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Abstract

The average pixel distance as well as the relative orientation of an array of 6 CCD detectors

have been measured with accuracies of about 0.5 nm and 50 µrad, respectively. Such a precision

satisfies the needs of modern crystal spectroscopy experiments in the field of exotic atoms and

highly charged ions. Two different measurements have been performed by illuminating masks in

front of the detector array by remote sources of radiation. In one case, an aluminum mask was

irradiated with X-rays and in a second attempt, a nanometric quartz wafer was illuminated by

a light bulb. Both methods gave consistent results with a smaller error for the optical method.

In addition, the thermal expansion of the CCD detectors was characterized between −105◦C and

−40◦C.

PACS numbers: 07.85.Nc, 14.40.Aq, 29.40.Wk, 36.10.Gv, 39.30.%2Bw, 65.40.De

Keywords: X-ray spectroscopy, Exotic atoms, Multicharged ions, CCD detector
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I. INTRODUCTION

Charge–coupled devices (CCDs) are ideally suited as detectors for X–ray spectroscopy in

the few keV range, because of excellent energy resolution and the inherent two-dimensional

spatial information. In particular, they can be used as focal-plane detectors of Bragg crystal

spectrometers for studies of characteristic X–radiation from exotic atoms with ultimate

energy resolution [1].

The detector described in this work was set–up for a bent crystal spectrometer used in

three ongoing experiments at the Paul Scherrer Institut: the measurement of the charged

pion mass [2, 3], the determination of the strong–interaction shift and width of the pionic

hydrogen ground state [4, 5] and highly charged ion spectroscopy [6]. The detector is made

of an array of two vertical columns of 3 CCDs each [7] (Fig. 1). Each device has 600 × 600

square pixels with a nominal dimension of 40 µm at room temperature. Each pixel is realized

by an open-electrode structure. For this reason, the dimension characterizing the detector

is rather the average distance between pixels centers than the size of the individual pixel.

As the CCD is usually operated at −100◦C, the knowledge of the inter–pixel distance at

the working temperature is essential for crystal spectroscopy, because any angular difference

is determined from a measured position difference between Bragg reflections. Furthermore,

for an array like the one described here, the relative orientation of the CCDs has to be known

at the same level of accuracy as the average pixel distance.

A first attempt to determine the relative positions has been made using a wire eroded

aluminum mask illuminated by sulphur fluorescence X–rays produced by means of an X–

ray tube. The alignment of the mask pattern made it possible to estimate the relative

CCD position with an accuracy of about 0.05 – 0.1 pixel and the relative rotation to slightly

better than 100 µrad [8]. In order to obtain in addition a precise value for the average pixel

distance a new measurement was set–up using a high-precision quartz wafer in front of the

CCD illuminated with visible light. Using this method, the relative CCD devices’ position

was evaluated with an accuracy of about 0.02 pixel. The temperature dependence of the

pixel distance was also determined.

Section II is dedicated to the description of the optical measurement set–up. In section III,

we describe the measurement of the pixel distance. Section IV we present the measurement

of the CCD orientation using the aluminum mask (Sec. IVA) and using the quartz mask

3



(Sec. IVB). In section V we describe the measurement of the inter–pixel distance tempera-

ture dependence.

II. SET–UP OF THE OPTICAL MEASUREMENT

The quartz wafer is an optical cross grating manufactured by the Laboratory of Micro-

and Nanotechnology of the Paul Scherrer Institut. The grating is 40 mm wide and 70 mm

high. It is composed of vertical and horizontal lines of 50 µm thickness separated from each

other by 2 mm (Fig. 2). The linearity of the lines is of order 0.05 µm in the horizontal

direction. In the vertical direction, the lines become slightly parabolic with a maximum

deviation of 0.15 µm from the average value (Fig. 3).

The wafer was positioned 37 mm in front of the CCD array. It was illuminated with short

light pulses using a point–like light source, which was approximated by a collimator of one

millimeter in diameter located in front of a light bulb at a distance of 6.43m from the CCDs

to reduce parallax effects distorting the wafer image (Fig. 4-5). The wafer temperature was

monitored and remained at room temperature during the measurements. The integration

time per picture was 10 s with the bulb shining for 6 s for each selected temperature of the

CCDs. The temperature was varied between −105◦C and −40◦C.

