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ON A CLASS OF DANIELEWSKI SURFACES IN AFFINE 3-SPACE

ADRIEN DUBOULOZ AND PIERRE-MARIE POLONI

ABSTRACT. L. Makar-Limanov [15] and [16] computed the automorphisms groups of surfaces
in C? defined by the equations "z — P (y) = 0, where n > 1 and P (y) is a nonzero polynomial.
Similar results have been obtained by A. Crachiola [3] for surfaces defined by the equations
z"z —y? — h(x)y = 0, where n > 2 and h (0) # 0, defined over an arbitrary base field. Here
we consider the more general surfaces defined by the equations "z — Q (z,y) = 0, where n > 2
and Q (z,y) is a polynomial with coefficients in an arbitrary base field k. Among these surfaces,
we characterize the ones which are Danielewski surfaces in the sense of [8], and we compute
their automorphism groups. We study closed embeddings of these surfaces in affine 3-space. We
show that in general their automorphisms do not extend to the ambient space. Finally, we give
explicit examples of C*-actions on a surface in A% which can be extended holomorphically but
not algebraically to a C*-action on A%.

INTRODUCTION

Since they appeared in a celebrated counter-example to the Zariski Cancellation Problem due to
W. Danielewski [5], the surfaces defined by the equations zz—y (y — 1) = 0 and 2?2~y (y — 1) = 0
in C? and their natural generalizations, such as surfaces defined by the equations 2"z — P (y) = 0,
where P (y) is a non-constant polynomial, have been studied in many different contexts. During
the last decade, it has been progressively realized that they play a central role in certain problems
of affine algebraic geometry. One of the reasons of this ubiquity comes from the fact that they can
be equipped with nontrivial actions of the additive group C. As a consequence, these surfaces S
admit a so-called quotient Al-fibration pr, : S — Al, that is, a surjective morphism with generic
fiber isomorphic to an affine line. The general fibers of these fibrations coincide with the general
orbits of a Cj-action on S. Normal affine surfaces S equipped with an Al-fibration 7 : S — A!
can be roughly classified into two classes according the following alternative : either 7 : S — Al is
a unique A'-fibration on S up to automorphisms of the base, or there exists a second A!-fibration
7'+ S — A! with general fibers distinct from the ones of =.

Due to the symmetry between the variables z and z, a surface defined by the equation zz —
P (y) = 0 admits two distinct fibrations as above. In contrast, L. Makar-Limanov [16] established
that on a surface Sp,, defined by the equation 2"z — P (y) = 0 in C3, where n > 2 and where
P (y) is a polynomial of degree r > 2, the projection pr, : Sp,, — C is a unique Al-fibration
up to automorphisms of the base. More precisely, using the correspondence between algebraic
C,-actions on S and locally nilpotent derivations of the algebra O (S) of regular functions on
S, L. Makar-Limanov established that general orbits of an arbitrary nontrivial C,-action on S
coincide with the general fibers of the Al-fibration pr, : Sp, — C. Over a field k of positive
characteristic, additive group actions no longer correspond to locally nilpotent derivations but
rather to suitable systems of Hasse-Schmidt derivations. Using this correspondence, A. Crachiola
[3] obtained similar results for surfaces with equations 2"z — y? — r (z) y = 0, where n > 2 and
where r (x) € k[z] is a polynomial such that = (0) # 0.

When an affine surface S admits a unique A'-fibration 7 : § — A!, its study become simpler.
For instance, every automorphism of S must preserve this fibration. In this context, a result
due to J. Bertin [2] asserts that the identity component of the automorphism group of such a
surface is an algebraic pro-group obtained as an increasing union of solvable algebraic subgroups
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of rank < 1. For surfaces defined by the equations 2"z — P (y) = 0 in C? , the picture has been
completed by L. Makar-Limanov [16] who gave explicit generators of their automorphisms groups.
Again, similar results have been obtained by A. Crachiola [3] for surfaces defined by the equations
2"z —y? —r(x)y = 0 defined over an arbitrary base field.

The latter surfaces are particular examples of a general class of Al-fibered surfaces, called
Danielewski surfaces, introduced and studied by the first author in [8]. We recall loc. cit. that a
Danielewski surface over a field k is a normal integral affine surface S equipped with an A'-fibration
7S — A} over an affine line with origin o, such that every fiber 7! (z), where z € A} \ {0},
is geometrically integral, and such that every irreducible component of 7=1 (0) is geometrically
integral. For instance, Crachiola surfaces S defined by the equations 2"z — 3% —r (z) y = 0, where
7 (0) # 0 are Danielewski surfaces 7 = pr, : S — A} whereas a surface Sp,, C A} defined by
the equation z"z — P (y) = 0 is a Danielewski surface 7 = pr, : Sp,, — A} if and only if the
polynomial P splits with » > 1 simple roots in k.

In this article, we obtain similar descriptions for a class of Danielewski surface which contains
the previously mentioned ones, namely the surfaces Sg,, C A} defined by an equation of the form
2"z — Q (z,y) = 0, where n > 2 and where Q (x,y) € k[x,y] is a polynomial such that @ (0,y)
splits with » > 2 simple roots in k.

The paper is organized as follows. In section 1, we recall the main facts on Danielewski surfaces
and their classification by means of weighted rooted trees in a form appropriate to our needs.
We also generalize to an arbitrary base field k& some results which are only stated for fields of
characteristic zero in [7] and [8]. In particular, we establish the following result (Theorem 1.15)
which generalizes Theorem 4.2 in [9].

Theorem. For a Danielewski surface m: S — A} , the following are equivalent :

1) S admits two Al-fibrations with distinct general fibers.

2) There exists an integer h > 1 and a collection of monic polynomials Py, ..., P,—1 € k[t]
with simple roots a; ; € k*,1=0,...,h—1, j=1,...,deg, (P;), such that S is isomorphic to the
surface Sp,....p,_, C Spec(k|[x][y—1,...,Yn—2][2]) defined by the equations

h—1
2z — g2 [ [P (g-1) =0
1=0
h—1 [
2Yi—1 — YiYn—2 H P (yi-1) =0 zy; — yi71HPz (yi—1) =0 0<i<h-—2
I=it1 =0
J
Yi—1Y; — Yi¥j—1 H P (yi-1)=0 0<i<j<h-2.
I=it1

In section 2, we characterize Danielewski surfaces among the surfaces defined by the equations
of the form 2"z — Q (z,y) = 0 in A} in terms of their associated weighted trees. This leads to
introduce a special class of trees I', with the property that they contain a unique element g € T"
such that T'\ {€y} is a nonempty disjoint union of chains. We call them rakes. We obtain the
following characterization (Theorem 2.1).

Theorem. For a normal affine surface S, the following are equivalent :

1) S is isomorphic to a surface Sgp in A3 defined by the equation 2"z — Q (z,y) = 0 for a
suitable polynomial Q (z,y) such that Q (0,y) splits with r > 2 simple roots in k.

2) S is isomorphic to a surface S, C A} defined by the equation "z — [[;_, (y — oy (z)) =0
for a suitable collection of polynomials o = {o; (x)},_, . such that o; (0) # 0 (0) for every i # j.

3) S is isomorphic to a Danielewski surface defined by a fine k-weighted rake of height h with
r > 2 leaves.

In particular, we combine this characterization with a result of M.H. Gizatullin [12] and J. Bertin
[2] (see also [4], [14] or [7])) to deduce that if A > 2 then the natural Al-fibration pr, : S — A}
on a Danielewski surface defined by the equation 2"z — Q (z,y) = 0 is a unique A'-fibration on
Sq,n up to automorphisms of the base. In Lemma, 2.3, we give an algorithm to determine explicitly



the rake corresponding to a given Danielewski surface Sg 5. For instance, the surfaces Sp, defined
by the equations x"z — P (y) = 0 considered by L. Makar-Limanov correspond to fine k-weighted
rakes of the following type

Th—1 Th—1
) ¢ -
L lr- 1
where y1,..., Y0, T1,...,Th_1 € k.

Then we compute the automorphism groups of Danielewski surfaces Sg ;. In particular, we
arrive at the following description (Theorem 2.5) which contains the ones previously obtained by
L. Makar-Limanov and A. Crachiola in their particular cases.

Theorem. The automorphism group of a Danielewski surface S, with equation
zhz—H(yfoi(:c)) =0
i=1

is generated by the restrictions of the following automorphisms of A :

(a) Ay (z,y,2) = (z,y +2"b(2), 2+ 27" (Q (z,y + 2"b(2)) — Q (z,y))), where b(z) € k[z].

(b) If there exists a polynomial T () such that Q (z,y + 7 (x)) = Q (y) then the automorphisms
H, (z,y,2) = (am,y + 7 (ax) — 7 (2), a‘hz), where a € k*, should be added.

(c) If there exists a polynomial T (z) such that Q (z,y + 7 (z)) = Q (z%,y), then the automor-
phisms H, (z,y, 2) = (az,y + 7 (ax) — 7 (x) ,a*hz), where a € k* and a? =1, should be added.

(d) If there exists a polynomial 7 (x) such that Q (z,y + 7 (z)) = y'Q (x,y*), where i = 0,1
and s > 2, then the automorphisms S, (x,y,z) = (:I:,uy +(1—p)7(2) ,/ﬂz), where u € k* and
w® =1, should be added.

(e) If char (k) = 5> 0 and Q (z,y) = Q (ys —c(x)*! y) for a certain polynomial c (z) € k [z]
such that ¢ (0) # 0, then the automorphism T (z,y,z) = (z,y + c¢(x),2) should be added.
(f) If h =1 then the involution I (x,y,z) = (z,y,x) should be added.

In section 3, we study embeddings of Danielewski surfaces in A} as surfaces Sg j, up to algebraic
and holomorphic equivalence. This question is motivated by an example due to G. Freudenburg
and L. Moser-Jauslin [11] of two closed embeddings i and i’ in A} of the Danielewski surface
defined by the equation 22z —y? — 1 = 0 for which there does not exist an algebraic automorphism
® of A2 such that i’ = ®oi. We combine our classification results with general methods introduced
by the second author and L. Moser-Jauslin in [17] to construct new examples of this phenomenon.
For instance, we establish that for every h > 2 and every polynomial P (y) with r = deg (P) > 2
simple roots in k, the surfaces defined by the equations 2"z — P (y) = 0 and 2"z — (1 — 2) P (y) =0
are algebraically inequivalent embeddings in A} of a same Danielewski surface S. However, for
complex surfaces, we prove the following result (Theorem 3.9), which generalizes Theorem 2.2 in
[17].

Theorem. The closed embeddings i : S — A} of a Danielewski surface S as a surface Sg
defined by the equation z"z — Q (z,y) = 0 are all holomorphically equivalent.

Our description of the automorphism groups of Danielewski surfaces defined by the equations



zhz — [[;_, (y — 0; (z)) = 0 implies that every automorphism of such a surface arises as the

restriction of an automorphism of the ambient space. More generally, we establish in Proposition
2.11, that every additive group action on a Danielewski surface Sg ) arise as the restriction of
such an action on the ambient space Ai. In contrast, for multiplicative group actions, we have
the following result. (Theorem 3.12 and Corollary 3.16).

Theorem. Every Danielewski surface S C A} with equation 2"z — (1 — x) P (y) = 0, where h > 2
and where P (y) has r > 2 simple roots, admits a nontrivial C*-action which is algebraically
non-extendable but holomorphically extendable to A}.

