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Abstract

This paper studies the existence of competitive market equilibrium under asym-
metric information. There are two agents involved in the trading of the risky asset:
an “informed” trader and an “ordinary” trader. The market is competitive and the
ordinary agent can infer the insider information from the risky asset’s price dynamics.
The definition of market equilibrium is based on the law of supply-demand as described
by a Rational Expectations Equilibrium of the Grossman and Stiglitz (1980) model.
We show that equilibrium can be attained by linear dynamics of an admissible price
process of the risky asset for a given linear supply dynamics.
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1 Introduction

In recent years, financial mathematicians have been focusing on the model of asymmetric
information. Asymmetric information arises when agents in the market do not have the
same information filtration. They generally make an assumption regarding the extra infor-
mation that is accessible uniquely by the “informed trader” or the “insider trader”. This
extra information could be, for example, the future liquidation price of the risky asset. Us-
ing the results of enlargement of filtration first developed by Jeulin and then Jacod, many
papers such as those of Pikovsky and Karatzas and Grorud and Pontier focused on solving
utility maximisation problems in a security market where two investors have different in-
formation levels. In these papers, the security prices are assumed to evolve according to an
exogenous diffusion. In Hillairet [6], different types of asymmetric information, including
“initial strong”, “progressive strong” and “weak” information are studied. However, the
drawback of the above models is that “ordinary” or “uninformed” agents cannot infer the
insider information.

On the other hand, in Kyle [7] and Back [1], the market is competitive and the ordinary
agents can obtain feedbacks from the market regarding the insider information. There
have also been several other studies, published in the economic literature, on the impact
of asymmetric information on stock price. The first such paper is the seminal paper of
Grossman-Stiglitz [5], followed by those of Glosten-Milgrom [3]. In [2], we may find a very
insightful survey of the literature on these areas, including those cited above. In [5], the
agents are competitive and market is Walrasian, ie. price equals supply and demand. The
only exogenous part of this model may come from irrational traders, often called noise
traders. In [2], the objective is to analyse the price formation in a dynamic version of
Grossman and Stilglitz model where the stochastic control techniques can be used.

In the same framework, in our paper, we consider a financial market consisting of two
traders, an “ordinary” agent and an “informed” agent and noise traders. While the ordinary
agent can only observe the risky asset’s price dynamics, the “informed” agent has also access
to the total supply of the risky asset. As in Back [1], based on the observation of risky
asset’s price dynamics, “the ordinary” agent can infer the additional information of the
“informed” agent. The purpose of the study is to see whether an equilibrium condition can
be attained by linear dynamics of an admissible price process of the risky asset for a given
linear supply dynamics. Like in the Grossman-Stiglitz model, the market is Walsarian, ie.
the agents involved in the market are competitive agents.

Our studies show that the existence of linear competitive market equilibrium under
asymmetric information is directly related to the existence of solution to some associated
nonlinear equations. Indeed, the equilibrium condition can be explicitly expressed in the
form of a system of nonlinear equations. However, we may not determine whether the
associated system of nonlinear equations leads to a nonempty set of solution. We never-
theless find that in the particular case where the total supply is a Brownian motion, the
equilibrium can be reached and we explicitly obtain the linear dynamics of an admissible
price process.
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The plan of the paper is organised as follows. We define the model and the equilib-
rium condition in the first section, while in the second section, we use stochastic control
techniques and filtering theory to solve agents’ CARA optimisation problem and then de-
termine their optimal trading portfolio. In the third and fourth sections, we express the
characterisation of a potential equilibrium price and explicitly calculate the linear dynamics
of an admissible price process in the particular case where the total supply dynamics is a
Brownian motion.

2 The model

We consider a financial market with a risky stock and a risk-free bond. The risk-free interest
rate is assumed to be zero. We are given a standard Brownian motion, W=(Wt)t∈[0,T ] on
a filtered probability space (Ω,F , F = (Ft)t∈[0,T ], P) satisfying the usual conditions. T is a
fixed time at which all transactions are liquidated.

2.1 Information and agents

There are two rational competitive traders:

• The first one is an “informed” trader (insider trader), agent I, whose information is
described by the filtration, F, as he can observe both the risky asset price S = (St)
and the total supply of the risky asset Z = (Zt). He has a constant absolute risk
aversion (CARA) with coefficient ηI > 0, ie. his utility function is equal to UI (v) =
− exp(−ηI v).

• The second trader is an ordinary economic agent, agent O, whose information is only
given by the price observation. We denote by FO

the structure of his filtration. He
also has a constant absolute risk-aversion (CARA) with coefficient ηO > 0, i.e. his
utility function is in the form : UO(v) = − exp(−ηOv).