III. MEASUREMENT OF THE AVERAGE PIXEL DISTANCE

For the determination of the pixel distance, a simultaneous linear fit of two adjacent lines

was performed under the constraint that the two lines are parallel.

After cutting out the crossing points, the diffraction pattern of the straight sections

linking them (zones) was fitted to a superposition of 5 Gaussian profiles: central peak, first

and second side maxima, and left and right backgrounds (Fig. 6-7). The parabolic shape of

the grating was taken into account in the analysis of the images recorded with the detector.

For the fit of two parallel lines we have to consider two sets of data at the same time:

(x1i, y1i, ∆y1i) and (x2i, y2i, ∆y2i), and the lines are described by the equations:











y1 = a1 + b x1

y2 = a2 + b x2
. (1)
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The best determination of the parameters a1, a2 and b is obtained by minimization of the

χ2 merit function following the same procedure as described in Ref. [9]. In this case, the χ2

merit function is:

χ2(a1, a2, b) =
N1
∑

i=1

(

y1i − a1 − b x1i

∆y1i

)2

+

N2
∑

i=1

(

y2i − a2 − b x2i

∆y2i

)2

. (2)

Considering two parallel lines that are at a distance L (in µm) on the CCD, the average

pixel distance is obtained from the formula:

pixel dist. =
L

|a1 − a2| cos(arctan b)
= L

√
1 + b2

|a1 − a2| . (3)

The presence of the cosine term takes into account the fact that the lines are generally not

parallel to the CCD edge. The detailed formulas for the χ2 minimization are presented in

Appendix A.

For each CCD, we obtained about 180 independent evaluations of the pixel distance

from straight sections of different line pairs. The average value of the pixel distance was

obtained by a Gaussian fit to the histogram obtained from individual values (Fig. 8-9). Two

series of images were available and the final value was calculated from the sum of the two

distributions.

It is interesting to observe that the vertical and horizontal distributions have different

dispersions (Fig. 8-9 and Table I). The horizontal pixel distance distribution is characterized

by a FWHM of 80 nm, compared to 50 nm for the vertical one. Accordingly, the error on the

Gaussian peak position for the vertical distance is half that for the horizontal one (0.9 nm

and 1.8 nm, respectively). We have no clear-cut explanation for this difference. It is unlikely

that this difference could come from the accuracy of the mask fabrication. As seen from

Fig. 3, the line distances show similar fluctuations in the order of 0.05 µm for both directions

and they should produce a dispersion of about 0.05 µm / 50 = 1 nm on the vertical and

horizontal pixel distance (50 is the average number of pixels between two lines in the wafer

image).

The CCD devices were fabricated using a 0.5 µm technology, which means that the

uncertainty over the full size is 0.5µm (at room temperature). Such an inaccuracy could

introduce an average difference of order 0.8 nm for the inter–pixel distance of various CCDs.
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This assumption was tested applying Student’s t-test [9] to distributions from different CCDs.

The only significant difference in the obtained distributions comes from CCD 2 and CCD 5.

However, for these two CCDs we observe a parasitic image of the mask superimposed on the

normal one, probably due to a reflection between the detector and the mask itself. Therefore,

the final value of the pixel distance is given by the weighted average of the individual CCD

values excluding CCD 2 and CCD 5 (Table I).

The overall precision of the quartz wafer is quoted to be ±0.0001 mm over the full width

of 40 mm. Hence, the uncertainty of the wafer grid contributes on average 0.1µm / 1000

= 0.1 nm per pixel. As horizontal and vertical pixel distances are in good agreement, a

weighted average is calculated. Taking the wafer uncertainty of 0.1 nm into account, the

average pixel distance reads 39.9775±0.0005±0.0001 µm, where the nominal value is 40 µm.

IV. MEASUREMENT OF THE RELATIVE ORIENTATION OF THE CCDS

A. X–ray method

An aluminum mask was installed 37 mm in front of the CCD array; this mask has a

slit pattern chosen to provide an unambiguous connection between all CCDs (Fig. 11). The

mask has a thickness of 1mm, the slits are wire eroded with a width of about 0.1mm and

the linearity is about 50 µm over the full height. The detector array, shielded by the mask,

was irradiated with sulphur X–rays of 2.3 keV produced with the help of an X–ray tube;

this energy is low enough to keep charge splitting effects small [5]. The sulphur target was

placed at about 4m from the detector. A collimator with a diameter of 5mm was placed

close to the target to provide a point–like source. In total, about 600 000 X-ray events were

collected.

