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Abstract. We examine some of the constraints that can be obtained on a two parameters model of dark energy in which the
characteristic parameter of the equation of statew(z) = P(z)/ρ(z) does not vary smoothly with time as usually assumed, but
undergoes a transition between two values over a period thatcan be significantly shorter than the Hubble time. We find that
the most recent SNIa survey allows a transition betweenw ∼ −0.2 to w ∼ −1 (the first value being somewhat arbitrary) at
redshift as low as 0.1, despite the fact that data extend beyondz ∼ 1. Surveys with precision anticipated for space experiments
would allow to improve this constraint but not by much, as a transition occurring at redshift as low as∼ 0.17 could still remain
undistinguishable from a standard cosmological constant.The addition of a prior on the matter densityΩm = 0.27 improves the
constraints, although in a rather limited way. This suggests that Hubble diagram of distant SNIa might hardly reveal theactual
nature of dark energy at redshift above 0.2. Even deep space experiments would fail to identify a rapidtransition at redshift
above 0.5. This suggests that only the local dynamics of the quintessence can be caught by SNIa Hubble diagram. The reason
for this phenomenon is investigated. On the contrary without any prior, we found that existing constraints from combining CMB
and SNIa already reject a transition at redshift below 1.5.

Key words. Cosmology – Cosmic microwave background – Supernovae – Cosmological parameters

1. Introduction

The nature of dark energy is at present one of the most puz-
zling mystery of modern cosmology. It is now widely ac-
cepted that our universe is experiencing a phase of acceler-
ated expansion (Blanchard et al. 2005). The evidence was first
found using type Ia supernovae luminosity vs. redshift dia-
gram (Schmidt et al. 1998; Perlmutter et al. 1999), but a num-
ber of other observations also support this conclusion (Bennett
et al. 2003; Spergel et al. 2003). In particular, estimations
of the matter density of the universe generally lead to a low
value, while the CMB anisotropies point toward a spatially flat
Universe (Lineweaver et al. 1997; de Bernardis et al. 2000).
WMAP data also require the presence of dark energy (Spergel
et al. 2003) unless one considers an unexpectedly low value of
the Hubble parameterH0 ≤ 50 km s−1 Mpc−1 (Blanchard et al.
2003). The possible correlation of CMB fluctuation map with
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surveys of extragalactic objects (Fosalba et al. 2003; Corasaniti
et al. 2005; Pogosian 2005) also provide direct evidence, al-
though with a limited significance level (< 3σ), for the ex-
istence of an unclustered dark energy component in the uni-
verse, the detected correlation being explainable throughthe
integrated Sachs-Wolfe effect, i.e., a time variation of the grav-
itational potential, which is achieved only if the (baryonic +
cold) matter density parameter satisfiesΩm , 1. Finally, the
shape of the correlation function on scales up to 100h−1 Mpc
which has been recently measured accuratly (Eisenstein et al.
2005) in combination with the CMB data requires the presence
of dark energy (Blanchard et al. 2005). However the nature
of this dark energy has been the subject of numerous specula-
tions. The simplest model of all, which was originally proposed
(in another context) by Einstein (1917) as a pure cosmological
constantΛ, a term on the left hand side of Einstein’s equations.
However, a cosmological constant can also be regarded as the
contribution of the vacuum to the right hand side of the equa-
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tion with a specific equation of state, i.e., a component with
negative pressurePΛ related to the energy densityρΛ by the re-
lationPΛ = −ρΛ. Indeed, quantum field theory predicts that the
lowest energy state of any mode contributes to a vacuum energy
density which behaves exactly as a cosmological constant (see,
e.g. Binétruy 2000). A number of problems arise with this pos-
sibility, in particular the so-called hierarchy problem: the ex-
pected contribution is usually enormous, naive calculation give
ρvac ∼ 1076 GeV4, around 122 orders of magnitude larger than
the present critical density of the universe. There exist how-
ever mechanisms, such as supersymmetry which allow to re-
duce considerably the vacuum energy density, but since super-
symmetry is broken at a scale larger than 100 GeV one is still
plagued with a an enormous vacuum energy density of order
of 108 GeV4. The usual loophole argument is then to say that
there exists a yet unknown mechanism which ensures that the
contribution of the vacuum energy density is zero. One is there-
fore left with the less annoying problem to explain the nature
of dark energy, which differs from a cosmological constant, al-
lowing to escape the extreme fine tuning requested to obtain
the observed dark energy density (Binétruy 2000). Most mod-
els which have been addressed so far (quintessence models)
therefore relies on the idea that some scalar field (Caldwell
et al. 1998) behave today similarly as a cosmological constant,
exactly as another scalar field did during inflation. There is
no fundamental principle that give the potential of such scalar
field, so that one is led to propose a framework which is suf-
ficiently general to handle most of the interesting cases, and
in the same time which allows to predict a set of observable
quantities. The most remarkable feature of quintessence mod-
els is that both the scalar field pressurePQ and energy density
ρQ evolve according to dynamical equations, so that the so-
called equation of state parameter,wQ ≡ PQ/ρQ, usually varies
with time between−1 and 1, as the field evolves along the po-
tential. In some extreme (and possibly ill-defined) models,this
parameter can even take any arbitrary values, for example if
one allows the densityρQ to take negative values or a change
in the sign of the kinetic term (Caldwell 2002). Other models
involving scalar tensor theories also allow for such a transient
behaviour (Elizalde et al. 2004).