We assume that the supply Z of the risky asset is a gaussian process, governed by the s.d.e:

dZt = (a(t)Zt + b(t)) dt + γ(t)dWt, Z0 = z0 ∈ R (2.1)

where a, b, and γ are deterministic continuous functions from [0, T ] into R.

2.2 Admissible price function

The purpose of this study is to find out whether an equilibrium condition can be attained
by linear admissible price processes of the risky asset for a given linear supply dynamics as
defined in (2.1). An admissible price process under is a process in the form of :

dSt = St [(α(t)Zt + β(t)) dt + σ(t)dWt] , 0 ≤ t ≤ T (2.2)

where α and β are continuous functions from [0, T ] into R, and σ a continuous function
from [0, T ] into R∗+. We define S as the set of admissible price processes of risky asset.

The purpose is therefore to determine all set of functions (α, β, σ), ie. admissible price
processes, satisfying an equilibrium condition.
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2.3 Equilibrium

Given an admissible price process S, a trading strategy for the “informed” agent (resp.
the ordinary agent) is a F (resp. FO

)-predictable process X integrable with respect to S.
X = (Xt) represents here the amount invested in the stocks at time t. We denote by A(F)
(resp. A(FO

)) this set of trading strategies, X = (Xt)0≤t≤T , which satisfy the integrability
criteria: ∫ T

0
|Xt|2dt < ∞, P a.s. (2.3)

Each rational agent’s goal, with its own filtration, is to maximize his expected utility
from terminal wealth. We now formulate the definition of market equilibrium based on the
law of supply-demand as described by a Rational Expectations Equilibrium of the Grossman
and Stiglitz model.

Definition 2.1 A market equilibrium is a pair (X̂
I
, X̂

O
) and an element Ŝ ∈ S such that :

(i) X̂
I

is the solution of the insider agent’s optimization problem :

max
X∈A(F)

E

[
UI

(
vI +

∫ T

0
Xt

dŜt

Ŝt

)]
,

where vI ∈ R is the initial capital of the insider.
(ii) X̂

O
is the solution of the ordinary agent’s optimization problem :

max
X∈A(FO)

E

[
UO

(
vO +

∫ T

0
Xt

dŜt

Ŝt

)]
,

where vO ∈ R is the initial capital of the ordinary agent.
(iii) the market clearing conditions hold :

X̂I
t + X̂

O

t = Zt, 0 ≤ t ≤ T.

If (X̂I , X̂
O
, Ŝ) is a market equilibrium, then we say that Ŝ is an equilibrium pricing rule.

3 CARA utility maximisation

In this section, we determine the optimal trading portfolio of the ordinary and insider
agents.

3.1 “Informed” agent’s optimisation problem

Given an admissible price process S, the self-financed wealth process of the investor with
a trading portfolio X ∈ A(F) has a dynamics given by :

dVt = Xt
dSt

St

= Xt [α(t)Zt + β(t)] dt + Xtσ(t)dWt.
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The investor with initial wealth vI and constant risk aversion ηI > 0 has to solve the
optimization problem :

JI (vI ) = sup
X∈A(F)

E [− exp (−ηI VT )] . (3.1)

We consider the related dynamic optimization problem : for all (t, v, z) ∈ [0, T ]× R× R,

JI (t, v, z) = sup
X∈A(F)

E [− exp (−ηI VT ) |Vt = v, Zt = z] , (3.2)

so that
JI (vI ) = JI (0, vI , z0).

The nonlinear dynamic programming equation associated to the stochastic control problem
(3.2) is :

∂JI

∂t
(t, v, z) + sup

x∈R
LxJI (t, v, z) = 0, (3.3)

together with the terminal condition JI (T, v, z) = − exp(−ηI v). Here Lx is the second
order linear differential operator associated to the diffusion (V,Z) for the constant control
X = x :

LxJI = x[αz + β]
∂JI

∂v
+ [az + b]

∂JI

∂z
+

1
2
x2σ2 ∂2JI

∂v2
+ xσγ

∂2JI

∂v∂z
+

1
2
γ2 ∂2JI

∂z2
.

We make the logarithm transformation:

JI (t, v, z) = − exp[−ηI v − φ(t, z)].

Then the Bellman equation (3.3) becomes:

∂φ

∂t
+ LZφ + sup

x∈R

[
ηI x(αz + β)− 1

2

∣∣∣∣ηI xσ + γ
∂φ

∂z

∣∣∣∣2
]

= 0, (3.4)

together with the terminal condition :

φ(T, z) = 0, (3.5)

Here LZ is the second order linear operator associated to the diffusion Z :

LZφ = (az + b)
∂φ

∂z
+

1
2
γ2 ∂2φ

∂z2
.

