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Logarithmic Sobolev Inequalities for Inhomogeneous Markov

Semigroups

Jean–François Collet1 And Florent Malrieu2

Abstract. We investigate the dissipativity properties of a class of scalar second order parabolic
partial differential equations with time-dependent coefficients. We provide explicit condition on the
drift term which ensure that the relative entropy of one particular orbit with respect to some other
one decreases to zero. The decay rate is obtained explicitly by the use of a Sobolev logarithmic
inequality for the associated semigroup, which is derived by an adaptation of Bakry’s Γ− calculus.
As a byproduct, the systematic method for constructing entropies which we propose here also yields
the well-known intermediate asymptotics for the heat equation in a very quick way, and without
having to rescale the original equation.

Résumé. Cet article propose une étude du mécanisme de dissipation d’entropie pour une classe
d’équations aux dérivées partielles paraboliques dont les coefficients dépendent du temps. Sous des
critères formulés explicitement en terme des coefficients, nous établissons la décroissance exponen-
tielle de l’entropie relative d’une orbite par rapport à une autre, pour des équations n’admettant pas
de solution stationnaire. La méthode utilisée repose sur l’obtention d’une inégalité de type Sobolev
logarithmique pour le semi-groupe associé, grâce à une adaptation du critère de Bakry-Émery.
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1 Introduction

1.1 The Kullback-Leibler Distance as a Particular Φ-Entropy

Given two probability densities u, v on R
d, the entropy of u relative to v (also known in information

theory as their Kullback-Leibler distance (see [10]), although it is not a distance) is defined by

H(u|v) :=

∫

Rd

u(x) ln

(

u(x)

v(x)

)

dx. (1)
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Although this quantity does not satisfy the triangle inequality, it is always nonnegative and vanishes
only when u = v. These two facts are immediate consequences of the well-known Pinsker inequality
(see [12]):

H(u|v) ≥ 1

2
|u − v|2L1 .

Thus the quantity H(u|v) may provide some notion of “distance” between u and v. In Partial
Differential Equations H(u|v) may be useful in studying the asymptotic behavior of a dissipative
system. In this context v is in general a stationary solution (or in physical terminology a detailed
balance equilibrium), u is the orbit of some Kolmogorov (or some other parabolic) equation, and
H(u|v) is a decreasing function of time. In many cases this fact can be combined with some clever
inequalities to show that v in fact attracts u in some appropriate metric. This is the basis of the
well-known entropy dissipation method (see [14]), which has been used to good advantage in many
examples such as (linear or nonlinear) parabolic equations, kinetic equations, etc...

As is well-known from information theory and Statistical Physics (1) is a particular instance of
a more general class of entropies:

HΦ(u|v) :=

∫

Rd

v(x)Φ

(

u(x)

v(x)

)

dx, (2)

where Φ is any convex function defined on [0,∞[. Formula (1) corresponds to the particular choice
Φ(z) = z log z which has an interesting extensivity property [8], but as a general rule the dissipation
of entropy is a convexity property which has little to do with the specific properties of the z log z
function.

In this paper we investigate a class of linear parabolic equations which due to the presence of
time-dependent coefficients have no stationary solution, but for which orbits still do come together
in the “metric” given by (1) or (2). More precisely, we will give explicit conditions on the coefficients
which ensure that the quantities (1) or (2) decrease to zero for large time, with quantitative bounds,
for any two orbits u and v, that is, even when v is a non-stationary solution.

1.2 The Entropy Production for Linear Scalar Advection-Diffusion Equations

Let us consider a general multidimensional linear equation in the form:

∂u

∂t
+ divJ(u,∇u) = 0, (3)

where J is some specified flux function. Let Φ be any convex function, and assume that J is such
that this equation preserves positivity. Given two (time-dependent or not) positive solutions u and
v of this equation, we define the quantity HΦ(u|v) at any time t by

HΦ(u|v) :=

∫

Rd

v(t, x)Φ

(

u(t, x)

v(t, x)

)

dx

(From here on, the notation dx will mean d−dimensional Lebesgue measure). The convexity of Φ
implies a lower bound for HΦ(u|v) as follows: using Jensen’s inequality with the probability measure

vdx
∫

v dx
we obtain the inequality

∫

Rd

v(t, x)Φ

(

u(t, x)

v(t, x)

)

dx ≥
∫

Rd

v(t, x) dxΦ

(

∫

Rd u(t, x) dx
∫

Rd v(t, x) dx

)

.

