

Proposition 17. Let A be an MA oven). It is decidable within polynomial time whether
the sumd_, P4(X*) converges. If the suR, (X*) = >, Pa(X*) converges, it can
be computed within polynomial time.

Proof. Let A = (¥, Q, p,t,7) where@ = {q1,...,q,} and letM be the square ma-
trix defined byM[i, j] = [ (¢, 2, 4))],<; j<,,- We havePa(2*) = caM" 74 where

ta = (t(q1), .-, t(qn)) andra = (7(q1), ..., 7(qn))t.
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Let E be the subspace &" spanned by{M*74|k € N} and letF be a comple-
mentary subspace @ in R". Let H = {u € E|Vk € N, 14M*u = 0}. Clearly, E
and H are stable undeb/. Let G be a complementary subspacerfin E. For any
u € R™, there exists a unique decomposition of the farrs up + ug + vy where
up € F,ug € Ganduy € H. Letpg, pg andpg be the projections of’, G and H
defined bypr(u) = ur, pg(u) = ug andpg(u) = uy. Let Pr, Py and Pg be the
corresponding matrices.

First note that for any integée > 1 and anyu € E, we haveP;M*Pou =
(PgM Pg)*u. This is clear wherk = 1. We have

P M* 1 Pou = P M* (M Pgu)
= PgM"*[Py M Pgu 4+ PgM Pgu) sinceM Pgu € E
= PoM* P5[Pg M Pgu) sinceYv € H, Mv € H andPg(v) =0
= (PgM Pg)**+1u from induction hypothesis

Note also that for any integérand anyu € E,

iaMFy = LAMk(PGu + Pyu) sinceu € E
= A M* Peu sinceYv € H, Mv € H anduqv = 0
= 14(PgM*Pgu + Py M"* Pgu) sinceM*Pgu € E
= 14 PaM*Pou sinceVo € H,1yv =0
= 14(PgMPg)*u.

We show now thad", . taM*74 is convergent iffimy, .o (P M Pe)* = 0.

— Suppose thatimy,_,.(PoMPg)* = 0. ThenId — P;MPg is inversible and
> ren(PaMPg)F converges toId — PoMPg)~'. Therefore,Y", . taM¥ 74
converges to4(Id — PoM Pg) 7a.

— Suppose now that’, - 1aMP¥74 is convergent.

There exists\ > 0 such that for all: € G, there exists: € N such that. s M™u| >
Allu||. Otherwise, there would exist a sequeng®f elements of+ such that for all
integern, [taM"™ (ug)| < ||ugl||/k. Letvy = uy/[|ug|| and letv, ;) a subsequence
which converges to. Check that we should haVe|| = 1,v € GandiaM™v =0
for any integem, which is impossible since # 0.

Let \ satisfying this property. For any integersandk, there exists, such that

|LaM™ (PaM"Pe)(M™74)| = N|(PaM*Pa)(M™74)|| = All(Pe M Pg)*(M™74)]].

We have also

LAM™ (P M* Pg)(M™714) = 14(PaM Pg)™ (PgM* Pg)(M™14)
= 14 (P M Pg)™*(M™7y)
= LA M™FE (M)

= LAMnk+k+mTA.
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If we suppose thaty M*74 — 0whenk — oo, we must have( Po M* Pg)(M™74)|| —
0 whenk — oo for any integetn. As { M™7,} generates, P M" P converges
to 0.

To sum up,>", Pa(X*) is bounded iff(PeM Pg)* converges to 0, which is a
polynomially decidable problem (Lemnjj 6).

When the sun)_, Pa(X*) converges, itis equal toy(1d— Pg M Pg)~ 4 which
can be computed within polynomial time. O

Example 2.Consider the MAA” described on Fid] 3. We have

3
Lprn = (170)7TA” - (1/47 1/4)t andM = (8 2)

4

We haveM 74 = 3/474» and thereforeF is the vector space spannedhy:. Let F
be the complementary spaceBfspanned by the vectdi, —1)!; we have

1/11 15 -3
H—{O},G—E,Pg—§<11>,andl—PgMpg—§<_3 5)

Check that the inverse af— Py M Pg is equal to

1(53
2\35
and that o (Id — PoMPg) ‘74 = 1.