The maximum in (3.4) is attained for :

x̂(t, z) =
1

ηI σ
2

[
α(t)z + β(t)− σ(t)γ(t)

∂φ

∂z
(t, z)

]
. (3.6)

Substituting into (3.4) gives :

∂φ

∂t
+ LZφ +

1
2σ2

(
αz + β − σγ

∂φ

∂z

)2

− 1
2
(γ

∂φ

∂z
)2 = 0. (3.7)
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This is a semi-linear equation for φ but with a quadratic term in
∂φ

∂z
. We are therefore

looking for a quadratic solution :

φ(t, z) =
1
2
PI (t)z

2 + QI (t)z + χI (t)

where PI , QI , and χI are deterministic functions valued in R. By substituting and cancelling
quadratic terms in z, we see that (3.7) holds iff PI , QI and χI satisfy:

0 = ṖI + 2
[
a− γα

σ

]
PI +

α2

σ2
(3.8)

PI (T ) = 0,

0 = Q̇I +
[
a− γα

σ

]
QI +

β

σ2
[α− γσPI ] + bPI (3.9)

QI(T ) = 0,

0 = χ̇I +
β2

2σ2
+
[
b− γβ

σ

]
QI +

1
2
γ2PI (3.10)

χI (T ) = 0.

By solving these differential equations, we obtain:

PI (t) = exp
[
2
∫ T

t

(
a− γα

σ

)
(u)du

]
(3.11)∫ T

t

α2

σ2
(s) exp

[
2
∫ T

s

(
a− γα

σ

)
(u)du

]
ds,

QI (t) = exp
[∫ T

t

(
a− γα

σ

)
(u)du

]
(3.12)∫ T

t

[
β

σ2
(α− PI γσ) + PI b

]
(s) exp

[∫ T

s

(
a− γα

σ

)
(u)du

]
ds,

χI (t) =
∫ T

t

[
β2

2σ2
+
[
b− aβ

σ

]
QI +

1
2
γ2PI

]
(u)du. (3.13)

The main result of this section can then be stated as follows:

Theorem 3.1 The value function for problem (3.2) is equal to:

JI (t, v, z) = − exp
(
−ηI v −

1
2
z2PI (t)−QI (t)z − χI (t)

)
,

where PI , QI and χI are expressed in (3.11), (3.12), and (3.13). Moreover, the optimal
trading portfolio for problem (3.2) is given by X̂I

t = x̂I (t, Zt), 0 ≤ t ≤ T , where x̂I (t, z) is
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defined on [0, T ]× R by :

x̂I (t, z) = ΦI (t)z + HI (t), (3.14)

ΦI (t) =
1

ηI σ
2(t)

(α(t)− σ(t)γ(t)PI (t)) , (3.15)

HI (t) =
1

ηI σ
2(t)

(β(t)− σ(t)γ(t)QI (t)) . (3.16)

Proof. See Appendix 1. 2

3.2 Ordinary agent’s optimisation problem

We now focus on the ordinary agent’s optimisation problem. To do so, we need to decom-
pose the price process (St)t in its own filtration FO

= (FO

t )t∈[0,T ], which is generated by
the price process, FO

t = σ(Ss, s ≤ t).

Let us define:

Z̃t = E
(
Zt|F

O

t

)
,

Γ(t) = E
[
(Zt − Z̃t)2

]
.

From Kalman Bucy filter results (see Theorem 10.3 in [8]), Z̃t and Γt are solution of the
systems of equations:

dZ̃t = [a(t)Z̃t + b(t)]dt +
1

σ(t)
[σ(t)γ(t) + α(t)Γ(t)]dW

O

t , (3.17)

Γ̇(t) = 2a(t)Γ(t)− 1
σ2(t)

[γ(t)σ(t) + α(t)Γ(t)]2 + γ2(t), (3.18)

where W
O

a (P, FO
)-Brownian motion, the so-called innovation process.

We may obtain the expression of Γ(t) by solving the Riccati equation (3.18) (See [9], page
4-7):

Γ(t) = Γ(0)
exp

(
−
∫ t
0

[
−2a(s) + 2γ(s)α(s)

σ(s)

]
ds
)

1 + Γ(0)
∫ t
0

α2(s)
σ2(s)

exp
(
−
∫ s
0

[
−2a(u) + 2γ(u)α(u)

σ(u)

]
du
)

ds
. (3.19)

The dynamics of an admissible price process under (P, FO
) is then given by :

dSt = St

[(
α(t)Z̃t + β(t)

)
dt + σ(t)dW

O

t

]
. (3.20)

The equivalent optimisation problem for the ordinary agent with an initial wealth vO and
constant risk aversion ηO > 0 is :

JO(vO) = sup
X∈A(FO )

E [− exp (−ηOVT )] . (3.21)
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We consider the related dynamic optimization problem : for all (t, v, z) ∈ [0, T ]× R× R,

JO(t, v, z) = sup
X∈A(FO )