The relative rotations of the CCDs are determined by performing linear fits to sections of

the mask slit images. Because of the slit arrangement, CCD 3 (CCD 6 would be equivalent)

is the best choice to serve as reference frame. In this case, the relative rotations of CCDs 1,2

and 6 are established directly. The values for CCD 4 and CCD 5 are the weighted average

of results with CCD 1 and CCD 6 as intermediate steps.

The fit is done by calculating the center of gravity (COG) for each CCD row (or column

for fitting a horizontal line) and then making a linear regression through them. The error of
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the COGs is based upon a rectangular distribution with a width equal to the width of the

slits of the mask. With N as the number of events and w as the slit width, ∆COG = w√
12·

√
N

. A

width w of 4 pixels for the horizontal/vertical lines and 6 pixels for the diagonals is assumed.

From the inclinations (in mrad) of the mask slits relative to the perfect horizontal, vertical

or diagonal (45◦), the rotations ∆Θ of individual CCDs are calculated. Results (relative to

CCD 3) are given in Table II.

After the rotations have been determined and corrected for, the lines were fitted again to

determine the crossing points of each slit with the CCD edge. The relative offsets ∆x and

∆y can be determined only if there are at least two lines crossing from one CCD to the other

(Fig. 12). With CCD 3 as the starting point, the only other CCD fulfilling this condition is

CCD 6. The position of all other CCDs has to be calculated relative to all CCDs shifted so

far. The correct order for this is CCD 2, then CCD 5, CCD 1 and CCD 4.

The correct values for the vertical offsets follow from the condition that both lines should

continue from one CCD to the other (CCD A and CCD B in Fig. 12). For case i) in Fig. 12,

one horizontal and one diagonal line:










A1 + ∆y + B1 · ∆x = A2

A3 + ∆y + B2 · ∆x = A4

, (4)

where Ai are the y-coordinate of the crossing point between the lines of equation y =

Bi · x+(constant) and the CCD edge. From this, one derives:

∆x =
(A2 − A4) − (A1 − A3)

B1 − B2

, (5)

and the associate error is:

δ(∆x) =
[(δA1)

2 + (δA2)
2 + (δA3)

2 + (δA4)
2

(B1 − B2)2
+

((δB1)
2 + (δB2)

2) · (A2 − A4 − A1 + A3)
2

(B1 − B2)4

]1/2

(6)

For case ii), one horizontal and one vertical line,










A1 + ∆x + B1 · ∆y = A2

A3 + ∆y + B2 · ∆x = A4

(7)

(note that B1 is defined as x = B1 · y+(constant) ). Here, the equations are:

∆x =
A1 − A2 − B1(A3 − A4)

B1 · B2 − 1
, (8)
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(δ(∆x))2 =
(δA1)

2 + (δA2)
2 + (δB1)

2((δA3)
2 + (δA4)

2)

(B1 · B2 − 1)2

+ (δB1)
2

(

A4 − A3

B1 · B2 − 1
− B2(A1 − A2 − B1(A3 − A4))

(B1 · B2 − 1)2

)2

+ (δB2)
2

(

B1(A1 − A2 − B1(A3 − A4))

(B1 · B2 − 1)2

)2

. (9)

Values for ∆y are derived by inserting ∆x in either of the starting equations Eq. (4). The

final horizontal and vertical displacements (which depend on the previously determined set

of rotations) are given in Tab. II.

The analysis of the mask data assumes that the slits on the mask are perfectly straight;

the given uncertainties are then purely statistical. However, a detailed study of the vertical

slit to the right (on CCD 1 to CCD 3) shows that the mechanical irregularities of the mask

are big enough to be noticeable. Fig. 13 shows the centers of gravity calculated for this

slit subtracted from the fit through these points. Both the sudden jump (left arrow) and

the inclination change (right arrow) are substructures on a scale of roughly 1/10th of a

pixel (4µm). This fits well with the mechanical accuracy of 5µm quoted for the mask slits.