This paper is organized as follows : in Sec. 2, we recall a
few basics about simple quintessence models, and motivatesa
new parametrization of the equation of state parameterwQ(z)
which we think very convenient and somewhat more gen-
eral than many proposed parametrizations (Doran et al. 2005;
Pogosian et al. 2005; Johri 2004). One crucial issue we exam-
ine is the impact of the epoch of observation on the parame-
ter estimation. We find that dark energy models are better con-
strained when observed before the epoch of dark energy dom-
ination. This is done in Sec. 3. In Sec. 4, we describe the var-
ious types of data analysis we perform, and we state our main
results. We draw the main conclusions of our work in sec. 5.

2. Dark energy parametrization

Historical quintessence model rely on the idea of tracking
solution (Wetterich 1988; Ratra & Peebles 1988), which in-
volve a scalar field evolving in an inverse power law poten-

tial, V(Q) ∝ Q−α, the proportionality constant being tuned so
as to obtain the desired value of dark energy density parame-
terΩQ ∼ 0.7 today. The main feature of these models is that
the pressure to energy density ratio,wQ remains constant both
in the radiation era and in the matter era (with different val-
ues during each epoch), and that it tends toward−1 once the
quintessence energy density dominates. The value for the pa-
rameterwQ depends on the power law index of its potential.
From existing data, it seems that only values close towQ ∼ −1
today, or even possibly lower, are acceptable (Caldwell 2002;
Melchiorri et al. 2003). Note however that in the latter case,
value ofwQ below−1 cannot be obtained naturally through a
standard scalar field. Single power law potentials suffer from
the fact that thewQ parameter goes slowly toward−1 once
quintessence dominates, so that today, if the quintessenceden-
sity parameterΩQ is close to 0.7, thenwQ is still far from the
asymptotic value−1, contrary to what most analysis suggest.
In order to escape this problem, one has to add extra featuresin
the potential, such as a break in the slope of the potential ora
local minimum in the potential, such as in the SUGRA model
proposed by Brax & Martin (1999). A large number of other
possibilities has been proposed since then (see for exempleref-
erences in Brax et al. 2000; Peebles & Ratra 2003).

On the other hand, without precise ideas about the cor-
rect quintessence model to use, it has become natural to take
a more phenomenological approach in which one parametrizes
the functional form ofwQ(z) which possibly exhibits the main
features described above.

The simplest model of quintessence (in the sense that it
introduces only one new parameter as compared to aΛCDM
model) is to assume a constantwQ. However there is little mo-
tivation for constantwQ beyond the economical argument and
it is more and more recognized that evolvingwQ should be in-
vestigated with a minimal level of priors. In the absence of well
motivated theoretical considerations one is left with the empir-
ical option to examine constraints on analytical form forwQ(z).
Most investigations were based on expressions with one or two
parameters. However, it should be realized that such expres-
sions often varies with time in a relatively slow way and that
rapidly varying expressions have to be examined as well. In
other words, if one considers the typical time scale:

τQ ∼
w
ẇ
, (1)

constantw correspond toτQ ≫ tH where tH = 1/H is the
Hubble time, smoothly varying expression such as the inverse
power law potential corresponds toτQ ∼ tH and more rapidly
varying w correspond toτQ ≪ tH , such as in the SUGRA
model. Our aim is primary to investigate constraints on models
for whichτQ ≪ tH . This has conducted us to use the following
model which allows arbitrarily rapid transitions and in which
the dark energywQ parameter evolves as a function of the scale
factora according to

wQ(a) =
1
2

(wi + w∞) −
1
2

(wi − w∞) tanh

(

Γ log

(

a
at

))