We prove now that it is undecidable whether a multipliciteo® generates a
stochastic language. In order to prove this result, we ussdaction to a decision
problem abougacceptor PAs

An MA (X, Q,,.,T) is anacceptor PAf

— ¢, v andr are non negative functions,
- ZQEQ L(q) = 11
- VYgeQ,Vx e X, ZTEQ o(q,z,r) =1
— there exists a unique terminal statendr(¢) = 1.
Blondel and Canterini have shown that given an acceptoAR&erQ andX € Q,
it is undecidable whether there exists a warduch thatP4 (w) < X ([BC03]).

Theorem 5. Itis undecidable whether an MA ov@rgenerates a stochastic language.

Proof. For any rational series over X, let us denote by the rational series defined

» (w)
riw
T = .
U,;* (1Z] + Dl
Let A = (¥,Q,p,t,7) be an acceptor PA ovep and let\ € Q. Let B =
(3.Q,¢8,t,75) be the MA defined bypp(q,z,¢) = »(q,z,¢)/(|¥| + 1) and
78(q) = 7(q)/(|X] + 1) for any stateg, ¢’ € @ and anyz € ¥. Remark thatB is
semi PA and thatg = 74.
The sums = 3" .. 7g(w) is bounded by 1 from Projf] 2 and can be computed
within polynomial time by using the Prop.]17. Let be the series defined lay (w) =
A for any wordw € X*.

27



— If s < A, then there must exists a word w such tRatw) < A since

A
_— = A.
w|+1
2 I e

— If s = A, the rational series+r4 — ¢, is a stochastic language iffy (w) > X for
any wordw.

— If s > ), the rational serieg,}—A T4 — ¢y IS a stochastic language iffy (w) > A
for any wordw.

Since in the two last cases, a multiplicity automaton whiehagates +r 4 — ¢, (resp.
SEA -r4 — cy) can easily be derived from, an algorithm able to decide whether an
MA generates a stochastic language could be used to solgetiigion problem on

PA acceptors. |

A reduction to the following undecidable problem could hal& been used: it is
undecidable whether a rational series d¥i¢akes a negative valug [S$78].

The set of multiplicity automata ové€) which generate stochastic languages is not
only not recursive: it contains no recursively enumerabteable to generatg* ().

Theorem 6. No recursively enumerable set of multiplicity automataro@eexactly
generatesSg* ().

Proof. From Prop[]7, the setl composed of the multiplicity automatd over Q
which satisfyP4(X*) = 1 is recursively enumerable.
The subseB composed of the elements dfwhich satisfy

Jw e X*Py(w) <0

is recursively enumerable.

Suppose that there exists a recursive enumerdtign. ., R, ... of multiplicity
automata ovef) sufficient to generatg(g”(x) and letwy, . .., wy,, ... be an enumer-
ation of X*.

Consider the following algorithm:

Input: a multiplicity automaton A over Q
If pa(X*)=1 then
For +>0 do
If pa(w;)) <0 then output NO, exit; Endlf
If Ais equivalent to R; then output YES;, exit; Endlf
EndFor
El se
out put NGO, exit
Endl f

Since the equality .. Pa(w) = 1 and the equivalence of two multiplicity
automata can be decided, this algorithm would end on anyt impdi decide whether
A generates a stochastic language. Therefore, the enuomeRati. . . , R,,, ... cannot
exist. O
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4.2 Probabilistic automata

So,S@“t(E) andSE™ (X)) cannot be identified by any efficient subclass of multipficit
automata. In the other hanﬁé‘f(i‘) andS;% (%) can be described by probabilistic
automata which form an easily identifiable subclass of mlidity automata.

Proposition 18. Let K € {R*,Q*} and letp € K{((X)). Then,p is a stochastic
language ovelX iff there exists a-probabilistic automatom such thatp = r 4.