If we assume that Φ(1) = 0 and that u and v have the same integral (which we only have to assume
at time zero, since equation (3) will preserve mass for reasonable solutions), we see that HΦ(u|v)
remains nonnegative.

Assuming that u and v vanish at infinity, a straightforward computation then yields:

d

dt
HΦ(u|v) =

∫

Rd

Φ′′
(u

v

)

∇
(u

v

)

[

J(u,∇u)

u
− J(v,∇v)

v

]

u dx. (4)



Perhaps the best known case of this general formula is the case of a one-dimensional Kolmogorov
(also known as Fokker-Planck equation) equation admitting a detailed balance equilibrium m. In
this case (3) takes the form:

∂u

∂t
− ∂

∂x

(

D(x)m(x)
∂

∂x

( u

m

)

)

= 0.

Taking v = m in (4) we obtain :

d

dt
HΦ(u|m) = −

∫

Rd

Φ′′
( u

m

)

∣

∣

∣

∣

∂

∂x

( u

m

)

∣

∣

∣

∣

2

Dm dx,

in which one recognizes a generalization of the familiar Fisher information, the usual Fisher infor-
mation corresponding to the case where D(x) = 1 for all x, together with the choice Φ(r) = r log r.

Let us now go over to the case of a general linear second-order scalar advection-diffusion equation:

∂u

∂t
+ div(b(t, x)u − a(t, x)∇u) = 0. (5)

Here b is a given vector field, and a is a given diffusion matrix. For any two positive solutions u, v
to this equation, (4) now becomes:

d

dt
HΦ(u|v) = −

∫

Rd

Φ′′
(u

v

)[

∇
(u

v

)

· a∇
(u

v

)]

v dx. (6)

As expected, this formula shows that linear transport does not play any role in the entropy pro-
duction (the expression does not involve the velocity field b): in physical parlance, diffusion here is
the only irreversible process. Let us emphasize that, from the convexity of Φ and the positive defi-
niteness of the diffusion matrix a, we obtain that the relative entropy H(f |g) is a time-decreasing
quantity, whatever the solutions u, v are, and whatever the coefficients b, a are. In par-
ticular for arbitrary time-dependent coefficients b and a the system will have no detailed balance
equilibrium , i.e. the problem

b(t, x)u(t, x) = a(t, x)∇u(t, x)

will have no solution at all. Note that in the context of Markov processes, a similar dissipation
property was exhibited by Yosida, and Kubo (see [9]).

The natural question then arises to investigate under which (sufficient) conditions on the coeffi-
cients of the equation does the entropy decrease to zero. In the classical setup where one investigates
the trend toward a stationary solution, it is well-known that for a large class of such stationary so-
lutions, some Logarithmic Sobolev Inequality is available [11]. This fact can be used to obtain a
Gronwall-type inequality for the entropy, thereby yielding exponential decay. The supplementary
difficulty here is that the measure relative to which the entropy is computed moves along the flow,
in such a way that classical conditions which ensure that a logarithmic Sobolev inequality will hold
cannot be checked a-priori.

In the next section we revisit a well-known prototype, the Ornstein-Uhlenbeck equation with
constant drift. This example shows that depending on the nature of the drift the entropy may decay
to zero in an exponential or algebraic fashion, or converge to a nonzero value. Section 3 collects the
technical tools needed to show that for the case where the diffusion matrix is the identity matrix,
the solution of the evolution problem will satisfy the logarithmic Sobolev inequality at all positive
times. The asymptotic behavior of the entropy is obtained as an easy corollary in Section 4. Finally
in Section 5 we show that at least for the heat equation (but we believe for a much larger class of
parabolic problems), the choice of the fundamental solution for v provides a very quick proof of the
classical Gaussian intermediate scaling.