In particular, the endomorphism J (z,y,2) = (—2,y, (1 + z) (1 + ) 2 + P (y))) of A} defines
an involution of the surface S defined by the equation 2%z — (1 — z) P (y) = 0 which does not
extend to an algebraic automorphism of A3.

1. DANIELEWSKI SURFACES

For certain authors (see e.g. [11]), a Danielewski surface is an affine surface S which is al-
gebraically isomorphic to a surface in C® defined by an equation of the form 2"z — P (y) = 0,
where n > 1 and P (y) € C[y]. These surfaces have been studied in many different contexts over
the past 15 years. Of particular interest is the fact that they come equipped with a surjective
morphism 7 = pr, |s: S — Al restricting to a trivial Al-bundle over the complement of the origin.
Moreover, if the roots y1, ..., y, € C of P(y) are simple, then 7 = pr, |s: S — Al factors through
a locally trivial fiber bundle over the affine line with an r -fold origin (see e.g. [5] and [10]). In [8],
the first author used the term Danielewski surface to refer to an affine surface S equipped with a
morphism 7 : § — A! which factors through a locally trivial fiber bundle in a similar way as above.
In what follows, we keep this point of view, which leads to a natural geometric generalization of
the surfaces constructed by W. Danielewski [5]. We recall that an Al-fibration over an integral
scheme is a faithfully flat (i.e flat and surjective) affine morphism 7 : X — Y with generic fiber
isomorphic to the affine line A}((Y) over the function field K (Y) of Y. The following definition is
a generalization to arbitrary base fields & of the one introduced in [8].

Definition 1.1. A Danielewski surface is an integral affine surface S defined over a field k,
equipped with an Al-fibration 7 : S — A} restricting to a trivial Al-bundle over the complement
of the origin o of A} and such that the fiber 7! (0) is reduced, consisting of a disjoint union of
affine lines A} over k.

1.2. For instance, a surface S C A} defined by the equation 2"z — Q (z,y) = 0 is a Danielewski
surface m = pr, : S — A} if and only if the polynomial P (y) = Q (0,y) splits with simples roots
in k. In the following subsections, we recall the main facts about the correspondence between
Danielewski surfaces and weighted rooted trees established by the first author in [8] in a form
appropriate to our needs. Although the results given in loc. cit. are formulated for surfaces
defined over a field of characteristic zero, most of them remain valid without any changes over a
field of arbitrary characteristic. We provide full proofs only when additional arguments are needed.
Then we consider the class of Danielewski surfaces S with trivial canonical sheaf wg/, = AQQ}S e
which we call special Danielewski surfaces. We give a complete classification of these surfaces in
terms of their associated weighted trees.

1.1. Danielewski surfaces, weighted trees and A'-fibrations.
The first author constructed in [8] a correspondence between Danielewski surfaces and certain
weighted trees. Hereafter we review the main steps of this construction.

Basic facts on weighted rooted trees.

Definition 1.3. A ¢ree is a nonempty finite partially ordered set I' = (T, <) with a unique minimal
element eq called the root, and such that for every e € T the subset (] e)p, ={e’ €', ¢’ <e}isa
chain for the induced ordering.



1.4. A minimal sub-chain ¢'e = {€/ < e} with two elements of a tree I' is called an edge of I'. We
denote the set of all edges in I" by E(I'). An element e € I" such that Card (] ) = m is said
to be at level m. The maximal elements e; = €; ,,,, where m; = Card (] ;) of I' are called the
leaves of T'. We denote the set of those elements by L (I'). The maximal chains of I" are the chains

(1].) Fei,mi = (l eiﬁmi)r = {6@0 =ep <€ << ei,mi}; €i.m; cL (F) .

We say that T" has height h = max (m;). The children of an element e € T" are the elements of T’
at relative level 1 with respect to e, i.e. the maximal elements of the subset {e’ € T, ¢/ > e} of T.

Definition 1.5. A fine k-weighted tree v = (T',w) is a tree I' equipped with a weight function
«— —
w : E(T') — k with values in a field k, which assigns an element w (e’ e) of k to every edge €’e

— —
of T, in such a way that w (e’el) #w (e’eg) whenever e; and ey are distinct children of a same

element ¢’.
In what follows, we frequently consider the following classes of trees.

Definition 1.6. A tree I' rooted in eq is called a rake if there exists a unique element ey € I' such
that T'\ {&o} is a nonempty disjoint union of chains.

€o €0
O @ @ ®

FIGURE 1.1. A rake I' rooted in eq.

Definition 1.7. A comb is a rooted tree I' such that T'\ L (T") is a chain. Equivalently, T is a
comb if every e € I'\ L (T") has at most one child which is not a leaf of T.

FIGURE 1.2. A comb I rooted in eg.

Danielewski surfaces and weighted trees.
Here we recall the correspondence between Danielewski surfaces and fine k-weighted trees estab-
lished by the first author in [§].

1.8. To every tree v = (I, w), one can associate a Danielewski surface 7 : S (y) — A}, which arises
as the total space of an A'-bundle over the scheme § : X (r) — A} obtained from A}, by replacing
its origin o by r > 1 origins o1,...,0,. In what follows we denote by U, = (X; (r)),_, . the
canonical open covering of X (r) by means of the subsets X; (r) = 6! (A} \ {o}) U {o;} ~ A}.
Given a fine k-weighted tree v = (T', w) of height h, with leaves e; at levels n; <h,i=1,...,r, we
associate to every maximal sub-chain v; = (| e;) of v (see 1.4 for the notation) a polynomial

n;—1
o (x) = Z w(e; e 41)a €klx], i=1,...,7
§=0

We let p : S(y) — X (r) be the unique A'-bundle over X (r) which is trivial on the canonical
open covering U,., and is defined by pairs of transition functions

(fij»9i5) = (:E"f_"i,x_”i (oj () — 0y (x))) ck [m,x_lf, ,j=1,...,7



This means that S (v) is obtained by gluing n copies S; = Spec (k [z] [u;]) of the affine plane
AZ over A} \ {0} ~ Spec (k [z,27']) by means of the transition isomorphisms induced by the
k [:c, x’l} -algebras isomorphisms

koo™ fu] Sk [z,a ] [uy], e 2™ "y + 27" (0 (@) — 04 (2)) i £ i =1,...,r

Note that this definition makes sense as the transition functions g;; satisfy the twisted cocycle
ik = gij+x™ g ink [z, x71] for every triple i # j # k. The fact that g;; (z) € k [z, 27|\ k [z]
for every i # j, 4,5 = 1,...,r, guarantees that the scheme S (v) is separated, whence an affine
surface by virtue of Fieseler’s criterion (see proposition 1.4 in [10]). Therefore, m, = dop: S (y) —
A} = Spec (k [z]) is a Danielewski surface, the fiber 771 (0) being the disjoint union of affine lines

C’i:ﬁ;l(o)ﬁSizSpec(k[ui]), i=1,...,m

1.9. The Danielewski surface 7 : S (y) — A}, above comes canonically equipped with a birational
morphism (m,v,) : S — A} x A} = Spec (k[z] [t]) restricting to an isomorphism over A} \ {0},
corresponding to the unique regular function 1, on S () whose restrictions to the open subsets
S |x, (= Spec (k [z] [u]), are given by the polynomials v, ; = 2™ u; + 0y (x), i = 1,...,r. This
function is referred to as the canonical function on S (). The morphism (7.,1,) : S (y) — A% is
called the canonical birational morphism from S () to AZ.

1.10. It was established by the first author in [8] that there exists a one-to-one correspondence
between pairs (S, (1)) consisting of a Danielewski surface 7 : S — A}, and a birational morphisms
(m, 1) : S — AZ restricting to an isomorphism outside the fiber 77! (0) and fine k-weighted trees
~. More precisely, Proposition 3.4 in [8], which remains valid over arbitrary base fields k, implies
the following result.

Theorem 1.11. For every pair consisting of a Danielewski surface m: S — A} and a birational
morphism (m,1) : S — A} x A}, restricting to an isomorphism over A} \ {o}, there exists a unique
fine k-weighted tree v and an isomorphism ¢ : S = S (v) such that ¢ = Py 0 .

Remark 1.12. If v = (T',w) is not the trivial tree with one element then the canonical function
¥y : S(y) — A}, on the corresponding Danielewski surface 7 : S (y) — A} is locally constant on
the fiber 771 (0). It takes the same value on two distinct irreducible components of 7~! (o) if and
only if the corresponding leaves of v belong to a same subtree of v rooted in an element at level 1 of
v. Different birational morphisms (7, 1) ;.S — A} x A} on a given Danielewski surfaces 7 : S — A},
may lead to different weighted trees. For instance, given a fine k-weighted tree v = (I, w), an
integer n > 1 and an arbitrary polynomial b(z) = by + byx + ...b,_12" !, we can equip the
Danielewski surface S () with the birational morphism (7., (n,b) = 2™y +b(x)) : S(y) —
A?. The weighted tree v (n, b) corresponding to this datum is obtained from ~ by replacing its root

eo by a chain {éy < -+ < €,-1 < &, = ep} weighted by @ (éiéi+1) =0, forevery i =0,...,n—1.
However, every Danielewski surface nonisomorphic to A? admits a birational morphism (mr, ) for

which 1 is locally constant but not constant on the fiber 7=! (0). By construction, the tree ~y
corresponding to such a morphism v will have at least two elements at level 1.

Example 1.13. Let & > 1 an be integer and let o = {o; (¥)},_, , be a collections of r > 2
polynomials o; (x) € k [z] of degree deg (o; (x)) < h such that o; (0) # o; (0) for every i # j. Then
the surface S = S, C A} defined by the equation 2"z — [[/_, (y — 0y (¥)) = 0 is a Danielewski
surface for the projection 7 = pr, |s: S — AjL. The degenerate fiber 7! (0) consists of r
copies C; of the affine line defined by the equations {x =0,y =0, (0)},_, ,. For every index
i=1,...,r, the open subset S; = S\ U#i C; of S is isomorphic to A? = Spec (k [z, w;]), where
u; denotes the regular function on S; induced by the rational function u; = 27" (y — 0y (z)) =
210 (y— o) (z))™" on S. So we conclude that = : S — Al factors through an Al-bundle
p: S — X (r) isomorphic to the one with transition pairs (fi;,g:;) = (L, 27" (05 () — 04 (2))),
i,7 =1,...,7r. Letting o; = Zf;ol o;.nx", these pairs are exactly the ones associated with the
following fine k-weighted rake ~:
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The associated canonical function 1. is the unique regular function on S () with restrictions
Yy |s,= x"u; + oy (x) for every i = 1,...,r. So it coincides with the regular function y on S under
the isomorphism above. In the setting of Theorem 1.11, this means that the pair (S (), ) is
isomorphic to the pair (S, Pry .y |5) where pr, , : S — A}v X A}v denotes the birational morphism
obtained as the restriction to S of the projection pr, , : A — A (2,y,2) — (z,y).

Al-fibrations on Danielewski surfaces.

To determine isomorphism classes of Danielewski surfaces, the first step is to decide if the structural
Al-fibration 7 : S — A} on a given surface is unique up to automorphisms of the base. Indeed,
in the case that m : S — A} is unique, then a second Danielewski surface 7’ : " — A} will be
isomorphic to S as an abstract surface if and only if it is isomorphic to S as a fibered surface.