Proof. The only thing to prove is that jf € S7(X) then there exists & -probabilistic
automatonA such thap = r 4.

From Theorenfl4, there exist a finite subSesf S;2(X) which generates a stable
subsemimodule of{ ((X)) and such thap € convgi(S). Suppose thas is minimal
for inclusion. For anys,s’ € S and anyz € X, let o, anda?, € K such that
P=> esssandis =3, gaf s ’

Let A= (X, S, p,.,7) be the MA defined by:

—u(s) = ag,
- 7(s) = s(e),

- p(s,x,8') =af

for anys,s’ € S and anyz € Y. From Claims 1 and 2y = r 4.

SinceS C S;¢4(X), every state ofd is co-accessible and sinSds minimal, every
state ofA is accessible. Thereford, is trimmed.

Note that) 5 g t(s) = D> cqas = 1 since elements ofp} U S are stochastic
languages. For anye S,

7(s) + Z o(s,2,8") = s(e) + Z Qg o

s'eS,xeX s'eS,xeX

=s(e) + Z zs(X*)

reX

=s(e) + Z s(xX™)
el
=1

Then,A is a PA. O

4.3 Probabilistic residual automata

ForanyK e {R*,Q"}, the classS;"9“"(¥’) can be described by probabilistic resid-
ual automata.

Proposition 19. Let K € {R*,Q*} and letp € K{((X)). Then,p is a stochastic
language ovet whose residual subsemimodule is finitely generated ifetbgists a
K -probabilistic residual automator such thatp = r 4.

Proof. — Letp € SL™"(%) and letw,,...,w, € res(p) be such thats =
{w'p,...,w;'p} generategRes(p)]. Let A be the MA associated witl§ as
in the proof of Prop[ 18. Check thatis a PRA which generates
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— Let A (X, Q,¢,:,7) be a PRA which generatesand for anyg € Q, letw, € X*
be such that 4, = wq_lp. From Claim 3,{wq_1p|q € @} generates a stable
subsemimodulé/ which containg. Check thafRes(p)] = M.

0

Remark that from Prod. IL6, there exists a unique minimal etuBsof Res(p)
which generatefRes(p)]. A PRA based on this set has a minimal number of states.
We do not know whether the class of PRA is decidable. Howavershow that
the class oRRt-reduced PRAs decidable. Since areduced PRA is a PRA, any PRA s
equivalent to a reduced PRA and therefore, this class isiffito generats;, 9" (X).
Let A be a PA and letX,Q,0,Qr,Qr) be the support ofd. If for any state
q € @, there exists a worav, such thaty(Q;,w,) = {¢}, thenA is a PRA since
w,'ra =14, The converse is true whehis reduced.

Proposition 20. Let A be aR"-reduced PA and letY, Q, §, Q;, Qr) be the support
of A. Then,A is a PRA if and only if for any state¢ € @, there exists a wora such

thatd(Qr, w) = {q}.

Proof. Suppose thatl is a PRA. Lety € (Q andw be a word such thabq—er =TAq
Let Qu = §(Qr,w). There exist(a,)ycq, such thatw™'ra = Y co. agragy.
Sinceq € Quy (1 — )Taq = D yequ.q4q Ca'TAq- SinCEA is R*-reduced, we
must havey, = 1 and thereforeq),, = {q}. 0

Corollary 1. It can be decided whether"-reduced MA is a PRA.

Proof. It can easily be decided whether an MA is a PA. Then, the poetetanstruc-
tion can be used to check whether any state can be uniquelgaeédy some word.
O

From Prop/[]6, it can efficiently be decided whether an MARis-reduced PA.
But unfortunately, nefficientdecision procedure exist to decide whether it ifRan
reduced PRA: the decision problem is PSPACE-complete.

Proposition 21. Deciding whether & "-reduced PA is a PRA is PSPACE-complete.

Proof. We prove the proposition by reduction of the following PSEBAGmMplete
problem: givenn DFA A', ..., A" over ¥, let L; be the language recognized By
for 1 < i < n, deciding whethev}_, L; = X* is PSPACE-complete.