Consequently, a further improvement in accuracy is not limited by statistics, but by the

mechanical precision of the mask itself. More details may be found in [8].

B. Optical method

By using the nanometric quartz wafer, the precision for the CCD offsets was improved

beyond 1/20 of the pixel width of 40µm, which was envisaged for measuring the charged pion

mass. The knowledge of the line positions on the wafer allows one to infer the relative position

between pairs of CCDs from the image. As for X–rays, the image, when visualized without

position and rotation correction, shows discontinuities at the boundaries of adjacent CCDs:

lines are not parallel and a part of the mask image is missing due to the spatial separation

of the CCDs (Fig. 14 bottom–left). Again, one CCD has to be chosen as a reference.

The unambiguous calculation of relative horizontal and vertical shift (∆x and ∆y) and

rotation (∆Θ) of two CCDs requires the information coming from at least one pair of per-

pendicularly crossing lines per CCD. Using the line parameters, it is possible to build a

function depending upon ∆x, ∆y and ∆Θ, which is minimal when the shift and rotation

values are optimal. The idea is to compare the coordinates of a crossing point using the
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reference frame of the reference CCD (xp, yp) and of the selected CCD (x′
p, y′

p). The values

of ∆x and ∆y are unequivocally determined by first applying a rotation of the coordinate

system of the selected CCD around the CCD center. The value of the rotation angle ∆Θ is

chosen to have the lines parallel to the ones of the reference CCD (Fig. 14 bottom-middle

side). In this new frame, the coordinates (Xp, Yp) of the crossing point depend on the line

parameters and on the value of ∆Θ. The differences Xp − xp and Yp − yp provide exactly

the shift values ∆x and ∆y. A function F may be defined as:

F (∆x, ∆y, ∆Θ) = (Xp − xp − ∆x)2 + (Yp − yp − ∆y)2 (10)

In the ideal case, F = 0, the values of ∆x, ∆y and ∆Θ are the correct ones. In reality we

assume that, for a selected set of lines, the best estimate of ∆x, ∆y and ∆Θ is found when

F is minimal. The full expression used for F is given in appendix B.

A whole set of values was obtained by randomly selecting line pairs. For different choices of

line pairs, different values are obtained for the position parameters. Hence, the final values of

∆x, ∆y and ∆Θ are given again by a Gaussian fit to the distribution of the individual values.

The accuracy of this method can be increased by forcing the simultaneous minimization of

coordinate differences for several crossing points instead of only one. Here, four crossing

points and a set of 100 different choices of line pairs were used. In this case the function F

reads

F (∆x, ∆y, ∆Θ) =
4
∑

i=1

(X i
p − xi

p − ∆x)2 + (Y i
p − yi

p − ∆y)2 (11)

where i = 1 to 4 corresponds to the crossing point number arbitrarily ordered. Figure 16

shows the distribution data for ∆y obtained for the full set of line pairs.

The final result for the relative CCD positions was obtained from three series of 10 images

each: two at −100◦C and one at −105◦C. The precision for each series is around 0.001 pixels

for ∆x and ∆y, and 3 µrad for the relative rotation ∆Θ, and it can be reduced using a

function F with more crossing points. The systematic errors were estimated by comparing

the results from the three series of data acquisition. However, the differences between values

from different series are of order 0.01 – 0.03 pixels for ∆x and ∆y, and 50 µrad for ∆Θ.

This large spread, compared to the precision of each series, has two possible explanations:

differences of the wafer illumination condition (affecting the line fit), or a mechanical change

of the CCD array position during warming up and cooling of the detector. The second

hypothesis is more likely, because only small differences were observed between the series at
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−105◦C and the first series at −100◦C, where no warming up between the two measurements

was performed. In contrast, before the second series at−100◦C, the detector was at room

temperature for a short period. This hypothesis is also confirmed by the observation of a

small change in time of the ∆y values in Fig. 16, where a significant change is observed

between points obtained from different images. These differences could be attributed to a

mechanical change in time due to the not yet attained thermal equilibrium of the CCD array

during the measurement.

For each CCD, the final position and rotation parameters are calculated as the average

of the three series (Table III). The systematic effect from the temperature difference of the

image series is negligibly small compared to the spread of values. The systematic error is

estimated using the standard deviation formula for a set of values. For CCD 4, only one

series of measurements was available. In this case, the largest value of all other CCDs was

chosen.