. (2)

Thew parameter goes fromwi at early times tow∞ at late times,
the transition occurring atat which may even be in the future.
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The transition occurs at redshiftzt = a0/at−1 (a negative value
of which corresponding to a transition in the future), wherea0

is the scale factor today, and lasts of order ofΓ−1 Hubble times.
There are several advantages to this parametrization. First, the
quintessence conservation equationDµT

µν

Q = 0 can be inte-
grated exactly to give

ρQ(a) = ρ0
Q

(

a
a0

)−3(1+wav) ( (a/at)Γ + (a/at)−Γ

(a0/at)Γ + (a0/at)−Γ

)

3∆w
2Γ

, (3)

where we have set

wav ≡
1
2

(wi + w∞), ∆w ≡ (wi − w∞), (4)

and whereρ0
Q and a0 correspond to the values of the

quintessence energy density and scale factor at some given
epoch. Therefore, the model can be implemented without
much modification in existing cosmological codes such as
CAMB (Lewis et al. 2000). Second, this parametrization de-
couples at best the late time behavior of the parameterwQ(z)
to that of the transition it may have experienced earlier.
This model has four parameters. As we said earlier, simple
quintessence model have less: constantw model correspond to
wi = w∞, with undefinedat andΓ, whereas of inverse power
law potential, one hasw∞ = −1, wi = −2/(α + 2), whereas the
epoch of transition is fixed approximatively by the constraint
ΩQ(zt) ∼ Ωm(zt) ∼ 0.5 and the duration of the transition is
somewhat larger than the Hubble time (it depends in fact on
how steep the potential is, that is, onα). For the SUGRA po-
tential the first two above constraints onwi and w∞ remain,
whereas the latter are modified: the epoch of transition forwQ

does no longer necessarily correspond to the scalar field dom-
ination (but corresponds to the epoch where the field reaches
a local minimum in its potential), and the transition duration
is usually much shorter. Various other models have different
predictions concerning these parameters, but we think thatour
parametrization is sufficiently general to encompass a large
number of already proposed models.

Let us note that one of these parameters is not as relevant
as the others. The parameterwi does not play a crucial role,
since the epoch whenwQ(z) has this value usually corresponds
to that whenΩQ(z) is negligible as compared toΩm, so that
quintessence does not play a crucial role then, as least withre-
gard to supernovae and CMB data. This is all the more true
that since as we shall see data favor a low value ofwQ today to-
gether with the usualΩ0

Q ∼ 0.7, there are in practice no model
which pass the observational constraint withw(z) ∼ wi when
ΩQ has already become large. The only subtle point here is that
it wise to impose a sufficiently low value ofwi in order to insure
that at early timesΩQ ≪ Ωm. The reason is that withwi = 0
and a lowz transitionΩQ would be close to its present value at
recombination epoch (or even nucleosynthesis, see references
in Peebles & Ratra 2003). At low redshift, this would lead to a
dramatic suppression of the cosmological perturbation growth
rate (Douspis et al. 2003) and we found that this introduces
additional changes in theCl curve at highl (i.e., other than
changes due to the modification of the angular distance). This
is the reason why we fix for definitenesswi = −0.2 for which

such effect does not appear. Putting a constraint onw∞ is more
objectionable since it implicitly selects a limited class of mod-
els, which do not seem excluded by the data. For definiteness,
we have chosen the valuew∞ = −1, which seems in agreement
with the present data, and we focus on the two remaining para-
menters,Γ andat which describe the transition experienced by
wQ(z) between its early and late behaviour. We are therefore
studying a two parameter model.

An important question that immediately arise is: how many
of the dark energy parameters can accurately be measured by
the (present or future) data, provided of course they describe
accurately dark energy evolution? We are indeed in a situation
where it is clearly hard to advocate for a specific parametriza-
tion of dark energy, a situation most convincingly illustrated
by the wealth of different parametrizations that have been pro-
posed for dark energy so far. One way to circumvent this dif-
ficulty is to use a method which is mostly insensitive to dark
energy parametrization and which allows to see which part of
thewQ(z) is most easy to constrain.