Let A" = (¥, Q% {q}}, Q%, &) for 1 < i < nwherei # j implies thatQ' N Q7 =
(. We may suppose thdt; # () for 1 < ¢ < n. Consider 3 new stateg, q1, ¢, n + 1
new lettersey, ..., x,, . Let A = (¥4, Qa, Qr, Qr,0) be an NFA defined by:

- ZA:EU{:Ql,...,xn,)\}

- Qa=U1Q" U{q,q1,qr}

- QI = {q()vqér" 7(]101},

- Qr ={aq1,qs}, '

— foranyl <i,j <n,anyq € Q" and anyz € X,
e 0(q,z) =6'(q,2),
e 0(q,xj) = {q}} if i = j and() otherwise,
e (g, \) = {qr} if ¢ € Q% and( otherwise,
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Fig. 7. The union of the languages recognized by the automata different from.X*
if and only if this automaton is the support ofRa -reduced PRA.
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— foranyz € X, 6(qo0, x) = {qo}, 0(q1, ) = D andd(qys, x) = 0,
- 0(q0,N) = {q1}, 0(q1, A) = {qo} andd(gs, \) = U} {qq,-- -, q0 }-

Check that for any € U, Q*U{q}, there exists a wordy, such that (Q;, w) =
{q}. If there exists a wordvg such that (Q 7, wo) = {qo} thend(Qr, woX) = {q1}.

Now, suppose that? ,L; # X* and letu € X*\ U ,L;. Thend(Qr,u) N
U, Q% = 0 and therefored(Qr, u)) = {q1} ands§(Qr, uAX) = {qo}-.

If ur  L; = X* foranyu € X*,6(Qr, u)NU Q% # 0,6(Qr,uX) = {q1,4r}, 0(Qr,uX) =
0 andé(Qr,ur\) = Q. Therefore, there exists no wotd, such thaty(Q;, wy) =
{90}

Thatis,U} ,L; # X* if and only if for anyq € @ 4, there exists a word), € X%
such thav(Qr, wq) = {q}.

Now, associate a new lettgy, to each statg € (4 and consider the MAB =
(Xp,QpB,t,7,0) Where

- X = XU {y4lq € Qa},

- Qp=QaU{q},

—u(q) =1/(n+1)if ¢ € Qr and 0 otherwise,

— 7(q) = 1if ¢ = g, and 0 otherwise,

- 9(¢:7,¢") =1/(X ex0(q,y)| + 1) if ¢.¢ € Qa, v € Yy andq’ € (g, z),
— 0(¢: Y ) = 1/ (X yex 16(g,9)| + 1),

— (¢, z,¢') = 0in all other cases.

Check thatB is a PA.B is R*-reduced since for any € Qa, 7p,4(y,) # 0iff ¢ = ¢
andrp,(e) = 0. B is a PRA if and only if for anyg € @4, there exists a word
wy € X% such that (Qr, wq) = {q}.

Putting all together, we see that an algorithm which decidestherB is a PRA
could be used to decide whethef | L; # X*.

As the problem is clearly PSPACE, it is PSPACE-complete. O

It has been shown ir) [DLTP2] that for any polynomjal), there exists an NFA
A= (¥4,Q,Qr,Qr, ) which satisfies the following properties:

— for any statey of A, there exists a word) € X* such thav (Qr, w) = {q},
— for any stateg of A, all wordsw which satisfyd(Qr,w) = {q} have a length
greater tham(|Q|).

These NFA are support of PRA which inherit of this property.

So, reduced PRA form a decidable family which is sufficiergeaerates’ 9" ()
but the membership problem for this family is not polynomi&le can restrict this fam-
ily to obtain a polynomially decidable family and still sufént to generatsf(i”ge”(z).

Let A = (¥,Q,:,7,¢) be a PRA.A is prefixial if for any ¢ € @, there exists
wy € X* such thatw, 'r4 = ra 4 and such thafw,|q € Q} is prefixial.

It is polynomially decidable whether an MA is a prefixial PRA.