The fabrication of the grating introduces a systematic error due to the slightly parabolic

shape of the vertical lines (Fig. 3). The error is estimated to be of order of 9µrad for ∆Θ

and 0.009 pixels for ∆x for CCD 1, CCD 3, CCD 4 and CCD 6, which is negligible compared

with other systematic errors.

The values presented in Table III are in very good agreement with the results obtained

using the aluminum mask, taking into account the different reference CCD. As an example,

for the ∆x shift between CCD 5 and CCD 2 we obtain −13.548±0.045 pixels with the X-ray

method, and −13.579 ± 0.009 pixels with the optical method.

V. TEMPERATURE DEPENDENCE OF THE PIXEL DISTANCE

For the determination of the temperature dependence, images between −105◦C and

−40◦C were acquired. For each condition the same analysis method as described in Sec. III

was applied. As expected, the pixel distance increases with increasing temperature except

for the vertical pixel distance at −40◦C (Table IV). This effect may be caused by the high

CCD read–noise level at this temperature. The values obtained at −40◦C have been ejected

for the measurement of the temperature dependence.

The average of the thermal expansion coefficient is obtained by a simple linear extrapo-

lation of the data between −105◦C and −60◦C. The results are: (2.8 ± 1.0) · 10−6K−1 for
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the horizontal distance and (1.3± 0.4) · 10−6K−1 for the vertical distance. These values are

in the range of the thermal expansion coefficient of silicon, the CCD substrate material, and

INVAR, the metallic support material for the temperatures considered: literature values are

0.8 − 1.6 · 10−6K−1 for silicon [10] and 1 − 2 · 10−6K−1 for INVAR [11].

VI. CONCLUSION

We have demonstrated that the average inter–pixel distance of a CCD detector un-

der operating conditions can be determined to an accuracy of 15 ppm. We obtain

39.9775± 0.0006 µm for the average pixel distance at a temperature of −100◦C, which devi-

ates significantly from the nominal value of 40µm. Also, the temperature dependence of the

inter–pixel distance was studied and successfully compared to values found in the literature.

The relative rotations and positions of the individual CCD devices of a 2×3 array have been

measured to a precision of about 50 µrad and 0.02 pixel, respectively. The X–ray method

was limited by the quality of the aluminum mask, i. e., by the accuracy of wire–eroding

machine. With the nanometric quartz wafer no limitation occurs from the accuracy of the

mask. The principal difficulty encountered in that case, is the proper description of the

diffraction pattern and in particular the control of the illumination. The accuracy achieved

by this method fully satisfies the requirements of a recent attempt to measure the charged

pion mass to about 1.5 ppm. The X-ray method and the optical method can be used for

any CCD camera sensitive to X-ray and/or visible light radiation.
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APPENDIX A: FORMULAS FOR FITTING WITH A PAIR OF PARALLEL

LINES

In this appendix, we present mathematical formulas for linear fitting with a pair of parallel

lines, i.e. for the minimization of the χ2 merit function defined in Eq. (2).
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χ2 is minimized when its derivatives with respect to a1, a2, and b vanish:































































0 =
∂χ2

∂a1
= −2

∑N1

i=1

y1i − a1 − b x1i

∆y12

i

0 =
∂χ2

∂a2
= −2

∑N2

i=1

y2i − a2 − b x2i

∆y22

i

0 =
∂χ2

∂b
= −2

(

∑N1

i=1

x1i(y1i − a1 − b x1i)

∆y12

i

+

∑N2

i=1

x2i(y2i − a2 − b x2i)

∆y22

i

)

. (A1)

These conditions can be rewritten in a convenient form if we define the following sum:

S1 =

N1
∑

i=1

1

∆y12

i

, S1x =

N1
∑

i=1

x1i

∆y12

i

, (A2)

S1y =

N1
∑

i=1

y1i

∆y12

i

, (A3)

S1xx =

N1
∑

i=1

x12

i

∆y12

i

, S1xy =

N1
∑

i=1

x1i y1i

∆y12

i

, (A4)