2 The fundamental example: the Ornstein-Uhlenbeck process

Let us consider the simplest case. Denote by (X)t≥0 the solution of

dXt =
√

2Bt − λXt dt,



where (B)t≥0 is a standard Brownian motion on R and λ ∈ R is a constant. This equation can be
solved as follows:

Xt = X0e
−λt +

√
2

∫ t

0
eλ(s−t) dBs.

As a conclusion, the measure Pt(·)(x) which is defined as the law of Xt knowing that X0 = x is the
Gaussian measure with mean xe−λt and variance (1− e−2λt)/λ. One can then compute the relative
entropy of Pt(·)(y) with respect to Pt(·)(x):

α(t) := H(Pt(·)(y)|Pt(·)(x)) =
λ(x − y)2

2(eλt − 1)
,

since Pt(·)(y) and Pt(·)(x) have the same variance. Of course, in the case when λ = 0, the above
formula has to be understood as

H(Pt(·)(y)|Pt(·)(x)) =
(x − y)2

4t
.

As a conclusion, three different behaviors can occur:

• if λ > 0, then α decreases exponentially fast to 0, which is natural since Pt(·)(x) converges
exponentially fast to its invariant measure N (0, 1/λ).

• if λ = 0, then α still goes to zero although Pt(·) does not converge to a probability measure,

• if λ < 0, then α converges exponentially fast to a nonzero limit:

α(t) =
−λ(x − y)2

2(1 − eλt)
= −λ

2
(x − y)2 − λ(x − y)2

2(1 − eλt)
eλt −−−→

t→∞
−λ

2
(x − y)2.

3 The local Φ-Sobolev inequality for inhomogeneous diffusion Semi-

groups

3.1 Notations

In this section we consider the family of formal elliptic partial differential operators (Lt)t>0 defined
by

Ltf(x) :=
d
∑

i,j=1

aij(t, x)∂ijf(x) +
d
∑

i=1

bi(t, x)∂if(x), (7)

where (aij(t, ·))1≤i,j≤d is a definite positive diffusion matrix and b(t, ·) is a given vector field on

R
d, defined for all t > 0. Let us suppose that the coefficients are smooth functions of (t, x). This

family of operators (Lt)t≥0 generates a inhomogeneous Markov semigroup which we will denote by

(Ps,t)0≤s≤t in the following sense. Writing as usual a as a = σσT , one can associate to (Lt)t≥0 the
solution of the following SDE:

Xx,r
t = x +

∫ t

r

b(Xx,r
s ) ds +

√
2

∫ t

r

σ(Xx,r
s ) dBt

where (Bt)t≥0 is a standard Brownian motion on R
d. Semigroup and probabilistic approaches are

linked by the fundamental relation

Ps,tf(x) := Ef(Xs,x
t ).

The Markov property of X can be translated into a composition rule for the semigroup: for every
s ≤ t ≤ u,

Ps,uf(x) = E[f(Xs,x
u )] = E

[

f
(

X
t,X

s,x
t

u

)]

= E[Pt,uf(Xs,x
t )] = Ps,tPt,uf(x).



This semigroup satisfies the well-known Kolmogorov equations:

∂sPs,tf = −LsPs,tf, ∂tPs,tf = Ps,tLtf. (8)

Let µ be a probability measure on R
d and u the density function of the law of Xt knowing that

L(X0) = µ. Then, for every smooth function f ,

E(f(Xt)) = E(E(f(Xt)|X0)) =

∫

P0,tf(x)µ(dx).

The Itô Formula ensures that, for every smooth function f and s ≤ t,

f(Xt) − f(Xs) −
∫ t

s

Lrf(Xr) dr

is a martingale. In other words,

Ef(Xt) − Ef(Xs) −
∫ t

s

ELrf(Xr) dr = 0.

As a consequence,
∫
[

u(t, x) − u(s, x) −
∫ t

s

L∗
ru(r, x) dr

]

f(x) dx = 0,

and u satisfies Equation (5) with initial condition µ in a weak sense.
Following [2, 3], let us associate to Lt the two bilinear forms Γ(t) and Γ2(t) defined by:

Γ(t)(f, g) :=
1

2
[Lt(fg) − gLtf − fLtg],

Γ2(t)(f, g) :=
1

2
[LtΓ(f, g) − Γ(g, Ltf) − Γ(f, Ltg)].