1.14. Using a geometric characterization of quasi-homogeneous affine surfaces due to M.H. Gizat-
ullin [12], T. Bandman and L. Makar-Limanov [1] established that a complex Danielewski surface
S with a trivial canonical sheaf wg admits two Al-fibrations with distinct general fibers if and
only if it is isomorphic to a surface Sp; C A2 defined by the equation zz — P (y) = 0 for a
certain nonconstant polynomial P with simple roots. This result was further generalized by the
first author in [8] and [9] to a characterization of Danielewski surfaces admitting two Al-fibrations
with distinct general fibers in terms of their associated trees. In turns out that the main result
of [9], which is stated for surfaces defined over a field of characteristic zero, remains valid over
arbitrary base fields.

Theorem 1.15. For a Danielewski surface 7w : S — A}, , the following are equivalent :

1) S admits two Al-fibrations with distinct general fibers.

2) S isomorphic to a Danielewski surface S () defined by a fine k-weighted comb v = (T',w).

3) There exists an integer h > 1 and a collection of monic polynomials Py, ..., P,_1 € k[t]
with simple roots a; ; € k*,i=0,...,h—1, j=1,...,deg, (P;), such that S is isomorphic to the
surface Sp, ... .p,_, C Spec(k|[x][y—1,...,yn—2][2]) defined by the equations

h—1

xz — yh72HPl (y1-1) =0
1=0
h—1 7
2Yi—1 — YiYn—2 H P (y-1)=0 =y, — yi—IHPl (yi—1) =0 0<i<h-2
=it 1 1=0
J
Yi-1Y5 — Yi¥Yj—1 HPl(ylfl)ZO 0<i<j<h-2
l=it1

Proof. One checks in a similar way as in the proof Theorem 2.9 in [9] that every surface S =
,,,,, p,_, as above is irreducible and becomes a Danielewski surface for the projection 7 =
pr, |s: S — A}. Furthermore, the projection 7’ = pr, |s: S — A} induces a second Al-fibration
on S restricting to a trivial A'-bundle (7')”" (A} \ {0}) ~ Spec (k [z, 27| [yn—2]) over A} \ {0}.
So 3) implies 1). To show that 1) implies 2), we use the characterization of quasi-homogeneous
surfaces obtained by M.H. Gizatullin [12]. We recall that an integral affine surface S is said to be



quasi-homogeneous if the automorphism group Aut (S) acts on S with a dense orbit with finite
complement. It was established by M.H. Gizatullin that a nonsingular integral affine surface S
defined over an algebraically closed field k is quasi-homogeneous if and only if it can be completed
into a nonsingular projective surface S in such a way that the boundary divisor S\ S is a zigzag, that
is, a chain of nonsingular complete rational curves. In [7], the first author reworked Gizatullin’s
arguments to prove that a normal complex affine surface S admits a completion by a zigzag if
and only if it admits two Al-fibrations over the affine line with distinct general fibers. The proof
given in loc. cit. only depends of certain properties of A!-fibrations which remain valid over an
algebraically closed field of arbitrary characteristic. In [8], the first author constructed canonical
completions S of a Danielewski surface S () defined by a fine k-weighted tree v = (I', w) for which
the dual graph I of the boundary divisor S\ S (7) is isomorphic to the tree obtained from I' be
deleting its leaves and replacing its root by a chain with two elements. Clearly, I is a chain if
and only if T is a comb. This construction, which only depends on the existence of an A'-bundle
structure p : S (y) — X (r) on a Danielewski surface S (), remains valid over an arbitrary base
field k. Now let S be a Danielewski surface admitting two distinct A!-fibrations. We may suppose
that S isomorphic to a one S () associated with a certain fine k-weighted tree 7. Letting & be
an algebraic closure of k, the surface S = S Xspec(r) Spec (k) is again a Danielewski surface,
isomorphic to the one defined by the tree v consider as a fine k-weighted tree via the inclusion
k C k. Since every A'-fibration 7 : S — A} lifts to an A'-fibration m; : Sf — Ay it follows that S
admits two Al-fibrations with distinct general fibers. We deduce from the above discussion that
~ is a comb, and so that 1) implies 2). Note that if k is already algebraically closed, then above
argument shows that 1) is actually equivalent to 2). However, if k is arbitrary, then, in general,
there is no no guarantee that a given A'-fibration on S; comes as the lifting of such a fibration
on S. Therefore, we can not conclude directly from the above criterion. So we are led to prove by
hand that if Sz admits two distinct Al-fibrations, then this also holds for S. One way to proceed
is by constructing a closed embedding of S in an affine space as a surface Sp,.... p, , for which
two such fibrations appear explicitly. This is done in Lemma 1.17 below. O

1.16. Over a base field of characteristic zero, the first author gave in [9] a canonical procedure to
construct a closed embeddings of a Danielewski surface S defined by a fine k-weighted comb ~ of
height h as a surface Sp,... p, , C AZ“. However, the proof given in loc. cit. seems to depend
on Taylor Formula for polynomials, which may lead one to suspect that the construction fails in
positive characteristic. Rather than letting the reader convince himself that the use of the Taylor
Formula in the construction of 4.6 in [9] is just a trick to avoid the introduction of cumbersome
notations, we shall provide a complete proof of the following result.

Lemma 1.17. For every Danielewski surface S () defined by a fine k-weighted comb v = (T, w)
of height h > 1, there exists a collection of monic polynomials Py, ..., P,_1 € k[t] with simple
roots a; ; € k*,1=0,...,h—1, 5 =1,...,deg, (P;), and a closed embedding S — AZ” of S in
AZ” = Spec (k[z] [y=1,-..,yn—2][2]) as the surface Sp,,. .. p, , defined in Theorem 1.15.

Proof. In view of Remark 1.12 above, we may suppose that the comb v = (T',w) has at least
two elements at level 1. We denote by epo < €10 < -+ < ep—1,0 the elements of the sub-chain
C =T\ L(T) of T consisting of elements of I" which are not leaves of I'. For every [ = 1,...,h,
the elements of I" at level [ distinct from e; o will be denoted by e;1,...,e;,, provided that they
exist. Replacing the weight function w by the one wy defined by

w (ée—) o w(€i€i+1) 7w(6i706i+110) if 4 :0,,h72
O\ w (€i€i+1) ifi=h-1

yields the same pairs of transition functions (fi;,g:;) € k [z, x*]2 (see 1.8 above). So may assume

from the very beginning that w = wo and that wo (€,_1,0en—1,1) = 0. We consider the associated
Danielewski surface 7 : S (y) — A} as an Al-bundle p : S(y) — X (r) and we denote by S; =
Spec (k [z] [u;]) the trivializing open subsets of S (y). For every I = 0,...,h — 1 and every i =
1,...,s;, we let 7; (v,u;) = 2u; + w(€_10€1:) € k[r][u;]. With this notation, the canonical
function 1, on S (7y) restricts on an open subset S; corresponding to a leaf e;; of v at level I to the



polynomial z!=17; ; (z,u;) € k [2] [u;]. Starting with y_; = v, we will construct regular functions

Y—1,...,Yn—2 and y,_1 = z on the associated Danielewski surface 7 : S () — A} and polynomials
Py, ..., Py_1 satisfying the following properties:
a) For every [ = 0,...,h — 1, and every | < m < h , y;_1 restricts on an open subset .S;

corresponding to a leaf e, ; of v at level m to a polynomial y;_1,; € k [z] [u;] such that

Ly (u;) mod x ifm=1
Yie1i = ari +x L (u) mod 2 ifm=1+1
Ema™ " T (2 w) + Vg™t mod 2™ ifm > 141,

where &, € k* for every m > 1, \;, a1, € k* and v; € k for every i, and where L; ; (u;) , Li+1,i (u;) €
k [u;] are a polynomial of degree 1 for every i. Furthermore a;; # a; ; for every i # j.

b) For every l = 0,...,h—1, P, is the unique monic polynomial with simple roots a; 1,...,a.r,
such that =1y, Hi;:‘) P; (yi—1) P (yi—1) is a regular function on S (7).

To construct these functions, we proceed by induction as follows:

Step 0. By construction, y_1 = 1, is constant with the value ao; = w (&g g€1,;) € k* on the
irreducible component 7! (0) corresponding to a leaf e;;, i = 1,...,71, at level 1 and vanishes
identically on every irreducible component of 7 L (o) corresponding to a leaf of v at level [ > 2.
Letting Py (t) = [[;1, (t — ao,) it follows that yo = z7'y_1Py(y—1) € O(S (7)), is a regular
function on S () whose restriction to an open subset S; corresponding to a leaf e; ; of v at level [
is given by a polynomial of the following form :

a0, Po.i (ao,i) u; mod z ifl=1
Yoi = 72,0 (0,u;) Po (0) + 2 (Po (0) u; + P (0) (12,4 (0, ui))Q) mod 2 ifl=2
Py (0) 227 (w, u;) mod ™~ if [ > 2,

where Py, (t) = (t —ao;)”" Py (t) for every i = 1,...,71. So Py (t) and yo satisfy conditions
a) and b) above. In particular, yo is constant with the value a1,; = 72,; (0,u;) Po (0) € k* on
the irreducible component 7! (0) corresponding to a leaf es;, i = 1,...,7ra, of v at level 2.
Furthermore a1 ; # a1,; for every i # j as v is a fine k-weighted comb.

Step [, 1 <1 < h—1. We assume that the regular functions y_1, yo, - - . , y1—1 and the polynomials
Py, ..., P,_; satisfying conditions a) and b) above have been constructed. In particular,if I < h—1
then y;_1 is constant with the value a;; = k* on the irreducible component 7~! (0) corresponding
to aleaf 14, ¢ =1,...,7, of v at level [ + 1. Otherwise, if [ = h — 1 then it follows from our
hypothesis that y;_o is constant with the value aj—2; = k* on the irreducible component r 1 (0)
corresponding to a leaf ey, ;, 4 = 2, ..., r, and vanishes identically on the component corresponding
to the leaf ep ;. Letting

Bt - [Tl (t—a,) ifl<h-—1
T I, (t—a) ifl=h—1,

it follows that §; = = 'y;_1P (yi—1) € O(S(v)), extend to a regular function on the open
complement in S (v) of the irreducible components of 71 (0) corresponding to leaves of v at levels
lower or equal to [. Furthermore, the restriction of §; to an open subset S; corresponding to a leaf
em,i of v at level m > [+ 1 is given by a polynomial §; ; such that

ari P (ar:) Liga (us) mod x ifm=10+1
gl,i = ngmz( 1)P( )+$(Pl( )gmuz+ﬂl+2,i) mod 352 1fm:l+2
Py (0) (&ma™ 2 (2, w) + vig™ ™) mod ™~ if m > 1+ 2,

where Py; (t) = (t —ay;)”" P (t). One checks easily that y; = Py (y_1) Py (o)~ Pi1 (yi—2) i
extends to a regular function on S (y) whose restrictions to the open subset S; corresponding to
the leaves ey, ; of 7y at level m > [+ 1 satisfy condition a) above. By construction, condition b) is
also satisfied.