S2 =

N2
∑

i=1

1

∆y22

i

, S2x =

N2
∑

i=1

x2i

∆y22

i

, (A5)

S2y =

N2
∑

i=1

y2i

∆y22

i

, (A6)

S2xx =

N2
∑

i=1

x22

i

∆y22

i

, S2xy =

N2
∑

i=1

x2i y2i

∆y22

i

. (A7)

With this definitions Eq. (A1) becomes:























a1 S1 + b S1x = S1y

a2 S2 + b S2x = S2y

a1 S1x + b S1xx + a2 S2x + b S2xx = S1xy + S2xy

. (A8)

The solution of these three equations with three unknowns is:
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









































a1 = −
S2 S1x S1xy + S2 S1x S2xy + S22

x S1y − S2 S1xx S1y − S2 S2xx S1y − S1x S2x S2y

−S2 S12
x − S1 S22

x + S1 S2 S1xx + S1 S2 S2xx

a2 = −
S1 S2x S1xy − S1 S2x S2xy + S1x S2x S1y − S12

x S2y + S1 S1xx S2y + S1 S2xx S2y

S2 S12
x + S1 S22

x − S1 S2 S1xx − S1 S2 S2xx

b = −
S1 S2 S1xy + S1 S2 S2xy − S2 S1x S1y − S1 S2x S2y

S2 S12
x + S1 S22

x − S1 S2 S1xx − S1 S2 S2xx

.

(A9)

APPENDIX B: DEFINITION OF THE FUNCTION F (∆x,∆y,∆Θ)

The exact form of F in Eq. (10) can be deduced using simple algebraic equations and

reference frame transformation formulas. If we take any pair of perpendicular lines in the

reference CCD (see Fig. 14),

y = a0 + b0 x and x = c0 + d0 y, (B1)

the coordinates (xp, yp) from the line intersection can be calculated on the selected CCD.

The parameters of these lines are deduced form the lines in the reference CCD (Eq. (B1)),

taking into account the necessary change on a0 and c0 for the translation on the grating

pattern:




xp

yp



 :











xp = c0 + sy + d0 yp

yp = a0 + sx + b0 xp

. (B2)

Here, sx and sy are the parameters of the translation that can be easily deduced from the

wafer image. In this case we have:























xp =
c0 + d0(a0 + sx) + sy

1 − b0 d0

yp =
a0 + b0(c0 + sy) + sx

1 − b0 d0

. (B3)

In the same way we can calculate the coordinates (Xp, Yp): the crossing point of the lines

in the selected CCD after the ∆Θ rotation. Before the rotation, the line coordinates on the

selected CCD are:

y′ = a + b x′ and x′ = c + d y′. (B4)
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After rotation around the CCD center (XC , YC) the line equations become (see Fig. 14):

Y = A + BX and X = C + DY, (B5)

where the line parameters are given by:

A =
a + bXC − YC + (YC − b XC) cos ∆Θ − (XC + b YC) sin ∆Θ

cos ∆Θ − b sin ∆Θ
(B6)

B =
b cos ∆Θ + sin∆Θ

cos ∆Θ − b sin ∆Θ
(B7)

C =
c − XC + d YC + (XC − d YC) cos ∆Θ + (YC + d XC) sin ∆Θ

cos ∆Θ + d sin ∆Θ
(B8)

D =
d cos ∆Θ − sin ∆Θ

cos ∆Θ + d sin ∆Θ
. (B9)

With this reference change, the coordinates (Xp, Yp) are:























Xp =
(b d − 1)XC − [c + a d + (b d − 1)XC ] cos ∆Θ + (a + b c + (b d − 1)YC) sin ∆Θ

b d − 1

Yp =
(b d − 1)YC − [c + a d + (b d − 1)YC ] cos ∆Θ + (a + b c + (b d − 1)XC) sin ∆Θ

b d − 1

.