This task is very naturally performed by the Principal
Component Analysis (PCA). Principal component analysis
were introduced in cosmology rather recently (Francis & Wills
1999). They deal with situations where one is confronted with
a large set of observable data which depend on a large set of
parameters. This precisely corresponds to the present status of
cosmology. PCA has already been used to constraint the ini-
tial power spectrum of cosmological perturbations (Crittenden
& Pogosian 2005) or to address the degeneracies related to the
tensor modes (Efstathiou 2002). One of the most important is-
sue of PCA is that it allows to understand which region of the
parameter space is best constrained by the data. This is particu-
larly useful when the underlying parametrization is not known
a priori. Dark energy corresponds to this case. Indeed, the na-
ture of dark energy is not known, neither the evolution of dark
energy equation of state unless a specific model is assumed.
However the impact of the implicit assumptions of the underly-
ing model are difficult to compute, therefore PCA brings an in-
teresting contribution to dark energy phenomenology (Huterer
& Starkman 2003; Linder & Huterer 2005; Leach 2005).

In these cases, PCA tries to reconstruct (or, in fact, says
what can be reconstructed in) the time evolution of the dark en-
ergy equation of state through its impact on the luminosity dis-
tance vs. redshift relation. A very similar approach can also be
made in weak lensing statistics, where it is mainly the impact
of the dark energy equation of state parameter on the growth
rate of cosmological perturbations that is studied (Hu 2002).
Studies of constraints onwQ(z) can naturally be performed in
this framework. They result in assuming thatwQ(z) can take
constant (possibly different) values in a series ofN redshift in-
tervals∆zi = zi+1 − zi, with z1 < z2 < ...zN .

The results obtained in Huterer & Starkman (2003); Linder
& Huterer (2005); Crittenden & Pogosian (2005), point to the
conclusion (sometines expressed in a rather humorous way)
that only two parameters describing the evolution ofwQ(z) can
be reconstructed from existing and even future data, namely
wQ(0) and dwQ/dz|z=0. Indeed, the authors of these papers fo-
cus on the well-known parametrization of the dark energy
equation-of-state that is often confronted to supernovae data,
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where one assumes that the dark energy equation of state evolve
as

w(z) = w0 + w1z. (5)

These authors then conclude that these two parameters can pos-
sibly be extracted from the data and that no more parameters
can be extracted from the data.

In the case wherewQ experiences a rapid transition, the pa-
rameterw1 ∼ dwQ/dz|z=0 is not very interesting, since in the
limit of an instantaneous transition, this parameter is strictly
zero by definition. Therefore it does not describe a situation
like that of Eq. 2 in the limitΓ → ∞. The aim of this paper is
to show that is the case of a sudden transition the situation is
from the observational point of view worse than in the case of
a smooth transition.

3. Living at z = 0 and at z = 0.3

In order to distinguish quintessence models from a pure cosmo-
logical constant, it is crucial to be able to track the dark energy
evolution as early as possible. This comes with some difficul-
ties. The main impact of dark energy comes from its influence
of the expansion rate of the universe, both when one looks at
the distance luminosity vs. redshift relation using type Iasu-
pernovae or when one looks at the growth rate of cosmolog-
ical perturbation, which can be studied through cluster abun-
dance or weak lensing measurements. Today, it seems likely
that dark energy represents the most important contribution to
the total energy density of the universe. Since its equationof
state parameter is negative, dark energy density decays more
slowly than ordinary matter ((1+ z)3(1+wQ) vs. (1+ z)3, wherez
is the redshift). Therefore in the past standard (baryonic+ cold
dark) matter was dominant. An important question is therefore
to know till which epoch the dark energy density could play
some role in the evolution of the universe, and as a corollary
till which epoch one can hope to reconstruct either its energy
density or its equation of state parameter.