After exactly h — 1 steps, we obtain a collection of regular functions y_1,...,yn—2,yn—1 = 2
which distinguish the irreducible components of the fiber 77! (0) and induce coordinate functions
on them. Furthermore y_; induces an isomorphism 7= (A'\ {o}) = Spec (k [z, 2] [y-1]). So
we conclude that the morphism i = (7,y-1,...,yn-1,2) : S(v) — AZ” is an embedding. The
same argument as in the proof of Lemma 3.6 in [9] shows that ¢ is actually a closed embedding
whose image is contained in the surface Sp, ... p, , C AZ” defined in Theorem 1.15 above. By
construction, the induced morphism ¢ : S (y) — Sp,.....p,_, defines a bijection between the sets
of closed points of S (v) and Sp,.... p,_,, whence is quasi-finite. Furthermore, ¢ is also birational,
restricting to an isomorphism between the complements of the fibers 7! (0) and pr;! (0) of
w:S(y) — A} and pr, : Sp,,... P, , — A}, respectively. Since Sp, . p, , is nonsingular, we finally
conclude that ¢ an isomorphism by virtue of Zariski Main Theorem (see e.g. 4.4.9 in [13]). O

.....

1.2. Special Danielewski surfaces.

A Danielewski surface 7 : S — A} with a trivial canonical sheaf ws/k, or equivalently with a

trivial sheaf of relative differential forms le /AL will be called special. For instance, it follows
k

from the Adjunction Formula that every Danielewski surface S C A} is special. It turns out that

special Danielewski surfaces correspond to a distinguished class of weighted trees, as shown by the

following result.

Proposition 1.18. A Danielewski surface m: S — A} is special if and only if it is isomorphic to
a Danielewski surface 7y : S (v) — A} defined by a fine k-weighted tree v with all its leaves at the
same level h = h (7).

Proof. Tt follows from 1.8 above that every Danielewski surface is isomorphic to the total space of
an Al-bundle p : S — X (r) obtained by gluing r copies of A} x A} over A} \ {0} x A} by means
of transition isomorphisms

Tij k[T ) — k [z [uy], w2 TN 27 (0 (2) — 0y (2), 4, j=1,...,m

Every nowhere vanishing 2-form ¢ € wg/, must restrict on a open subset S; of S to a multiple
Aiw;, where \; € k*, of the 2-form w; = dx A du;. In view of the transition isomorphisms above,
this possible if and only if A\; = A; = XA and n; =n; = h(y) for every 4,5 =1,...,r. O

As a consequence of Theorem 1.15, we obtain the following result which is due to T. Bandman
and L. Makar-Limanov [1] for complex surfaces.

Corollary 1.19. A special Danielewski surface admits two distinct A'-fibrations over the affine
line if and only if it is isomorphic to a surface Spy C A} defined by the equation xz — P (y) =0
for a certain nonconstant polynomial P, with simple roots in k.

Proof. Indeed, a tree with all its leaves at the same level h is a comb if and only if it is isomorphic
to a chain or a tree of the following form :

So the result follows from 2.12 below. O

Isomorphism classes of special Danielewski surfaces.

To determine isomorphism classes of special Danielewski surfaces, we can exploit the fact estab-
lished above that every such surface is isomorphic to the total space of an Al-bundle p: S — X (r)
over X (r) defined by means of transition isomorphisms

Tij + k [:c,:cil] [u;] — k [:c,:cil} (], w = uj+ gij (:c,:cil) , i,5=1,...,7
where g = {gij}l.j is a Cech cocycle with values in Ox ) for the canonical open covering U, .

The group Aut (X (r)) ~ Aut (A} \ {0}) x &, acts on the set PH' (X (r),Ox()) of isomorphism
classes of Al-bundles as above in such a way that for every ¢ € Aut (X (r)), the image ¢ - [g] of a



class [g] € PH' (X (r),Ox(y)) represented by a bundle p : S — X (r) is the isomorphism class of
the fiber product bundle pry : ¢*S = S x x () X (r) — X (r). The following criterion generalizes
a result of J. Wilkens [18].

Theorem 1.20. Two special Danielewski surfaces m : S1 — A} and 72 : So — A} with underlying
Al-bundle structures p; : S; — X (r1) and p2 : So — X (r9) are isomorphic as abstract surfaces if
and only if 11 = ro = r and their isomorphism classes in PH' (X (r), (’)X(T)) belongs to the same
orbit under the action of Aut(X (r)).

Proof. Clearly, the condition guarantees that S; and S, are isomorphic. Suppose conversely that
there exists an isomorphism ® : S; = Sy. The divisor class group of a special Danielewski surface
7: S — Al is generated by the classes of the connected components C1, ..., C, of 7~! (0) modulo
the relation C;+- - -+C,. = 71 (0) ~ 0, whence is isomorphic to Z"~1. Therefore, r; = ro = r for a
certain 7 > 1. If one of the S;’s, say S is isomorphic to a surface Sp; C A} defined by the equation
xz — P (y) = 0, then the result follows from [16]. Otherwise, we deduce from Corollary 1.19 that
the Al-fibrations m : S; — A} and 7 : So — A} are unique up to automorphisms of the base.
In turn, this implies that ® induces an isomorphism ¢ : X (r) = X (r) such that ¢ o p; = pg o ®.
Therefore, ® : S; = S, factors through an isomorphism of A'-bundles ¢ : 51 = ¢*Ss, where ¢* S,
denotes the the fiber product Al-bundle pry : $*Sy = S X x(ry X (r) — X (r). This completes the
proof as ¢*Sy ~ Ss. O

As an application of Theorem 1.20, we have the following characterization which generalizes
a result obtained by Makar-Limanov [16] for complex surfaces Spj defined by the equations
'z — P (y) =0.

Example 1.21. Two Danielewski surfaces in A} defined by the equations
oMz =Qi(xy) = [[(y—o01i(2) and 2"z=Qs(w,y) =[] (y—02: ()
i=1 i=1
are isomorphic if and only if hy = ha = h, r1 = ro = r and there ezists a triple (a,u, 7 (z)) €
k* x k* x k[z] such that Q2 (ax,y) = p" Q1 (z, p~ 'y + 7 (2)).

Indeed, the condition is clearly sufficient. Conversely, Theorem 1.20 above implies that r; =
ro = r. If r = 1 then S; and S; are isomorphic to Ai and we are done. If one of the h;’s is equal to
1 then h; = he =1 by virtue of Corollary 1.19 and so, the assertion follows from [15]. So we may
suppose from now on that r, hq, ha > 2. According to example 1.13 above the A'-bundle structures

p1:S1 — X (r) and py : So — X (r) are determined by the data (r, hi,o1 = {01 (2)},_, T)
and (r, ha, o0 = {02 (2)},_; T), which correspond to fine k-weighted rakes which are not combs

as hi,hs > 2. So it follows from Corollary 1.19 that every isomorphism ® : .S; = S, induces an
automorphism ¢ of X (r), determined by a k-algebra automorphism z +— ax and a permutation
a € G, of the origins of X (r), such that ¢ o p; = py o ®. In turn, this implies that the Al-
bundle p; : S; — X (r) is isomorphic to the one pry : $*S2 = Sy X x () X (1) — X (r) determined
by the datum (r, ha, &2 = {a™ "0y 0 (ax)},_, TZ). One checks in a similar way as in the
proof of Theorem 3.11 in [8] that the corresponding transition functions have the same class in
P(H' (X (r),Ox()) if and only if hy = hy = h and there exists a pair (A, b(z)) € k* x k [z] such
that o2; (ax) = Aa"01 o) (x) + b (x) for every i =1,...,7. So the assertion follows with ;1 = \a”
and 7 (z) = p~ b (z).

2. DANIELEWSKI SURFACES IN A} DEFINED BY AN EQUATION OF THE FORM z"z — Q (z,y) = 0
AND THEIR AUTOMORPHISMS

In this section, we apply the above results to study Danielewski surfaces = : S — A}v which
admit a closed embedding i : S < A in the affine 3-space as a surface S j, defined by the equation
z"z — Q (x,y) = 0 for a certain polynomial Q (z,%) € k [z,y] in such a way that 7 = pr, |Sg., Ot
We compute their automorphism groups. We also characterize among them the ones which are

isomorphic to surfaces Spj, C A} defined by the equations 2"z — P (y) = 0.



2.1. Characterization of Danielewski surfaces Sg j,.

A surface S = Sgn C Az defined by the equation 2"z — Q (z,y) = 0 is a Danielewski surface
with respect to the fibration m = pr, |s: S — A} if and only if the polynomial Q (0,y) splits with
simple roots y1,...,y, € k, where 7 = deg,, (Q (0,y)). If r = 1, then 77 (0) ~ A} and 7 : S — A},
is isomorphic to a trivial Al-bundle. Thus S is isomorphic to the affine plane. Otherwise, if
r > 2, then S is not isomorphic to A%, as follows for instance from the fact that the divisor class
group Div () of S is isomorphic to Z"~!, generated by the classes of the connected components
C1,...,Cp of 7=1(0), with a unique relation Cy + ... + C,. = div (7*x) ~ 0. The following result
shows that these surfaces Sg . can be thought as the simplest generalization of surfaces Sp
defined by the equations 2"z — [[;_, (y — ;) = 0, obtained by replacing the constants y; € k by
polynomials o; (x) € k [z].

Theorem 2.1. For a normal affine surface S, the following are equivalent:

1) S is isomorphic to a surface Sq in A} defined by the equation z"z — Q (x,y) = 0 for a
suitable polynomial Q (x,y) such that Q (0,y) splits defined by the r > 2 simple roots y1,...,y, in
k.

2) S is isomorphic to a surface S, 1, defined by the equation z"z — [[;_, (y — 0i (z)) =0 for a
suitable collection of polynomials o = {o; (z)},_, ., such that o;(0) # 0; (0) for every i # j.
Proof. The projection pr,, , A% — A? restricts on a Danielewski surface S = Sg j, to a birational
morphism 1 : S — A inducing an isomorphism outside the fiber 7= (0). So it follows from
Theorem 1.11 and Proposition 1.18 above that there exists a fine k-weighted tree v = (T, w)
with all its leaves at a same level &’ and an isomorphism ¢ : S = S (v) such that 1 = 9., o ¢.
Since ¥ |,-1(g) is locally constant on 7! (0) and takes distinct values y; on the r = deg (Q (0,y))
irreducible components of 7=1 (0), it follows from Remark 1.12 above that T has 7 leaves and that
every element e of I but the root ey has at most one child, whereas ey has exactly r children.
Thus + is a rake of a certain height h’. To determine h’, we observe that by construction, h’ =
ordg, (dz Ndy |s) = ordg, (dz A dy |s) for every 4,5 = 1,...,7. On the other hand, the 2-form
dx A dy |s€ A’ ), is supported on the fiber 771 (0) as 7' (A} \ {0}) ~ Spec (k [z,27'] []).
Moreover, since the roots of @ (0,y) are simple, ¢ vanishes on 7=! (0) with the same orders as

the 2-form p = a—Q (r,y)dx Ady |s = 2"dx A dz |s. Since z induces a coordinate function on
Y

every irreducible components of 7=1 (0), we eventually conclude that div (dz A dy |s) = h-7~1 (0)
whence that i/ = h. So the assertion follows from example 1.13 above which guarantees that every
rake v of height h with r leaves corresponds to a certain Danielewski surface S, defined by the
equation 2"z — [[/_, (y — o; (x)) = 0. O

2.2. The above result implies that every Danielewski surface S isomorphic to a surface Sg i
admits a closed embedding iyorm @ S — Ai in Ai as a surface S, defined by the equation
zhz —T_, (y — 0i (z)) = 0. We say that inorm is a normalized embedding of S in A} and that
Sy.n is a normal form of S in A} . Starting from a Danielewski surface Sg ; defined by the
equation 2"z — Q (z,y) = 0, where Q (0,y) splits with » > 2 simple roots yi,...,y, in k, the
collection of polynomials o = {o; (z)},_; . corresponding to a normal form can be determined
as follows.