(B10)

The function F is defined as

F (∆x,∆y,∆Θ) = (Xp − xp − ∆x)2 + (Yp − yp − ∆y)2

=

(

1

(b d − 1)(b0 d0 − 1)

{(b d − 1)(c0 + a0 d0 + d0 sx + sy − XC + b0 d0 XC)

− (b0 d0 − 1)[c + a d + (b d − 1)XC ] cos ∆Θ

+ (b0d0 − 1)[a + b c + (b d − 1)YC ] sin ∆Θ} − ∆x

)2

+

(

1

(b d − 1)(b0 d0 − 1)

{(b d − 1)(a0 + b0 c0 + b0 sy + sx − YC + b0 d0 YC)

− (b0 d0 − 1)[a + b c + (b d − 1)YC ] cos ∆Θ

+ (b0d0 − 1)[c + a d + (b d − 1)YC ] sin ∆Θ} − ∆y

)2

. (B11)

[1] D. Gotta, Prog. Part. Nucl. Phys. 52, 133 (2004).

14



[2] Pion Mass Collaboration, PSI experiment proposal R-97.02 (1997).

[3] N. Nelms, D. F. Anagnostopoulos, M. Augsburger, G. Borchert, D. Chatellard, M. Daum, J. P.

Egger, D. Gotta, P. Hauser, P. Indelicato, et al., Nucl. Instrum. Meth. A 477, 461 (2002).

[4] Pionic Hydrogen Collaboration, PSI experiment proposal R-98.01 (1998), URL http://

pihydrogen.web.psi.ch.

[5] D. F. Anagnostopoulos, M. Cargnelli, H. Fuhrmann, M. Giersch, D. Gotta, A. Gruber, M. Hen-

nebach, A. Hirtl, P. Indelicato, Y. W. Liu, et al., Nucl. Phys. A 721, 849 (2003).

[6] M. Trassinelli, S. Biri, S. Boucard, D. S. Covita, D. Gotta, B. Leoni, A. Hirtl, P. Indelicato, E.-

O. Le Bigot, J. M. F. dos Santos, et al., in ELECTRON CYCLOTRON RESONANCE ION

SOURCES: 16th International Workshop on ECR Ion Sources ECRIS’04 (AIP, Berkeley,

California (USA), 2005), vol. 749, pp. 81–84, physics/0410250.

[7] N. Nelms, D. F. Anagnostopoulos, O. Ayranov, G. Borchert, J. P. Egger, D. Gotta, M. Hen-

nebach, P. Indelicato, B. Leoni, Y. W. Liu, et al., Nucl. Instrum. Meth. A 484, 419 (2002).

[8] M. Hennebach, Ph.D. thesis, Universität zu Köln, Köln (2004).
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TABLES

TABLE I: Results of a Gaussian fit to the horizontal and vertical pixel distance distribution. The

fabrication accuracy of the quartz wafer contributes with additionally 0.1 nm to the average pixel

distance.

CCD Hor. dist. (µm) FWHM (µm) χ2

1 39.9778 ± 0.0018 0.0820 ± 0.0035 1.11

2 39.9743 ± 0.0018 0.0810 ± 0.0033 1.26

3 39.9751 ± 0.0018 0.0808 ± 0.0033 1.41

4 39.9753 ± 0.0017 0.0808 ± 0.0032 1.16

5 39.9744 ± 0.0017 0.0856 ± 0.0031 1.01

6 39.9777 ± 0.0018 0.0913 ± 0.0031 1.20

weighted average 39.9764 ± 0.0009 without CCDs 2 and 5

line fits

CCD Vert. dist. (µm) FWHM (µm) χ2

1 39.9766 ± 0.0012 0.0504 ± 0.0022 1.05

2 39.9787 ± 0.0008 0.0420 ± 0.0014 0.88

3 39.9785 ± 0.0010 0.0496 ± 0.0019 0.68

4 39.9769 ± 0.0009 0.0450 ± 0.0016 0.62

5 39.9781 ± 0.0007 0.0472 ± 0.0013 0.52

6 39.9787 ± 0.0007 0.0423 ± 0.0014 0.66

weighted average 39.9779 ± 0.0004 without CCDs 2 and 5

line fits

TABLE II: CCD position corrections (relative to CCD3) from the mask measurement using sulphur

fluorescence radiation.