When confronted to this problem, one notices that the
epoch at which one looks at the cosmological data becomes
surprisingly crucial. Let us assume a model withΩQ = 0.7,
Ωm = 0.3 today, withwQ presently constant and equal to−1.
The matter to dark energy transition, defined whenΩQ(z) =
Ωm(z) = 0.5 occurs at redshiftzt = (ΩQ/Ωm)

1
3 − 1 ∼ 0.33. Let

us now consider two alternatives. First, we can consider a pure
cosmological constant model, withwQ = −1 also at early times.
Second, we can consider a model wherewQ ∼ 0 for z > zt. In
the first case, one has an usualΛCDM model, whereas in the
second case, one has a model close to a flat Einstein-de Sitter
model at early times. An observer who would live atz = zt

should easily be able to distinguish between the two models,
just as we are able to distinguish between aΛCDM and a flat
Einstein-de Sitter model today. Now, are we able to distinguish
today between these two models which differ only forz > zt?
Surprisingly, the answer is no if one considers supernovae data
only. The explanation of this paradox comes as follows. Present
data favor dark energy because high redshift supernovae are
dimmer than expected in a flat Einstein-de Sitter universe. This

is usually expressed as a difference of magnitude between the
two models one considers for some standard candle at some
redshift, the exact value of which depending on the quality of
the data. The magnitude is essentially the logarithm of the lu-
minosity distance as a function of the redshift. Let us define
dΛL (z) anddEdS

L (z) the luminosity distance as a function of the
redshift in aΛCDM model withΩΛ = Ωm = 0.5 today, and in
a flat Einstein-de Sitter, respectively. Let us assume thesetwo
models can be distinguished. Let us now considerd̃ΛL (z) and
dQ(z) the luminosity distance vs. redshift relation in aΛCDM
model withΩΛ = 0.7, Ωm = 0.3 today, and a dark energy
model withΩQ = 0.7,Ωm = 0.3 today, withwQ experiencing
a sudden transition from 0 to−1 at z = zt. An observer living
at z = zt would therefore measure eitherdΛL (z′) or dEdS

L (z′). The
epoch corresponding at a redshift ofz′ measured by an observer
living at zt corresponds to a redshiftz given by

z = (1+ zt)(1+ z′) − 1 = zt + z′ + ztz
′, (6)

measured by an observer living today. Let us definedt as the
luminosity distance of the observer living atz = zt as seen from
today. The exact value ofdt does not matter here, but it can be
obviously be computed as

dt = −dΛL

(

1
1+ zt

− 1

)

. (7)

Luminosity distance do not add but are proportional to comov-
ing distances. The luminosity distance at redshifts abovezt is
therefore given by

d̃ΛL (z) =
1+ z
1+ zt

dt +
1+ z

1+ z′(z)
dΛL (z′(z)), (8)

dQ
L (z) =

1+ z
1+ zt

dt +
1+ z

1+ z′(z)
dEdS

L (z′(z)), (9)

in the two models respectively. Now, in term of difference of
magnitude between the two models, this is translated into

∆m̃(z) ∝ log
dt +

1+zt

1+z′(z) d
Λ
L (z′(z))

dt +
1+zt

1+z′(z) d
EdS
L (z′(z))

, (10)

whereas for the observer living atzt, this simply gives

∆m(z′) ∝ log
dΛL (z′)

dEdS
L (z′)

. (11)

Two differences arise here. First, the redshift range which to-
days observer must use in order to distinguish between the two
models is larger than that of the observer living atzt. If the lat-
ter must collect data betweenz′ = 0 andz′ = z∗, say, then
the former must observe supernovae betweenz(0) = zt and
z(z∗) = zt + z∗ + ztz∗ > zt + z∗. Second, the magnitude dif-
ference between the two models is strongly attenuated for the
observer living today because of the presence of the extra term
dt both in the numerator and the denominator of Eq. (10). The
net result is that whereas both models are easy to distinguish at
z = 0.3, this is no loger the case atz = 0 as is clearly seen on
Fig. 1.
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Fig. 1. Comparison ofΩm−ΩΛ fit for the two models discussed
in Sec. 3 for an observer living atz = 0 (after the transition for
the quintessence model) andz = 0.3 (during the transition). At
z = 0.3 the two model are very easily distinguished as one of
them corresponds to a pure matter model, whereas one corre-
sponds to a cosmological constant model withΩΛ = 0.5. On
the contrary, atz = 0 both models look like a cosmological
constant model, and cannot be distinguished at the 2σ level.

4. Analysis

We focus here on constraints that can be set in the transitionpa-
rameterszt andΓ, and therefore we setwi = −0.2 andw∞ = −1
as explained above. This reduces the number of free parame-
ters to two and allows to study the complementary aspect of
the model, i.e., its transition behavior. Note that a pure cosmo-
logical constant behaviour is obtained by considering large zt

and a sufficiently small transition duration (so that it does not
last long afterzt).