T

Proposition 2.3. In the above setting, there exists a unique triple (R1, Ro,0) € k [:c,y]2 x k[x]"
satisfying the following properties:

a) Ry (z,y) € k[z,y]\ (z"k[z,y]) is a polynomial such that Ry (0,y) is a nonzero constant,

b) o = {o;(x)};—, ., is a collection of polynomials of degrees deg(o; (z)) < h such that

0;(0) =y; for everyi=1,...,r
¢) Q(z,y) = R (z,9) [Ti2y (y — 03 () + 2" R (2,y).



Furthermore, the endomorphism ¢"°™ of A} defined by (z,y,2) — (z,y, R1 (z,y) z + Ra (z,y))
restricts to an isomorphism ¢ : Sg = S,.n whose inverse is induced by the endomorphism

¢norm : A% - Aiﬂ (SC,y,Z) = (xvya f (ZL',y)Z +9 (zay) H (y — 03 (:L')) - f (zay) R2 (zﬂy)>

i=1
where (f,g) denotes a pair of polynomial such that Ry (x,y) f (x,y) + z"g (z,y) = 1.

Proof. We let Q (z,y) = c[]i_; (v — vi) + xQ (x,y) where ¢ € k* and Q € k[x,y]. Provided that
they exist, the polynomials o; () must satisfy the condition @ (z,0; (z)) = 0 mod «* for every
i=1,...,7 and every s = 1,..., h. This condition is satisfied for s = 1 by letting o; (0) = y; for
every i = 1,...,7. We proceed by induction, assuming that the ¢;’s have been constructed up to
the degree s. For every A € k we have

T

Q (z,0; () + Az*T!) = cH (o3 (@) + A"t — ;) + zQ (z,04 (z) + Az*tT)
j=1
= ca*T! H (yi —y;) +Q (x,0i(z)) mod z°2
i

= A\biz®t 4+ ;2% mod 252

for a certain element a; € k. Since b; # 0 as y; # y; for every j # i, we conclude that
i (r) = o;(x) — a;(cb;) tx*T! is a unique polynomial of degree at most s + 1 which is con-
gruent to o; (z) modulo 2°*! and such that Q (z,5; (z)) = 0 mod z°*2. So existence and unique-
ness of the o;’s follows. In turn, this implies that there exist polynomials Sy (z,y) = Q (x,y)
and S; (z,y), ¢ = 1,...,r such that S; (z,y) = S; (z,0:41 (2)) + (y — 0441 (2)) Sit1 (x,y) for ev-
ery i = 0,...,7 — 1. By construction, S; (z,0;11 (z)) = 0 mod z" for every i = 0,...,r — 1.
Therefore, letting S, (z,y) = Ry (z,y) + "R (x,y), where deg, (R; (z,y)) < h, it follows that
Q(z,y) — Ri (z,y)[[—, (y — 0i (z)) = 0 mod z". This completes the proof of the first assertion
as R; (0,y) = ¢ by construction.

For the second one, one checks that (¢"°™)" (z'z — Q (z,y)) = R1 (z,y) ("2 — [[;_; (y — 0i (x)))
and that (¢norm)” (22 — [T\, (y — 0i (2))) = f(z,y) (z"z—Q(z,y)). This means that the
images of the restrictions of ¢"*"™ and ¢norm to Sy and Sg,, respectively are contained in
So,n and S, ;. Finally, the identities (¢"™ o ¢norm)” (2) = 2z — g (,y) (22 — Q (z,y)) and
(Gnorm © #""™)" (2) = z — g (z,y) (z"2 — [\, (y — 0 (z))) guarantee that ¢ is an isomorphism.

O

Remark 2.4. Tt follows from example 1.13 above that the restriction of y to a Danielewski sur-
face S = S, defined by the equation 2"z — [[;_, (y — 0; (z)) = 0 coincides with the canon-
ical function 1, on S considered as an Al-bundle p : S — X (r) with transition functions
gij = 27" (0j (x) — 0; (z)) defined by means of the fine k-weighted rake v of example 1.13. Simi-
larly, the restriction of z to S coincides with the regular function &, = =" [[/_; (¢, — 0i (2)) on
S. On the other hand, for every pair (R1, R2) € k [:c,y]2
nonzero constant, the rational function

of polynomials such that R; (0,y) is a

" <R1 (@, 99) [[ (v — o (@)) + Ry (x,1hy) € O(S) @i k [z, 27"
i=1
extends to a section (g, r,),, € O (S) which still induces a coordinate function on every irreducible
component of the fiber 7=! (0). By construction, the regular functions 7, 1., and §(Ri,Ra),y O1
S define a new closed embedding i(g, g,) = (T, 0y, &Ry Ra)y) : S — A} of S in A} inducing an
isomorphism between S and the surface defined by the equation 2"z — Ry (z,y) [[;—, (v — 0; (z))+
2" Ry (z,y) = 0. This means that a closed embedding ig  : S < A} of a Danielewski surface S
in A} as a surface defined by the equation 2"z — @ (z,y) = 0 can be interpreted as a twisted
form of one of its normalized embeddings i, : S < A} as a surface defined by the equation

zhz —T]i_, (y — o; (x)) obtained by modification of the function inducing a coordinate on every



irreducible component of the fiber 7= (0). Proposition 2.3 above says that a twisted embedding
iQ,n is related to its associated normalized embedding defined in 2.2 by a commutative diagram

S
AN
prorm \
- Ak

$norm

%
3
Ak

where ¢"°™ and ¢norm are the Ai—endomorphisms of Ai introduced above.

2.2. Automorphisms of Danielewski surfaces Sp j, in A3.

In [15] and [16], Makar-Limanov computed the automorphism groups of surfaces in A% defined
by the equation z"z — P (y) = 0, where h > 1 and where P (y) is an arbitrary polynomial. In
particular, he established that every automorphism of such a surface is induced by the restriction
of an automorphism of the ambient space. Recently, Crachiola established that this also holds
for surfaces defined by the equations 2"z — y? — r (z)y = 0, where h > 1 and where r () is an
arbitrary polynomial such that 7 (0) # 0. This subsection is devoted to the proof of the following
more general result.

Theorem 2.5. Let Sg ;, C A} be a Danielewski surface defined by the equation 2z —Q(x,y) =0
and let ("™ dnorm) be a pair of endomorphisms of A} as in Proposition 2.3 above inducing iso-
morphisms between Sg , and the Danielewski surface S, j, defined by the equation 2"z — P (z,y) =
0, where P (x,y) = [[,_, (y — 0; (¥)). Then every automorphism of Sq ., is induced by the restric-
tion of an endomorphism of A} of the form ¢norm o "™, where 1 belongs to the subgroup G p,
of Aut (Az) generated by the following automorphisms:

(a) Ay (z,y,2) = (z,y +a"b(2),z+ 27" (P (x,y + 2"b(2)) — P(x,y))), where b(z) € k [z].

(b) If there exists a polynomial T () such that P (z,y + 7 (x)) = P (y) then the automorphisms
H,(z,y,2) = (ax,y + 7 (ax) — 7 (x), a_hz), where a € k*should be added.

(c) If there exists a polynomial T (x) such that P (z,y + 7 (z)) = P (2%,y), then the automor-
phisms H, (x,y,2) = (a:z:,y + 7 (azx) — 7 (2) ,a‘hz), where a € k* and a? =1 should be added.

(d) If there exists a polynomial T (x) such that P (z,y+7(z)) = y'P (x,y*), where i = 0,1
and s > 2, then the automorphisms S, (z,y,2) = (z,py + (1 — p) 7 (x),, p'z), where p € k* and
w® =1 should be added.

(e) If char (k) = 5 > 0 and P (z,y) = P (ys —c(z)"! y) for a certain polynomial c (z) € k [z]
such that ¢ (0) # 0, then the automorphism T, (z,y,z) = (z,y + ¢ (x), z) should be added.

(f) If h =1 then the involution I (x,y, z) = (z,y,x) should be added.

2.6. In order to prove the Theorem, it suffices, in view of Proposition 2.3 above, to show that every
automorphism of the Danielewski surface S, j is induced by an automorphism ¢ € Gy . It is
clear that every automorphism of A? of types (a)-(f) above leaves Sy, invariant, whence induces
an automorphism of S, ;. If A = 1, then the converse follows from [15]. Otherwise, if h > 2,
then the fact that every automorphism of S, ; is obtained as the restriction of a composition of
automorphisms of types (a)-(e) above is established in 2.7 and 2.9 below. In what follows, we
let S be a special Danielewski surface considered as an Al-bundle p : S — X (r) with transition
functions defined by a collection o = {o; (2)},_, . corresponding to a fine k-weighted rake v of
height h with r > 2 elements at level one.

Proposition 2.7. If h > 2 then every automorphism ® of S is uniquely determined by a datum
Ao = (o, p1,a,b(2)) € G, X k* X k* X k [x] such that the following hold:

1) The polynomial cy (x) = 04 (ax) — po; () + (az)" b (z) € k[z] does not depend on the
imdexi=1,...,r.

2a) The permutation « is either trivial or has at most a unique fized point. If it is nontrivial
then all nontrivial cycles with disjoint support occurring in a decomposition of o have the same
length s > 2.



2b) If « is trivial then p =1 and the converse also holds provided that char (k) # s. Otherwise,
if « is nontrivial and char (k) # s then (1) = 1 but (n)° # 1 for every 1 < s’ < s.

Furthermore, letting iy p : S — A} be the closed embedding of S in A} as the surface S, 1, defined by

the equation z"z—[[_, (y — 0i (z)) = 0, every automorphism of S with datum Ae = (a, p, a,b (z))

is induced by the restriction to Sy, of the following automorphism U of A3 :

v (ZL', Y, Z) = <a1‘? Ky + co (:C) ) a*h‘urz + (a’x)_h (H (uy + ca (:C) — 0 (az)) - MT H (y — 04 (ZE))))
i=1 i=1

Proof. With the notation of 1.8, the fact that h > 2 and r > 2 guarantees that every automorphism

® of S =5 (v) induces an automorphism ¢ of X (r) such that ¢ o p = po ® (see 1.20 above). So

® is determined by a collection of local isomorphisms ®; : S; = Sa(iy where o € &, defined by

k-algebra isomorphisms

7 k2] [ua] — Kla][w], @ = air, uae) = Nwi+bi(x), i=1,...,r

where a;, \; € k* and where b; € k [z]. These local isomorphisms are compatible with the transition
isomorphisms 7;; : S; 3 (x,u;) — (x,u; +gi; (x)) € Si, i # j, 1,5 = 1,...,r defining S as an
Al-bundle over X (r) if and only if a; = a and \; = X for every i = 1,...,7, and the relation
Agij () 4 bi (2) = Ga(i)a(j) (ax) + bj (x) hold in k [z, 2] for every i,j = 1,...,r. Since g;; (z) =
x=" (0 (z) — 0i (z)), where the o;’s have degrees strictly lower than h, we conclude that the latter
condition is equivalent to the fact that b; () = b(z) for every i = 1,...,r and the polynomial
¢(r) = o4 (ax) — Aa"o; (z) does not depend on the index i = 1,...,r. So the first assertion
follows with p = Aa". To simplify the notation, we let y; = o; (0) for every i = 1,...,7. Note that
by hypothesis, y; # y; for every i # j.