Let A = (X¥,Q,t,7,9) be a PRA, and for any € Q, letw, € X* such that
wytra = ra4. LetW = {wylq € Q} and letl be the smallest prefixial subset of
X* which containgV. Let B = (X, W, 7,7, %) be the MA defined by:

— 1(q) = 1if ¢ = £ and 0 otherwise,
- T(w) = wlra(e),
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It can be shown thaB is a prefixial PRA equivalent td.

4.4 Probabilistic Deterministic Automata

ForanyK € {R,Q,R",Q*}, the cIassS‘{j"(Z) can be described by probabilistic
deterministic automata.

Proposition 22. Let K € {R,Q,R",Q"} and letp € K((X)). Then,p is a stochas-
tic language overkX which has finitely many residual languages iff there exists-a
probabilistic deterministic automaton such thatp = r 4.

Proof. From Prod 14, we can suppose tiatc {R+, Q*} .

— Letp € SI™(¥) and letRes(p) = {wy'p,...,w;'p}. Let A be the MA asso-
ciated withS as in the proof of Prop 18. As there exists {1,...,n} such that
p = w; 'p, we can suppose that, = 1 if s = w; 'p and 0 otherwise. Letw; 'p.
If = & res(s), thend . p(wizw) = 0 and sincek € {R*,Q*}, this implies
thatp(w;zw) = 0 for any wordw. Therefore, in this case, it is possible to choose
af , = 0foranys’ € Res(p). Whenz € res(s), there existsj € {1,...,n}
such thatr~'s = w; 'p. In this case, we can choosé , = 1if s’ = w; 'pand 0
otherwise.
Then, check tha#l is a PDA which generatgs

— Let A = (¥,Q,p,.,7) be a PDA which generatgsand letQ; = {qo}. For any
w € X*, there eixts only one statg € @ such thaty(qo, w, q) # 0. Therefore,
Res(p) C {raqlq € Q} andRes(p) is a finite state.

0

RT((2))
ot (=)
s(2)
SEet(z) = s (x) SEU(E) = SgrH(Z) Nt (D) = S{I ()

Spat(z) = sPA ()

Sp4(2) = 8T ()

spreen () = sEREA) | S () = SETA) = ST () nat ()
sfimzy =slins siimzy) =slin(2) = s (z) noys
:RSEDX(E)M( ) :Q55<D2(2)Q+< ) =S{M(E) naKE)

Fig. 8. Inclusion relations between classes of classes of ratginahastic languages.
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5 Conclusion

In this paper, we have carried out a systematic study ofmratistochastic languages,
which are precisely the objects probabilistic grammatinédrence deal with. This
study, and the results we bring out, whether they are ofiginderived from former
contributions, support our opinion that researches in gratital inference should
be based and rely on formal language theory. Doing this mik@sssible to reuse
powerful tools and general results for inference purpdgeseover, this approach may
help finding out what particular properties are importangi@mmatical inference. For
example, a learning samplevy, . .., w,} independently drawn according to a target
stochastic language provides statistical information on the residual langsagep.

In order to infer an approximation @f by means of a multiplicity automatd, there
should be a structural link between the statesiaind the observed data and hence,
between the states df and the residual languagesofThis explains why most results
in grammatical inference deal with PDA and PRA, i.e. clasgasultiplicity automata
for which there exists a strong connection between thesstaie the residual languages
of the stochastic languages they generate. This also agplény there is no useful
general inference result about PA: the residual subsemitaad a rational stochastic
language oveR* or QT may be not finitely generated and hence, no finite set of
residual languages can be used to represent it. Moreovexd®its no natural normal
form. On the other hand, the residual subsemimodule ofrratistochastic languages
overR or Q are finitely generated and admit a basis made of residualifayes. Even

if there exists no recursively enumerable subset of MA clpabgenerating them,
this study has encouraged us to try to find a way to infer thesst general stochastic
languages. Sef [DEH06] for preliminary results. We are @scently working ortree
rational stochastic language$ollowing a similar approach, in order to deal with tree
probabilistic languages inference. This work is still ingress.
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