4.1. Supernovae Hubble diagram

Let us first examine what kind of constraints the Supernovae
Hubble diagram allows. The number of well observed SNIa has
rapidly increased over the recent years and a significant number
of supernovae above redshift one have been detected. In the fol-
lowing we use the Gold sample from Riess et al. (2004), notic-

Fig. 2. Residual Hubble diagram with respect to an empty
universe for models presenting a transition at epochat/a0 =

1/(1 + zt) = 0.0, 0.3, 0.6, 0.7 & 0.8 compared with the Gold
sample from Riess et al. (2004). Note that as explained in the
text low values ofat all give the similar diagram as that of a
ΛCDM model.

ing that the inclusion of some Cepheids distance implies that
this data set automatically leads to a prior on the Hubble con-
stant, which cannot be entirely disentangled in the following. It
should be kept in mind therefore that some of our constraints
might be affected by this prior.

In figure 2, we show the effect of a transition on the mag-
nitude difference between a fiducial model and the empty uni-
verse. This clearly reveals that a transition fromwi = −0.2 to
w∞ = −1 occurring at even moderately low redshift is making
tiny differences in the observable quantity. This is clearly the
reason why a transition even at low redshift cannot be detected
easily (i.e., it is not due to degeneracies among the variouspa-
rameters of our analysis).

It is therefore not surprising that the constraints that canbe
set from the SNIa Hubble diagram are not very tight. Indeed
in Figure 3 the allowed regions for a transition expressed
at/a0 = 1/(1 + zt) versus the duration of the transition is pre-
sented. Somehow surprisingly, the data prefer a transitionat
low redshift, a tendency which has been already noticed else-
where (Bassett et al. 2004; Corasaniti et al. 2004). Note how-
ever that the significance level is low and a cosmological con-
stant remains consistent with the data at the 2 sigma level.

Rapid transitions (corresponding to largeΓ) are very
weakly constrained: at the two sigma level, transitions areac-
ceptable at any redshift above 0.1. Better constraints are ob-
tained when a strong prior is set onΩm: with Ωm = 0.3 we
found that transitions are acceptable at redshift greater than
0.25 with still data preferring models with a transition. In both
cases, transitions are preferred, but with a significance level less
than two sigmas. This means that the Hubble diagram of dis-
tant SNIa seems not very discriminant on the nature of the dark
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Fig. 3. Contour constraints on the transition at epochat =

1/(1+ zt), and the rate of the transitionΓ. Grey area are 1, 2,
3σ levels on two parameters. Likelihood has been obtained by
maximizing on other parameters. The results are independent
of Γ as soon as it is sufficiently large since an abrupt transition
would necessitate a much thiner redshift resolution in the SN
data, which is not available today as the number of supernovae
is too small. Botton figure show the result in the (ΩQ, at) plane.

energy at high redshift. In order to examine to which level this
conclusion is right we have redone the above analysis from a
simulated survey having typical precision and statistic expected
from space experiments. The input model was a standard con-
cordanceΛCDM model withw = −1. The constraints inferred
from this sample reveal again that the transition epochat is
moderately constrained: transition at redshift as low as 0.16
are acceptable, provided appropriately long duration is taken
(Γ ∼ 2, so as to ensure thatwQ(z) can start decreasing long be-
fore this late transition epoch), more rapid transitions are better
constrained although they are acceptable beyond redshift 0.5, at
an epoch where dark energy density is still of the same order of
magnitude than the matter density. In this case the additionof
a prior onΩm does not improve by much the lower acceptable

Fig. 4. Angular power spectrum of CMB fluctuations for mod-
els presenting a transition at epochat = 1/(1+ zt) = 0, 0.3, 0.6,
0.7 & 0.8 compared with WMAP TT spectrum. Apart from the
large scale (lowℓ) power, the only difference between the spec-
tra is a shift in the spectrum as a result of the modification of
the angular distance to the last scattering surface.

redshift for a transition which remains of the order of 0.5. The
situation is therefore rather paradoxical: although spacesurvey
precision improves the constraints by pushing the acceptable
redshift from 0.16 to 0.5, this last result appears intrinsically
rather modest as a significant fraction of the high precisiondata
provided by the experiment is above this redshift.