If « € &, has a least two fixed points, say iy and i1, then y;, (1 — p) =y, (1 — p) =¢(0), and
so, p =1 and ¢(0) =0 as y;, # yi,- In turn, this implies that « is trivial. Indeed, otherwise there
would exist an index 4 such that o (i) # ¢ but y,;) = v, in contradiction with our hypothesis.
If « is nontrivial, then we let s > 2 be the infimum of the length’s of the nontrivial cycles
occurring in decomposition of « into a product of cycles with disjoint supports. We deduce that
yi (1 —p®) =y, (1 — p®) for every pair of distinct indices ¢ and j in the support of a same cycle of
length s. Thus p® =1 as y; # y; for every ¢ # j.

If o = 1 then s’ -¢(0) # 0 for every s’ = 1,...,s — 1. Indeed, otherwise we would have
Yosr! i) = Yi + s'-¢(0) = y; for every index ¢ = 1,...,r which is impossible since « is nontrivial. In
particular, o is fixed-point free. On the other hand 5-¢(0) = 0 as y; = ya+(;) = yi+5-¢(0) for every
index 7 in the support of a cycle of length s in «. This is possible if and only if the characteristic
of the base field k is exactly s. We also conclude that every cycle in a have length s for otherwise
there would exist an index i such that a® (i) # i but ya.(;) = ¥ +5-¢(0) = y; in contradiction
with our hypothesis. Otherwise, if © # 1 then ,us/ # 1 for every s’ < s. Indeed, otherwise there
would exist an index i such that o (i) # i but Yool (5) = 1 y; + (0) Z;:Ol (1P = y,;, which is
impossible. The same argument also implies that all the nontrivial cycles in «a have length s.

For the second assertion, we recall that i, p : S < A3 is defined by means of the function z,
the canonical function 1/, on S and the function &, = 2" [[/_, (5 — 0; (z)) on S. By definition,
1, restricts on a open subset S,(;) = Spec (k [z] [uq()]) of S to the polynomial z"u; + o; (z) €
k [2] [u;], whereas ®* (uq(;)) = Au; + b () € k [2] [u;] for every i = 1,...,7. So we conclude that
D* (1y) = pthy + co (z) € O(S). Letting P (z,y) =[]\, (v — 0y (x)), it follows that

O (&) = (az) ™" P (az, by + o () = a™"p"&, + (ax) ™" (P (az, paps, + co (x)) — " P (2,55))
This completes the proof. (I

Remark 2.8. Given two automorphisms ®; and @5 of S defined by data A¢, = (a1, p1,a1,b1) and
Ag, = (e, 12, az, ba) respectively, one checks that & = ®5 o &y is the automorphism of S with
corresponding datum Ag = (a2 oy, flofi1, a2aq, GQ_hMle (z) + by (alx)).

The following result completes the proof of Theorem 2.5.



Lemma 2.9. Every automorphism of Danielewski surface S, C A3 defined by the equation
T
xhz — H (y—oi(x)) =0, whereh>2,
i=1
is the restriction of a composition of automorphisms of types (a)-(e) in Theorem 2.5.
Furthermore the restriction map Gy — Aut (S) is an isomorphism of group.

Proof. The second assertion follows immediately form the first one and the composition rule given
in remark 2.8 above. We let P (z,y) = [[._; (y — 0y (z)). By 2.7 above, every automorphism
of S, is determined by a datum Ag = (o, i, a,b(x)) such that that the polynomial ¢ (x) =
Ta@) (az) — po; (z) + 2"b (x) does not depend on the index i = 1,...,7. Clearly, automorphisms
of type (a) in Theorem 2.5 coincide with the ones determined by a datum A = (Id,1,1,b (x)).
In view of the composition rule given in 2.8, it suffices to consider from now the automorphisms
corresponding to data A = («, i, a,0).

1°) If « is trivial, then g = 1 by virtue of Proposition 2.7, and so A = (Id, 1,a,0). Then, the
relation ¢ (z) = o; (ax) — o; (z) holds for every i = 1,...,7.

1°a) If a? # 1 for every ¢ = 1,...,h — 1, then there exists a polynomial 7 (z) € k [z] such that
o; () = 0;(0) + 7 () for every i = 1,...,7. Thus c¢(x) = 7 (az) — 7 (z) and P (z,y + 7 (x)) =
P (y) =[I;_, (y — 0: (0)). The corresponding automorphism is of type (b) in Theorem 2.5, given
by (x,y,z) — (a:c, y+7(ax) — 7 (x) ,a’hz).

1°b) If @ # 1 but a% = 1 for a minimal ¢ = 2,...,h — 1, then there exists polynomials
7(x) and &; (x), ¢ = 1,...,r, such that o; (z) = &; (%) + 7 (z) for every ¢ = 1,...,7. So
there exists a polynomial Q such that P (z,y + 7 (z)) = P (z%,y). Moreover, ¢(z) = 7 (az) —
7 (z) and the corresponding automorphism is of type (c) in Theorem 2.5, given by (z,y,2) —
(az,y + 7 (ax) — 7 () ,a""2).

2°) If v is not trivial then p® = 1. Since ® = $y0P; where ®;and P denote the automorphisms
with data Ag, = (Id,1,a,0) and Ag, = (a, p, 1, 0) respectively, it suffices to consider the situation
that ® is determined by a datum A¢ = («, p,1,0), where pp € k* and p® = 1. So the relation
Ou(i) (T) = po; (r) + ¢ (x) holds for every i =1,... 7.

2°a) p* = 1 but ¥ # 1 for every s = 1,...,s — 1. Letting 7(2) = (1 —p) " ¢(z) and
i (x) = 0y (x) — 7 (x) for every i = 1,...,r, we arrive at the relation 7, () = uo; (x) for every
i=1,...,r. Furthermore, if i( is a unique fixed point of «a then &;, (x) =0 as oy, (x) = 7 (z). So
we conclude that P (z,y + 7 (z)) = y*P (x,y°) where i = 0,1 and where s denotes the length of
the nontrivial cycles in «. The corresponding automorphism is of type (d) in Theorem 2.5, given
by (z,y,2) = (z,py + (1 — p) 7 (2) , 1'2).

2°b) If 4 = 1 then « is fixed point free by virtue of Proposition 2.7 and char (k) = s, where
s denotes the common length’s of the cycle occurring in «. Moreover, s’ - ¢(0) # 0 for every
s'=1,...,s—1and oy, () =0y, (x) +m-c(z) for every index i) occurring in a cycle (i1,...,1s)
of length s in «. Letting r = ds, we may suppose up to a reordering that o decomposes as
the product of the standard cycles (is+ 1,is+2...,(i +1)s), where i = 0,...,d — 1. Letting
R(z,y) =TI _, (y—m-c(x)) =y* —c(x)* 'y, we conclude that

d—1
P(z,y) = H R(z,y — 04 (x)) = P (:c,ys — c(:v)sf1 y)
i=0

for a suitable polynomial P (z,%) € k[z,y]. The corresponding automorphism is of type (e) in
Theorem 2.5, given by (z,y,2) — (z,y + ¢(x), z). This completes the proof. O

2.10. A special Danielewski surface S ~ Sg ; always admits nontrivial actions of the multiplicative
group Gy, corresponding to the fact that the associated Al-bundle p: S — X (r) is actually the
structural morphism of a principal G, x-bundle over X (r) (see 1.18). More precisely, it follows
from the gluing construction described in 1.8 that for every polynomial b (z) € k [z], the local
G, k-actions on the canonical open subset S; ~ Spec (k [x] [u;]) of S defined by the comorphisms

d@l+b(x)®Id: k2] [u] — k2] [w] @z K [2] [t] >~k [2] [u, t]



glue to a global G, j-action tp : G4, x S — S on S. If h > 2, then the associated algebraic
quotient morphism 7 : S — S//G, ~ Al is a unique A!-fibration on S up to automorphisms
of the base (see Theorem 1.15 above). Furthermore, Proposition 2.12 in [8] implies that every
G, x-action on S is obtained by the above procedure. In the setting of in Theorem 2.5 above, the
Gy, x-action t; on S coincides in a normalized embedding i, : S — A% of S as a surface defined
by the equation 2"z — [[;_, (v — 0; (z)) = 0 with the restriction to S, j, of the G, y-action on A}
defined by the comorphism A}, (z,y, 2) : k[z,y, 2] — k[z,y, 2, 1]

(x,y,2) — (:C,y + 2"t (z), 2 + 27" (H (y + 2"t (z) — 0y (2)) — H (y — oy (m)))) .

i=1 i=1
More generally, we have the following result.

Proposition 2.11. Let S ~ Sq  be a Danielewski surface and let t, : G, x S — S, where
b € k[z] be a nontrivial G, -action on S. Then for every closed embedding i : S — A3 of S as a
surface defined by the equation
T
2z — By (o) [T (0 0 (@) + 2" Ba (2,0) = 0
i=1
there exists an algebraic G i-action on A3 for which i becomes an equivariant embedding.

Proof. Recall that the embedding i(g, r,) of S is defined by the regular functions z, 1, and
¢= x_hQ ('T’w’y)v where @ ('T’w’y) =R ('T’w’y) szl (w’y -0 (x)) + 2" Ry ('T’w’y)' Since Yy |5¢:
zhu; + oy (¥) € k[z][u;),we conclude that t; () = ¥, + 2" f ()t € O(S(v))[t]. Similarly,
one checks that t; ({) = ¢+ 27" (Q (z,¢y + 2" f (2)t) — Q (z,¢)) € O(S (7)) [t]. So it follows

that 4 is equivariant when we equip A} = Spec (k[z,y, z]) with the G, y-action defined by the
comorphism

wr ke, y, 2l = klz,y, 2], (2, 2) = (2 +2"b (@)t 2+ 27" (Q (z,y + 2"b (2) t) — Q (,9))) -
O

2.3. Danielewski surfaces S ; with quasi-homogeneous normal forms.

As an application of the above results, we study special Danielewski surfaces isomorphic to a

surface with equation z"z — P (y) = 0 in Az. When k£ = C, we show that up to isomorphisms,
there are more surfaces of this type in the holomorphic category than in the algebraic one.

2.12. Lemma 2.3 above implies that the collection of polynomials o; (), i =1,...,r, correspond-
ing to a surface Spj, C A} is given by o; (z) = y; for every i = 1,...,r. In turn, we deduce from
Theorem 1.20 and Example 1.21 above that a Danielewski surface Sg ;, with a normal form Se j,
defined by a datum (r, hyo={oi(x)};—y T) is isomorphic to a surface Sp,, as above if and only
if there exists a polynomial 7 (z) € k [z] such that o; (z) = 0;(0) + 7 (z) for every i = 1,...,7. So
we conclude that every such surface correspond to a fine k-weighted rake v of the following type.