CCD ∆x (pixels) ∆y (pixels) ∆Θ (mrad)

CCD3-CCD1 −2.818 ± 0.022 22.264 ± 0.077 0.197 ± 0.078

CCD3-CCD2 −1.049 ± 0.015 10.901 ± 0.085 0.522 ± 0.062

CCD3-CCD3 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
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CCD3-CCD4 −14.347 ± 0.046 20.808 ± 0.075 1.577 ± 0.084

CCD3-CCD5 −14.597 ± 0.043 12.265 ± 0.064 2.940 ± 0.109

CCD3-CCD6 −16.487 ± 0.040 1.173 ± 0.052 6.328 ± 0.101

TABLE III: CCD relative position and orientation with CCD2 as reference. The orientation of

CCD2 relative to itself provides a check of the validity of the measurement method.

CCD ∆x (pixels) ∆y (pixels) ∆Θ (mrad)

CCD2-CCD1 −1.251 ± 0.029 11.404 ± 0.023 −0.587 ± 0.035

CCD2-CCD2 0.000 ± 0.000 0.000 ± 0.000 −0.002 ± 0.003

CCD2-CCD3 0.509 ± 0.012 −11.021 ± 0.021 −0.677 ± 0.074

CCD2-CCD4 −12.850 ± 0.041 10.279 ± 0.023 0.801 ± 0.130

CCD2-CCD5 −13.579 ± 0.009 1.738 ± 0.016 2.233 ± 0.130

CCD2-CCD6 −15.963 ± 0.041 −9.435 ± 0.021 5.530 ± 0.011

TABLE IV: Pixel distance values at different detector temperatures.

Temp. (◦C) Hor. pixel dist. (µm) Vert. pixel dist. (µm)

-105 39.9796 ± 0.0014 39.9779 ± 0.0006

-100 39.9764 ± 0.0009 39.9779 ± 0.0004

-80 39.9796 ± 0.0020 39.9794 ± 0.0006

-60 39.9827 ± 0.0017 39.9800 ± 0.0006

-40 39.9837 ± 0.0013 39.9762 ± 0.0010
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FIGURES

FIG. 1: Array of 6 CCD devices mounted on the cold head [7].

FIG. 2: Quartz wafer illuminated by light. The spacing of the grating is 2 mm both vertically and

horizontally.
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FIG. 3: Linearity of the grating in horizontal direction (top) and vertical direction (bottom).
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FIG. 4: Scheme of the experimental set–up.
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FIG. 5: Image of the quartz wafer as seen without correcting for the relative positions of the CCDs.

FIG. 6: Selection of the line fitting zones on the wafer image materialized by solid line rectangles.
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FIG. 7: Intensity profile of one pixel row of a selected zone. The line position is defined by using

the average of the three central profiles. The other two profiles, normally characterized by a larger

width, strongly depend on the background, i. e., on the illumination conditions of the selected

zones.
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FIG. 8: Distribution of the horizontal pixel distance in CCD3 as obtained from pairs of selected

zones.
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FIG. 9: Distribution of the vertical pixel distance in CCD3 as obtained from pairs of selected

zones.
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FIG. 10: Wire–eroded aluminum mask for the CCD alignment.

FIG. 11: Pattern produced by sulphur Kα radiation excited by means of an X–ray tube.

FIG. 12: Definition of crossing points for the determination of the relative offsets of the CCDs.
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FIG. 13: Centers of gravity of the right vertical slit of the wire–eroded aluminum mask. Arrows

indicate the two largest irregularities.
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FIG. 14: Scheme of the transformation used in obtaining the orientation and shift between CCDs.

In the top part, the real position of the CCDs is shown together with one crossing of the quartz

grid. In the lower part, the transformation from the individual CCD coordinates (left) to the real

relative position with respect to the reference CCD is displayed. The rotation is first performed

(middle) and then the shift is adjusted from the known geometry of the grid (right).

23



FIG. 15: Distribution of the relative shift ∆y (gap) for CCD3 relative to reference CCD2 for

various crossing points. Each point corresponds to a value of ∆y obtained for a set of line pairs.

For each of the 10 images, 100 sets of line pairs have been randomly chosen. The slope with time

(corresponding approximately to the “No. of line set” axis) may be due to the CCD array not

reaching the thermal equilibrium.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-11.08 -11.06 -11.04 -11.02 -11 -10.98 -10.96 -10.94 -10.92

C
ou

nt
s

∆y (pixels)

∆y values
Gaussian fit

FIG. 16: Projection of the ∆y distribution. A Gaussian fit yields the most likely value and an

estimate for the uncertainty of ∆y.
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