We will write Γ(t)(f) instead of Γ(t)(f, f) and Γ2(t)(f) instead of Γ2(t)(f, f).

Remark 3.1 One can check that

Γ(t)(f, g) = ∇f · a(t, ·)∇g =
1

2

∑

i=1

d
∑

j=1

[aij + aji](t, ·)∂if∂jg.

Remark 3.2 The expression of Γ2 is much more complicated in the general case. In the simple (but
informative) case when a(t, ·) is the identity matrix, it is very easy to check the following formula:

Γ2(t)(f) := ||Hess(f)||22 −∇f · Jac(b(t))∇f, (9)

where Hess(·) (resp. Jac(·)) stands for the Hessian (resp. Jacobian) matrix, and ||B||2 denotes the
Hilbert-Schmidt norm.

Remark 3.3 Notice that
∇f · Jac(b)∇f = ∇f · SJac(b)∇f,

where SJac(·) stands for the symmetric part of the Jacobian matrix i.e.,

SJac(b)ij =
Jac(b)ij + Jac(b)ji

2
.

The antisymmetric part of the Jacobian of b brings no contribution in our study. One can think
about the following explicit example: consider the 2-dimensional process X solution of the following
SDE:

dXt = dBt −
(

1 1
−1 1

)

Xt dt.

The antisymmetric part of the drift induces a rotation whereas the symmetric part ensures the
convergence to equilibrium.



Let Φ : I → R be a smooth convex function defined on a closed interval I of R not necessarily
bounded. Let µ be a positive measure on a Borel space (Ω,F). The Φ-entropy functional EntΦµ is
defined on the set of µ-integrable functions f : (Ω,F) → (I,B(I)) by

EntΦµ (f) =

∫

Ω
Φ(f) dµ − Φ

(
∫

Ω
f dµ

)

.

In what follows, µ is a probability measure. As a consequence,
∫

Ωf dµ ∈ I and the definition make
sense. in the sequel, one has to make an extra assumption in order to derive interesting functional
inequalities:

(u, v) 7→ Φ′′(u)v2 is non negative and convex on I × I. (10)

Remark 3.4 The classical variance and entropy are Φ-entropy functionals respectively associated
to x 7→ x2 on I = R and x 7→ x log x on I = [0,+∞).

Definition 3.5 The semigroup (Ps,t)0≤s≤t
is said to satisfy a local Φ-Sobolev inequality with cons-

tants (Cs,t)0≤s≤t
if for all s ≤ t and smooth function f ,

EntΦPs,t
(f) := Ps,t(Φ(g)) − Φ(Ps,tg) ≤ Cs,tPs,t

(

Φ′′(f)Γ(t)(f)
)

.

Remark 3.6 Under the so-called Bakry-Émery criterion,

∃ρ ∈ R, ∀f smooth, Γ2(f) ≥ ρΓ(f),

homogeneous diffusion semigroups satisfy a Poincaré and a logarithmic Sobolev inequality (see [4]).
As a generalization, Φ-Sobolev inequalities can also be established (see [7]).

Our aim is to take into account the time dependence of the coefficients of the diffusion process.
We will show that the appropriate adaptation of the Bakry-Émery criterion to that situation is as
follows:

∃ρ : t 7→ ρ(t) ∈ R, ∀f smooth, Γ2(t)(f) +
1

2
∂tΓ(t)(f) ≥ ρ(t)Γ(f), (11)

where ∂tΓ(t) is defined as

∂tΓ(t)(f, g) :=

d
∑

i,j=1

∂taij(t, ·)∂if∂jg.

The key point in the homogeneous and diffusive case is to get the following commutation relation
(which turns out to be equivalent to Bakry-Émery criterion):

√

ΓPtf ≤ e−ρtPt

(

√

Γf
)

.

In the following subsection we derive such a commutation relation in the inhomogeneous case.