4.2. Constraints from the CMB

CMB is known to provide interesting constraint on
quintessence scenario although the best constraints are
obtained through combinations of various data (Spergel et al.
2003; Douspis et al. 2003;̈Odman et al. 2004). It is natural
therefore to examine CMB constraint on the type of models we
have introduced above. For this purpose we use a version of
the CAMB cosmological code (Lewis et al. 2000) that we have
modified. Modification of the code are quite straightforward
since the public version of it includes models with constant
wQ in which what has to be put by hand is the value of the
energy densityρQ(z) and the pressurePQ(z) as a function of
the redshift. Since with our ansatz for the equation of state
parameterwQ(z) allows to integrate the conservation equation
to obtain an analytical form forρQ(z) it almost only suffices to
include the solution of Eq. 3 in the code1.

1 One has also in addition to make the distinction between the equa-
tion of state parameterwQ = PQ/ρQ and the “sound speed” squared
c2

s Q ≡ ṖQ/ρ̇Q, which are identical whenw is constant.
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Fig. 5. Contour constraints on the transition epochat/a0 =

1/(1+ zt) versus the value of the dark energy density parameter
at present time,ΩQ from the CMB alone (upper) using WMAP,
CBI, VSA, boomerang). Constraints on the same quantities
when combined with supernovae (lower). Areas are 1, 2, 3σ
levels contours on two parameters. Lines are 1, 2, 3σ levels
contours on one parameter. Likelihood has been obtained by
maximizing on other parameters.

Angular power spectrum of CMB fluctuations in the pres-
ence of dark energy is modified mainly through the modifi-
cation of the angular distance (Blanchard 1984). The angu-
lar distance to the CMB being known very accurately from
WMAP results, tight constraints are expected. In addition,ISW

will contribute to a lower and lower level as the transition
is assumed to be at lower and lower redshift, and this effect
also contribute to modify the angular power spectrum of the
CMB fluctuations. We have investigated the CMB constraints
on models with the above type of rapid transition. For this pur-
poseΓ was set to 10. We have checked that varyingΓ above
5 produces no appreciable differences. The others parameters
which were let free were the Hubble constantH0, the dark en-
ergy density at present dayΩQ, the index of the primordial
spectrumn, the amplitude of fluctuations and the transition
epochat = 1/(1 + zt). From the contours obtained on figure
5, one can see that the constraints that can be set on the tran-
sition redshiftzt from the CMB are rather stringent,zt > 1.8
(2σ on parameter) whenΩQ represents less than 10% of the
total density. These constraints being slightly dependenton H0

we have also examined whether a combination of CMB and su-
pernova allows to improve the transition epoch constraints, but
although the SNIa data restricted the dark energy density much
more aroundΩQ ∼ 0.7 the final constraints does not represent a
significant improvement: as SNIa slightly prefer a transition the
final constraint iszt > 1.5 (2σ on one parameter). One can won-
der whether additional constraints currently used in combina-
tion on dark energy model may help to improve the above limit.
For instance, the amplitude of matter fluctuations is known to
be a sensitive function of the nature of dark energy (Caldwell
et al. 1998; Douspis et al. 2003), and one can wonder whether
such additional constraint could be useful. However, as transi-
tion is allowed only when dark energy represents less than 10%
of the total density, observables are likely to have values very
close to those obtained with the standard cosmological con-
stant. We have checked explicitly that the amplitude of matter
fluctuations is correlated with the transition epoch, but that for
models within the twoσ contours (corresponding to models
with zt > 1.8), the amplitude does not change by more than
10%, a precision which is not obtainable robustly by present
days given the systematics uncertainties onσ8 (Blanchard &
Douspis 2005).

5. Conclusion

We have investigated a class of models which undergo a rapid
transition in the equation of state of their dark energy compo-
nent. In order to establish the constraints that can be obtained
on the characteristics of the transition we have concentrated our
study on a class of models which dark energy transit rapidly
betweenw ∼ 0 andw ∼ −1. Quite logically we found that the
duration of the transition cannot be constrained as soon as it is
shorter than the Hubble time. More surprisingly we found that
SNIa Hubble diagram does not constraint very much this type
of scenario, as even with the data expected from space experi-
ments as transition can still be allowed at epoch when the dark
energy density represents 40% of the density of the Universe.
This suggests that the SNIa diagram would hardly catch dy-
namic of dark energy at redshift above 0.5. On the contrary,
we found that by adding existing CMB data we already pro-
vide tight constraints on this type of scenario, rejecting possible
transition at redshift beyond 1.5 when dark energy represents
less than 10% of the total density of the Universe.
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