1 Y2 Yr—1 Yr
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2.13. A Danielewski surface S, defined by the equation 2z — [[,_, (y — 0; (0) — 7 (2)) = 0
admits a nontrivial action of the multiplicative group G, » which arises as the restriction of the
G g-action ¥ on A3 defined by ¥ (a;z,y,2) = H, (z,y,2) = (a:z:,y + 7 (ax) — 7 (x) ,a‘hz). In
the setting of Proposition 2.7 above, the automorphisms H, correspond to data Ay, = (1,1,a,0),
where a € k*. Over an infinite base field k, it turns out that Danielewski surfaces isomorphic to a
surface Sp, are exactly the ones which admit a nontrivial G,, ;-action. More precisely, we have
the following result.

Proposition 2.14. If a special Danielewski surface Sq ., defined by the equation 2"z —Q (z,y) =0
admits an automorphism ® determined by a datum As = («, p,a,0) as in Proposition 2.7 such
that a® # 1 for every s = 1,...,h — 1 then Sq , is isomorphic to a surface Spj, C A} defined by
the equation z"z — P (y) = 0.

Proof. We let (r, h,o={o; (z)},_,
by means of the procedure described in Lemma 2.3. Under our hypothesis, it follows from 1°a) in

the proof of Lemma 2.9 that there exists a polynomial 7 (x) € k [z] such that o; (x) = 0; (0)+7 (2)
as desired. O

T) be the datum associated to the Danielewski surface Sq p,

.....

Definition 2.15. A Danielewski surface S ~ Sg 5, is said to be of quasi-homogeneous normal type
if it is isomorphic to a surface defined by the equation "z — P (y) = 0 for a suitable polynomial
P (y).

Remark 2.16. It follows from the above discussion that a Danielewski surface .S of quasi-homogeneous
normal type admits a closed embedding in Ai as a surface Spy, for which the G,, x-action on S
arises as the restriction of a G, ;-action on the ambient space. However, we will see in 3.12 below
that there exists other closed embeddings of S in A3 for which this action on S do not extend to
the whole of A3.

2.17. If k = C then it turns out that there exists Danielewski surfaces which are not algebraically
isomorphic but holomorphically isomorphic to a surface Spj. For instance, G. Freudenburg and
L. Moser-Jauslin [11] established that the surfaces Sy and Sy in A} defined by the equations
222 —y?2 —1 =0 and 222 — 2 — 1 + = = 0 respectively are algebraically non-isomorphic but
holomorphically isomorphic. One checks using Lemma 2.3 that the second one is isomorphic to
the surface defined by the equation 22z — (y — i + iz/2) (y + i — iz/2) = 0, which is not of quasi-
homogeneous normal type by virtue of the above criterion. In [11], the above example is obtained
by giving an explicit holomorphic automorphism ® of A% such that ® (Sp) = S1. In what follows,
we give an alternative interpretation using the fact that certain A'-bundles over a fixed base

scheme are holomorphically isomorphic but not algebraically isomorphic.

2.18. We let y1,...,y be a collection of r > 2 pairwise distinct complex numbers. For every
h—1 o,
U
integer h > 1, we let n, (u) = E — € Clu]. For every t € C, we consider the Danielewski
n!
n=0

surface S; C A2 defined by the equation 2"z — []/_, (y — vinn (tz)) = 0. One checks easily using
the criterion given in 2.12 above that for every t # 0, S; is not of quasi-homogeneous normal type,
whence is not isomorphic to Sy. However, we have the following result.

Proposition 2.19. For every t # 0, the surface S; is biholomorphic to Sy.

Proof. Recall that by construction S; is isomorphic to the total space of the Al-bundle p : S; —
X (r) obtained by gluing = copies S;; = Spec (C [z,u;]) of AZ outside the line L = {z = 0} by
means of transition isomorphisms S;; > (z,u;) — (z,u; +z "y (tz) (y; — yi)) € Si; for ev-
ery i,j = 1,...,7. As an holomorphic Al-bundle, p : S, — X (r) is biholomorphic to the one
p: Sy — X (r) defined by the transition functions {g;; = 2~ "e'® (y; — yi)}m.:1 vvvvv - Indeed, since
by construction, z +— =" (' — 5, (tz)) is an holomorphic function on A} for every ¢ € C, the cor-
responding biholomorphism q;t 05, 508, s simply defined at the level of the open subsets S; ; and

S, i by means of the local biholomorphisms ¢, ; : S;.; = Si4, (z,u) (z,u+ 7" (e —my (t2))).



On the other hand, the local biholomorphisms ¢ ; : Sp; — S’m, (v,u;) = (z,eu;), i =1,...,7,
glue to a global one ¢; : Sy — S, and we conclude that ¢, 0 : Sg = Sy is a biholomorphism. [

Remark 2.20. Letting X, C A x AL = Spec(C|z,y, z][t]) be the algebraic variety defined by
the equation 2"z — [T;_, (y — yinn (tz)) = 0, one can consider the Danielewski surfaces S; as the
members of a nontrivial flat family = = pr, : X}, — A} of surfaces in A3. It follows from the proof
of Proposition 2.19 above that this family = : A} — A}C is holomorphically trivial, a trivialization
being given by the map ® : So x AL — Xy, (s,t) — @ (s,t) = b 0 (s).

2.21. The above result implies in particular that for every ¢ # 0 the Danielewski surface S; C A%
defined by the equation "z — [[/_, (y — yins (tz)) = 0 admits a holomorphic C*-action but no
algebraic ones.

3. EMBEDDINGS OF DANIELEWSKI SURFACES Sg 5 IN AFFINE 3-SPACE

It follows from the above discussions that a Danielewski surface S isomorphic to a surface Sg 5, in
A? admits for every polynomial R (z,y) such that R (0,y) is a nonzero constant a closed embedding
ir S < A} in A} as a surface defined by the equation 2"z — R (z,y) [[;_, (y — 0 (z)) = 0 for
a suitable collection o = {o; (z)},_; . In this section, we compare these embeddings up to the
action of certain automorphisms of A¥. We show that if R is not constant then the automorphisms
of these surfaces do not always extend to algebraic automorphisms of the ambient space. In
contrast, we establish that if £ = C all the above embeddings are equivalent under the action of
the group of holomorphic automorphisms of A% and that every automorphism of such a surface
extend to an holomorphic automorphism of AZ.

3.1. Algebraic and analytic equivalence.
Here we briefly discuss the notions of algebraic and analytic equivalences of closed embeddings of
a given affine algebraic surface in the affine 3-space.

3.1. Given two irreducible affine algebraic surfaces S; and Sy defined over a field k, we consider
closed embeddings ip, : 51 — A% and ip, : So — A% of S; and S- into a fixed affine 3-space A? =
Spec (k [z, y, 2]) as surfaces V (P1) = Spec (k [z,y,2]/ (P1)) and V (Py) = Spec (k [x,y,2,]/ (P2))
defined by the equations P; = 0 and P, = 0 respectively. In this setting, a morphism ¢ : S5 — S
is said to be algebraically extendable to A3 with respect to the pair (ip,,ip,) if there exists an
endomorphism @ : A7 — A? such that ip, o p = Poip,.

Definition 3.2. Two closed embeddings ip, : S < A} and ip, : S < A} of a same irreducible
affine algebraic surface S are called algebraically equivalent if one of the following equivalent
conditions is satisfied:

1) idg : S — S is algebraically extendable to an automorphism ® of A?.

2) There exists an algebraic automorphism ® of Az such that ®*P; = AP, for a certain nonzero
constant A € k*.

3) The algebraic families P, : A} — A} and P, : A} — A} of level surfaces of the polynomials
P, and P, respectively are isomorphic in the sense that they fit in a commutative diagram

3_ @ 3
Ay — A}

P l lpz
¢
Al—> Al
where ® and ¢ are automorphisms of A7 and A}, respectively.

Remark 3.3. Over a base field k of characteristic zero, the above characterisations of algebraic
equivalence are also equivalent to the following one:
4) There exists an automorphism ¢ of A} and an algebraic family of endomorphisms of A}

AL X AL AL (L, 2) o B2,y 2) = @By, 2),
parametrized by A} and inducing isomorphisms ®; : P, ! (t) = Py ' (¢ (t)) for every t € A}



Indeed, since the level surfaces of P; and P» cover A3, the condition guarantees that ® (z,y,z) =

) (Py (2,y,2),2,y,2) is a bijective endomorphism of A}, whence an isomorphism by virtue of
Zariski Main Theorem, such that P, o ® =1 o P;.

3.4. T what follows, we will also discuss extensions of an algebraic morphism ¢ : So — S7 to
an holomorphic map ® : A2 — A}. For closed embeddings of a given complex affine variety,
this leads to the notion of analytic equivalence that we use in 3.9 below. Note that analytic
equivalence is a weaker requirement than algebraic equivalence. Indeed, two hypersurfaces V (P;)
and V (P) of A} as in Definition 3.2 above are analytically equivalent if and only if there exists
an automorphism ®* : H (A%) = H (A2), where H (A2) denotes the algebra of holomorphic
functions on A2, such that ®* (P) = AQ for a certain nowhere vanishing holomorphic function
AEH (A%). Since there are many nonconstant holomorphic functions with this property on A,
the corresponding holomorphic map @ : A% — A% need not preserve the algebraic families of level
surfaces Py : A} — Al and Pp : AL — Al.

3.2. Algebraic and analytic equivalence of embeddings of Danielewski surfaces Sg .
Here we consider equivalence of embeddings in A} of a Danielewski surface isomorphic to a surface
Sq.n- The study of certain of these embeddings has been initiated by G. Freudenburg and L. Moser-
Jauslin [11] and developed further by Moser-Jauslin and the second author [17]. Our purpose
here is to illustrate by explicit examples of algebraically inequivalent embeddings what kind of
phenomena can arise in the algebraic context. Indeed, we establish in contrast that if £ = C then
the embeddings of a given Danielewski surface S as a surface Sg 5 in A% are all holomorphically
equivalent.

3.5. It follows from Lemma 2.3 above that every Danielewski surface S isomorphic to a sur-

face Sg in A} admits a closed embedding in A} as a surface defined by the equation z"z —
[Ii=; (y — i (x)) = 0 for a suitable collection of polynomials o = {o; (2)},_; . It is natural

to ask if every other closed embedding of S as a surface S j is algebraically equivalent to the
previous one. In 2002, G. Freudenburg and L. Moser-Jauslin [11] discovered that the answer is
negative in general.

Example 3.6. Given an integer h > 2 and polynomial P (y) € Cly] with » > 2 simples roots
Y1,-..,Yr, we consider the Danielewski surfaces Sy and S; in A2 defined respectively by the
following equations :

fo=z"2—-P(y) =0 fi=atz—(1—2)P(y)=0.

Note that Sy is simply a normalized embedding of S; in A}. We claim that these embeddings are
not algebraically equivalent. Indeed, for every ¢ € C* such that the polynomial P (y) — ¢ has a
multiple root, the level surface f; L(t) of fy is a singular surface. On the other hand, all the level
surfaces of fi are nonsingular as follows for instance from the Jacobian Criterion. So condition 3)
in Definition 3.2 cannot be satisfied.