3.2 The commutation relation

Let s and t be two fixed times, with 0 ≤ s ≤ t. The key point is the following lemma, which
describes how the dissipative mechanism tends to flatten gradients:

Lemma 3.7 Suppose that the family of operators (Lt)t≥0 defined in (7) satisfies (11). For any τ
between 0 and t, the following inequality holds true:

√

Γ(τ)(Pτ,tg) ≤ exp

(

−
∫ t

τ

ρ(u) du

)

Pτ,t

(

√

Γ(t)(g)
)

. (12)



Proof . For all u ∈ [τ, t], we define β(u) by

β(u) = Pτ,u

(

√

Γ(u)(Pu,tg)

)

,

and compute its derivative by using (8). The crucial assumption that Lu is a diffusion operator
ensures that

Lu(Φ(g)) = Φ′(g)Lu(g) + Φ′′(g)Γ(u)(g). (13)

In order to make the exposition clearer we denote Pu,tg as h and Γ stands for Γ(u). A straightforward
computation leads to:

β′(u) = Pτ,u

(

Lu

√

ΓPu,tg +
1

2
√

Γ(Pu,tg)
{−2Γ(Pu,tg, LuPu,tg) + ∂uΓ(Pu,tg)}

)

= Pτ,u

[

1

2
√

Γh
LuΓh − 1

4(Γh)
3

2

ΓΓh − Γ(h,Luh)√
Γh

+
∂uΓ(h)

2
√

Γh

]

= Pτ,u

[

2(Γh)LuΓh − 4(Γh)Γ(h,Luh) − ΓΓh + 2(Γh)(∂uΓh)

4(Γh)
3

2

]

= Pτ,u

[

4(Γh)Γ2(u)(h) − ΓΓh + 2(Γh)∂uΓh

4(Γh)
3

2

]

.

Therefore we obtain:

β′(u) − ρ(u)β(u) = Pτ,u

[

4(Γh)(Γ2(u)(h) + (1/2)∂uΓh − ρ(u)Γh) − ΓΓh

4(Γh)
3

2

]

.

Following [4], one can show, thanks to the diffusion assumption, that the criterion (11) implies that,
for all smooth functions f ,

Γ2(u)(f) + (1/2)∂uΓf − ρ(u)Γf ≥ ΓΓf

4Γf
.

Remark 3.8 In the case when a is the identity matrix, one can easily get derive this inequality
from the criterion (11) and the Cauchy-Schwarz inequality.

As a conclusion, β satisfy the following differential inequality:

β′(u) ≥ ρ(u)β(u).

In other words, the function

u 7→ β(u) exp

(

−
∫ u

τ

ρ(v) dv

)

is an increasing function on the interval [τ, t] which implies that

β(τ) ≤ β(t) exp

(

−
∫ t

τ

ρ(u) du

)

.

This is precisely the desired inequality. �

3.3 Local Φ-Sobolev inequalities

Theorem 3.9 Suppose that the family of operators (Lt)t≥0 defined in (7) satisfies (11). Then for
any times s, t with 0 ≤ s ≤ t and any positive function g, Ps,t satisfies the following Φ-Sobolev
inequality:

EntΦPs,t
(g) ≤ c(s, t)Ps,t

(

Φ′′(g)Γ(t)(g)
)

,

where the constant c(s, t) can be chosen as:

c(s, t) =

∫ t

s

exp

(

−2

∫ t

τ

ρ(u) du

)

dτ.



Proof. Consider the function α : [s, t] → R defined by :

α(τ) := Ps,τ (Φ(Pτ,tg)),

Let us compute the derivative of α:

α′(τ) = Ps,τ

(

Lτ (Φ(Pτ,tg)) − Φ′(Pτ,tg)LτPτ,tg
)

Thanks to the fact the diffusion assumption, (13) ensures that

α′(τ) = Ps,τ

(

Φ′′(Pτ,tg)Γ(τ)(Pτ,tg)
)

.

The commutation relation (12) ensures that

Φ′′(Pτ,tg)Γ(τ)(Pτ,tg) = Φ′′(Pτ,tg)

(

√

Γ(τ)(Pτ,tg)

)2

≤ exp

(

−2

∫ t

τ

ρ(u) du

)

Φ′′(Pτ,tg)Pτ,t

(

√

Γ(t)(g)
)2

.

Jensen inequality with the bivariate function (u, v) 7→ Φ′′(u)v2 (which is assumed to be convex
according to (10)) ensures that

Φ′′(Pτ,tg)Pτ,t

(

√

Γ(t)(g)
)2

≤ Pτ,t

(

Φ′′(g)Γ(t)(g)
)

.

As a conclusion,

α′(τ) ≤ exp

(

−2

∫ t

τ

ρ(u) du

)

Ps,τPτ,t

(

Φ′′(g)Γ(t)(g)
)

= exp

(

−2

∫ t

τ

ρ(u) du

)

Ps,t

(

Φ′′(g)Γ(t)(g)
)

.

Since α(t) = Ps,t(Φ(g)) and α(s) = Φ(Ps,t(g)), the result follows upon integration of this inequality
between s and t. �

In the special case of Φ : x 7→ x log x, the local logarithmic Sobolev inequality for the semigroup
(Ps,t)0≤s≤t

can be stated as follows:

Corollary 3.10 Suppose that the family of operators (Lt)t≥0 defined in (7) satisfies (11). Then
for any times s, t with 0 ≤ s ≤ t and any positive function g, Ps,t satisfies the following logarithmic
Sobolev inequality:

EntPs,t(g) := Ps,t(g log g) − (Ps,tg) log(Ps,tg) ≤ c(s, t)Ps,t

(

Γ(t)(g)

g

)

, (14)

where the constant c(s, t) can be chosen as:

c(s, t) =

∫ t

s

exp

(

−2

∫ t

τ

ρ(u) du

)

dτ.

Remark 3.11 If for every x ∈ R
d, the matrix (aij(t, x))i,j is bounded by the identity matrix (as

symmetric bilinear forms), then Γ(t)(g) ≤ |∇g|2 and Ps,t satisfies the classical logarithmic Sobolev
inequality:

EntPs,t(g) ≤ c(s, t)Ps,t

(

|∇g|2
g

)

.

Remark 3.12 In the case where ρ(t) = ρ for all t > 0, we recover the constant

c(s, t) =
1

2ρ

(

1 − e−2ρ(t−s)
)

provided by [4] in the homogeneous case.



4 The Kullback-Leibler distance of two orbits of a parabolic prob-

lem

We now consider the following parabolic equation (5):

∂v

∂t
(t, x) = L∗

t v(t, x), t > 0, x ∈ R
d, (15)

v(0, x) = v0(x), x ∈ R
d, (16)

where L∗
t stands for the adjoint of Lt with respect to the Lebesgue measure on R

d.
If we assume that the initial data v0 satisfies a logarithmic Sobolev inequality, the result of the

previous section may be used to show that the inequality is propagated in time:

Theorem 4.1 Assume the initial data v0 satisfies the following logarithmic Sobolev inequality: for
all smooth functions f ,

∫

f log fv0 −
∫

fv0 log

∫

fv0 ≤ d0

∫

Γ(0)(f)v0.

If the family (Lt)t≥0 satisfies the criterion (11). Then for any positive time, the solution v(t, ·) of
(15)(16) satisfies the following logarithmic Sobolev inequality

∫

f log fv(t, ·) −
∫

fv(t, ·) log

∫

fv(t, ·) ≤ d(t)

∫

Γ(t)(f)v(t, ·),

where

d(t) := d0 exp

(

−2

∫ t

0
ρ(r) dr

)

+

∫ t

0
exp

(

−2

∫ t

τ

ρ(r) dr

)

dτ. (17)

Proof . For any positive function g we have:
∫

g(x) log g(x)v(t, x) dx =

∫

E

[

f
(

X0,x
t

)]

v0(x) dx =

∫

P0,t(g log g)(x)v(0, x) dx.

The integrand may be bounded from above by using the local inequality (14) with s = 0, and the
logarithmic Sobolev inequality for v0:

∫

P0,t(g log g)v(x, 0) dx ≤
∫

P0,tg log P0,tgv0(x) dx + c(0, t)

∫

P0,t

(

Γ(t)(g)

g

)

v0(x) dx

≤ d0

∫

Γ(0)(P0,tg)

P0,tg
v0(x) dx + c(0, t)

∫

P0,t

(

Γ(t)(g)

g

)

v0(x) dx.