3.7. In view on the above example, it is very tempting to believe that every closed embedding of
So as a surface with equation 2"z — R (x,y) P (y) = 0, where R (x,y) is nonconstant polynomial,
is algebraically inequivalent to the original one. It turns out that it is not the case in general and
that the classification of these embeddings up to algebraic equivalence is a difficult problem. For
instance, a slight modification of the above example leads to the following surprising fact which
generalizes a result of L. Moser-Jauslin and the second author [17].

Proposition 3.8. For every polynomial P (y) € C[y| of degree r > 2 and every polynomial R €
C[y], the surfaces in A} defined by the equations fr (x,y, 2) = 2°2z—(1 — 2P’ (y) R(P (y))) P (y) =
0 are algebraically equivalent embeddings of a same surface S.

Proof. Tt is enough to show that for every R, there exists an automorphism U* = ¥, of C [z, y, 2]
such that U* fp = fo. To construct ¥* we first define a one-parameter family (¢{),.. of endomor-
phisms of C [z, y, 2] such that for every ¢t € C, ¢y (fr + t) belongs to the ideal generated by fo+t.
For every t € C, we let S; (y) = (P (y) — )" (tR(t) — P (y) R(P (y))) € C [y, 1], and we let ¢ be



the C [z]-endomorphism of C[z,y, 2] y — y + xtR (t), z — (1 + P’ (y) St (v)) z + s¢ (x,y), where
st (z,y) € C[z,y,t] is the unique polynomial such that

P (i () — P (i () R(P (W7 () P (i () —t = (P(y)—t)(L+aP (y) S (y)) + 2’s¢ (z,y) -

It follows that ¢} (fr+1t) = (1 +xP' (y) St (y)) (fo+t) for every ¢ € C. One checks that the
C [z]-endomorphism ¥* = Y* g of C [x,y, 2] satisfies U*fr = fo. To show that ¥* is an au-
tomorphism, it is enough to check that C[¥*z, U*y, U*z] = Clx,y,2]. Since ¥*z = z and
U*fr = fo, it follows that y = U* (y + frR(—fr)). In turn, this implies that the polyno-
mial (1 + P’ (y) S—s, (y)) 2 = V*z2—s_g, (x,y) and (1 — P’ (y) S—y, (v)), whence the polynomial
(1—2aP' (y)S—s, (y)) (1 +xP" (y) S—y, (y)) z belong to C [¥*z, U*y, ¥*z]. We eventually conclude
that z — 22z (P' (y) S_;,)° = z — (fo+ P (y)) (P’ (y) S_y,)° is in the image of ¥* and so is z too.
This completes the proof. O

It turns out that things become simpler if one works in the holomorphic category. Indeed, we have
the following result.

Theorem 3.9. The embeddings ig p : S — A} of a Danielewski surface S as a surface defined by
the equation z"z — Q (x,y) = 0 are all analytically equivalent.

Proof. 1t suffices to show that every embedding ig 5 is analytically equivalent to a normalized one
io,n- In view of Propositon 2.3, we can let Q (z,y) = R (z,y) [[—, (y — 0i (¥)) + 2" Ra(z,y). Tt is
enough to construct an holomorphic automorphism ¥ of A2 such that ¥* (z"z — [[/_; (y — 0y (2))) =
o (z"z — Q (z,y)) for a suitable invertible holomorphic function a on A%. We let Ry (0,y) = X €
C* and we let f (x,y) € C[x,y] be a polynomial such that Aexp (zf (x,9)) = R (z,y) mod z".

Now the result follows from the fact that the holomorphic automorphism ¥ of A% defined by

U(r,y,2) = (fc y Aexp (zf (2,y)) z — ™" (Nexp (f (2,9)) = RBi (2,9) [ [ (v — 01 (2)) + Rz, y))

satisfies U* (z'z — Q (z,y)) = Aexp (zf (z,9)) (z"z — I\, (v — 0i (2)))- O

Example 3.10. In Example 3.6 above, we observed that the surfaces Sy and S; defined by the
equations fo = 222 — P(y) = 0 and f; = 222 — (1 — x) P (y) = 0 are algebraically inequivalent
embeddings of a same surface S. However, they are analytically equivalent via the automorphism
(z,y,2) — (:L', y,e Cz—ax2(e®—1+x)P (y)) of Ad.

3.3. Algebraic and analytic extension of automorphisms.

We have seen in Theorem 2.5 above that every automorphism of a Danielewski surface S, , C A}
defined by the equation 2"z — [[;_; (y — 0; (z)) = 0 can be extended to an automorphism of A}.
In this subsection, we investigate the case of surfaces Sg ) in general and we show that some of
them admit automorphisms which are not algebraically extendable to the whole of A3.

3.11. In what follows, we work over an algebraically closed field k of characteristic zero. We
consider a surface S C A} defined by the equation 2"z — (1 —2) P (y) = 0, where h > 2 and
where P (y) is a nonconstant polynomial of degree r > 2. Letting, ¥* and ¢* be the k[z,y]-
algebra endomorphisms of & [z,y, z] defined by ¢¥* (z) = (1 — z) z and ¢* (z) = (Zi-:ol xz) z+
P (y), one checks that the corresponding endomorphisms ¢ and ¢ of A} induce isomorphisms
between S and the surface Sp; defined by the equation z"z — P (y) = 0. The latter admits
an action 0 : G X Spp, — Spyp of the multiplicative group Gy, i defined by 6 (a,z,y,2) =
H, (z,y,2) = (ax,y,a”"z) for every a € k*. It turns out that corresponding action 6 on S defined
by é(a,:c,y,z) =6, (2,y,2) = po Hy (2,y,2) |5, o does not extend to a Gy, p-action on A3,
Indeed, we have the following result.

Theorem 3.12. Every Danielewski surface S C A} defined by the equation 2" z—(1 — x) P (y) = 0,
where h > 2 and where P (y) has v > 2 simple roots, admits a nontrivial G, -action 0 : G, , X



S — S which is not algebraically extendable to A3. More precisely, for every a € k\ {0,1} the
automorphism 0, = 0 (a,-) of S do not extend to an algebraic automorphism of A3.

Since by construction, 0* (z) = ax for every a € k*, the assertion is a consequence of the
following Lemma which guarantees that the automorphism 6, of S is not algebraically extendable
to an automorphism of A3.

Lemma 3.13. If ® is an algebraic automorphism of A} extending an automorphism of S, then
O* (z) = x.

Proof. Our proof is similar as the one of Theorem 2.1 in [17]. We let ® be an automorphism of
A3 extending an arbitrary automorphism of S. Since f; = 2"z — (1 — ) P (y) is an irreducible
polynomial, there exists p € k* such that ®* (f;) = wpfi. Therefore, for every t € k, the au-
tomorphism ® induces an isomorphism between the level surfaces ffl (t) and ffl (;flt) of f1.
There exists an open subset U C A} such that for every ¢ € U, f1_1 (t) is a special Danielewski
surfaces isomorphic to a one defined by a fine k-weighted rake v whose underlying tree I" is iso-
morphic to the one associated with S. Since I' is not a comb, it follows from Theorem 1.15 that
for every ¢ € U, the projection pr, : f; ' (t) — Al is a unique Al-fibration on f; ' (¢) up to au-
tomorphisms of the base. Furthermore, pr,, : fi ! (t) — A}v has a unique degenerate fiber, namely
pr;* (0). Therefore, for every ¢t € U, the image of the ideal (z, fi —t) of k[z,y, z] by ®* is con-
tained in the ideal (z,puf1 —t) = (z, P (y) + p~'t), and so ®* (z) € N,y (@, P (y) + p~'t) = (2).
Since @ is an automorphism of A3, we conclude that there exists ¢ € k* such that ®* (z) = ca.
In turn, this implies that for every ¢t,u € k, ® induces an isomorphism between the surfaces
St and S”t,u defined by the equations f; +tx +u = 2"z — (1 —2)P(y) +tr +u = 0 and
fit+ptetr +ptu =22 — (1 —2) P(y) + p~tetz + p~tu = 0 respectively. Since deg (P) > 2
there exists yog € k such that P’ (yo) = 0. Note that yo is not a root of P as these ones are simple

We let t = —u = —P (yo). Since h > 2, it follows from the Jacobian Criterion that S, is
singular, and even non normal along the nonreduced component of the fiber pr;! (0) defined by
the equation {z = 0; y = yo}. Therefore S;, must be singular along a multiple component of the
fiber pr; ! (0). This the case if and only if the polynomial P (y) — u~tcP (yo) has a multiple root,
say y1, such that P (y;) —pu~ 1P (yo) = 0. Since P (yo) # 0 this condition is satisfied if and only if
¢ = 1. This completes the proof. O

Example. In particular, even the involution J(z,y,2) = (—z,y,(1+ ) ((1 + )z + P (y))) of
the surface S defined by the equation 2%z — (1 — ) P (y) = 0 does not extend to an algebraic
automorphism of A?.

3.14. By virtue of Proposition 2.14 above a Danielewski surface S ~ Sg ; admits a nontrivial
C*-action if and only if it is isomorphic to one defined by the equation x"z — P (y) = 0. If this
holds then S admits a normalized closed embedding in A2 for which this C*-action comes as the
restriction of a linear C*-action on A%. On the other hand, Theorem 3.12 above shows that S may
admit other embeddings, which are not equivalent to their associated normalized one, for which
this action does not extend to the ambient space. This leads to the following natural question:

Conjecture : For a closed embedding igp : S — A} of a Danielewski surface S of quasi-
homogeneous normal type (see Definition 2.15 above) as a surface Sg ;, the following are equivalent:
1) ig,p is algebraically equivalent to a normalized embedding i, of S.
2) There exists a C*-action on A extending the one on Sg .

3.15. It follows from 3.9 above that every closed embedding in A? of a Danielewski surface as a
surface Sq 5 is analytically equivalent to a normalized one i, . In turn, Theorem 2.5 implies that
every automorphism of S, ;, can be extended to an algebraic automorphism of AZ. This leads to
the following result.

Corollary 3.16. Every algebraic automorphism of a Danielewski surface Sq 1, in Ad is extendable
to a holomorphic automorphism of A%.



This implies in particular that the C*-action on the surface S defined by the equation zz —

(1 —2) P (y) = 0 defined in 3.11 extends to an holomorphic C*-action on A?. This contrasts with
an example of a non-extendable C-action on an hypersurface in A2 which is even holomorphically
inextendable given by H. Derksen, F. Kutzschebauch and J. Winkelmann [6].

Corollary 3.17. Every surface S C A} defined by the equation 2"z — (1 —z) P (y) = 0, where
h > 2 and where P (y) has r > 2 simple roots, admits a nontrivial C*-action which is algebraically
inextendable but holomorphically extendable to AZ.

Example 3.18. Welet § : C*x S — S be the C*-action on the surface S C A2 defined by the equa-
tion 22z — (1 — x) P (y) = 0 constructed in 3.11. For every a € C*, the automorphism 6 (a, -) of S
maps a closed point (z,y, z) € S to the point 0 (a, z,y, z) = (az,y,a™? (1 —ax) (1 + ) z + P (y)))-
One checks that the holomorphic automorphism ®, of A? such that @, |s= 0 (a,-) is the following
one:

D, (z,y,2) = (ax, y,a 2172 4 (az) 2 P (y) (e(l_a)l (x—1)—ax+ 1)) .

Clearly, the holomorphic map ® : C* x A% — A2, (a, (z,y,2)) — P, (2,y, z) defines a C*-action
on A extending the one 6 on S.
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