The first integral in the last inequality may be estimated by (12), and this completes the proof. �

We are now in a position to estimate the Kullback-Leibler distance between two arbitrary orbits
of (15):

Theorem 4.2 Under the same assumptions as in previous theorem, let u be another solution of
(15) (i.e., corresponding to different initial data u0). Assume that u0 and v0 are positive. Define
the relative entropy of u with respect to v at any positive time t by

H(u(t)|v(t)) :=

∫

u(t, x) log
u(t, x)

v(t, x)
dx.

This quantity is then bounded as follows for all positive times:

H(u(t)|v(t)) ≤ H(u(0)|v(0))c(t),

where

c(t) = exp

(

−
∫ t

0

1

d(s)
ds

)

, (18)

and d(t) is the constant defined in (17).



Proof . The proof is a straightforward application of Gronwall’s lemma. Let us set g := u
v
; from (6)

with Φ(z) = z log z, we obtain

d

dt
H(u(t)|v(t)) = −

∫

Γ(t)(g)

g
v dx.

Therefore, Theorem 4.1 gives the following control:

d

dt
H(u(t)|v(t)) ≤ − 1

d(t)
H(u(t)|v(t)),

which gives the result. Let us conclude this section by indicating what the obtained rate is when
the quantity ρ(t) may be taken to be a fixed constant ρ. If ρ = 0, then (17) gives d(t) = d0 + t,
therefore we get the algebraic decay

c(t) =
1

1 + t
d0

.

For ρ 6= 0, we have

d(t) = d0e
−2ρt +

1

2ρ
(1 − e−2ρt),

and the integral in (18) may be computed to yield

c(t) =
2ρd0e

−2ρt

1 + (2ρd0 − 1)e−2ρt
.

�

5 An application to intermediate asymptotics

In the case where a Kolmogorov equation has a rather trivial (e.g. constant) asymptotic state, it is
often the case that (due to the self similarity of the underlying Markov process) some appropriate
rescaling of the orbit shows structure (e.g. Gaussian), a phenomenon termed intermediate asymp-
totics by Barenblatt [5]. To illustrate this point let us consider the one dimensional linear heat
equation on the entire line:

∂u

∂t
=

1

2

∂2u

∂t2
, x ∈ R.

It is very easy to check that for large times u converges point wise to zero, but it is also very easy
to read off from the explicit form of the solution (as given in terms of the heat kernel) the following
point wise convergence:

√
tu(y

√
t, t) → C exp

(

−y2

2

)

, (19)

where the constant C may be determined from mass conservation. As is well-known, this con-
vergence may be obtained by rescaling the equation and constructing an entropy functional for
the rescaled equation. Let us briefly recall this argument. The first step consists in rescaling the
function u by setting:

u(t, x) = α(t)v

(

x

β(t)
, τ(t)

)

,

where the scaling functions α(t), β(t), τ(t) are to be chosen so as to make the equation for v as
simple as possible, while preserving the mass constraint:

∫

Rd

u(t, x) dx = const.

These two requirements lead to the choice

v(y, ln t) =
√

tu(y
√

t, t), (20)



thus to the equation
∂v

∂τ
=

1

2

∂

∂y

(

yv +
∂v

∂y

)

.

The detailed balance equilibria for this equation are exactly all multiples of the standard Gaussian
density, i.e. take the form:

v∞(y) = C exp

(

−y2

2

)

, (21)

for some constant C. By the result of previous section, the relative entropy

H(v|v∞) =

∫

R

v ln
v

v∞
dy (22)

decreases to zero for large times, which implies that v converges to a fixed point of the form (21)
for some C.

This result, when rephrased in terms of u, is exactly the intermediate asymptotics (19). Note
that in this case the constant C is uniquely determined from the mass conservation relation:

∫

R

u(t, x) dx =

∫

R

u(x, 0) dx.

The key point is now that by using the change of variable x = y
√

t in (22) one obtains:

H(v|v∞) =

∫

R

u(t, x) ln
u(t, x)

C 1√
t
exp (−x2

2t
)

dx,

which is exactly the relative entropy of u with respect to the fundamental solution of the heat equa-
tion. The fact that this entropy is dissipated combined with Pinsker’s inequality now immediately
leads to the intermediate asymptotic (19), without having to resort to any rescaling of the function
u.

In other words, the fundamental solution encodes the intermediate asymptotics.
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