E [− exp (−ηOVT )|Vt = v, Zt = z] , (3.22)

so that JO(vO) = JO(0, vO , zO).
Using the same arguments as in Theorem 3.1, we obtain the following results for ordinary
agent:

Theorem 3.2 The optimal trading portfolio for problem (3.21) is given by X̂
O

t = x̂O(t, Zt),
0 ≤ t ≤ T , where x̂O(t, z) is defined on [0, T ]× R by :

x̂O(t, z) = ΦO(t)z + HO(t), (3.23)

ΦO(t) =
1

ηOσ2(t)
(α(t)− σ(t)γ(t)PO(t)) , (3.24)

HO(t) =
1

ηOσ2(t)
(β(t)− σ(t)γ(t)QO(t)) , (3.25)

and PO and QO are expressed as:

PO(t) = exp
[
2
∫ T

t

(
a− γα

σ

)
(s)ds

]
∫ T

t

α2

σ2
exp

[
2
∫ T

s

(
a− γα

σ

)
(u)du

]
(s)ds, (3.26)

QO(t) = exp
[∫ T

t

(
a− γα

σ

)
(s)ds

] ∫ T

t

[
β

σ2
[α− POγσ] + POb

]
exp

[∫ T

s

(
a− γα

σ

)
(u)du

]
(s)ds, (3.27)

with

γ(t) =
1

σ(t)
[σ(t)γ(t) + α(t)Γ(t)]. (3.28)

4 Characterisation of the equilibrium price

In this section, we give a characterisation of a market equilibrium as defined in Definition
2.1. Using the optimal strategy of each agent determined in the previous section, we find
that the equilibrium condition can be explicitly expressed as a nonlinear system.

Theorem 4.1 The equilibrium condition is equivalent to the following nonlinear system of
at most three equations with three unknown variables, α, β, and σ :

1
η

O
[β(t)− σ(t)γ(t)QO(t)] + 1

η
I

[β(t)− σ(t)γ(t)QI (t)] = 0,
1

ηIσ2(t)
[α(t)− σ(t)γ(t)PI (t)]− 1 = 0,

[α(t)− σ(t)γ(t)PO(t)]Var(Z̃t) = 0.

(4.1)
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Proof. The equilibrium pricing rule is given by

X̂I (t, Zt) + X̂O(t, Z̃t) = Zt. (4.2)

To simplify the calculations, we assume w.l.o.g. that the gaussian process (Zt − Z̃t, Z̃t) is
centered. The equilibrium (4.2) is equivalent to

{
E[X̂I (t, Zt) + X̂O(t, Z̃t)] = E[Zt],

Var
[
X̂I (t, Zt) + X̂O(t, Z̃t)

]
= Var(Zt).

(4.3)

Using (3.14) and (3.23), the equilibrium condition becomes:


HO(t) + HI (t) = 0,

(ΦI (t)− 1)Γ(t) = 0,

(ΦI (t) + ΦO(t)− 1)Var(Z̃t) = 0.

(4.4)

Since Γ(t) > 0, the above equilibrium condition is also written as:
HO(t) + HI (t) = 0,

(ΦI (t)− 1) = 0,

ΦO(t)Var(Z̃t) = 0.

(4.5)

and the required results are obtained by substituting the expression of HO ,HI , ΦO , and ΦI .
2

Remark 4.1 While the explicit expression of the equilibrium condition is in the form of a
nonlinear system, we do not know whether this system leads to a nonempty set of solution.
Recall that QO , QI , PO , PI , and γ are dependent on the unknown variables α, β, and σ,
see (3.11), (3.12), (3.26), and (3.27).

5 Equilibrium in the case: Zt = Wt

We take the particular case of Zt = Wt, i.e. a(t) = b(t) = 0 and γ(t) = 1.

Proposition 5.1 In the case of Zt = Wt, the equilibrium is reached and the linear dynamics
of an admissible price process is given by

dSt = St [α(t)Ztdt + σ(t)dWt] . (5.6)

with

σ(t) =
1
ηI

[
µ(t) +

1
3

µ2(t)
µT

(
1− µ3(t)

µ3
T

)]
, (5.7)

α(t) = σ(t)µ(t), (5.8)

where
µ(t) =

µT

1 + µT (T − t)
and µT is any arbitrary positive constant.
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Remark 5.2 The equilibrium condition does not depend on the CARA coefficient of the
ordinary agent. In economic sense, this means that the “informed” agent defines his trading
strategy in order to maximise his expected utility from terminal wealth and imposes his
optimal trading strategy upon the ordinary trader.

Proof of proposition 5.1. Let us set µ(t) = α(t)
σ(t) . From (3.28), (3.18), and (3.8), we

obtain : 
γ(t) = 1 + µ(t)Γ(t),
Γ̇(t) = 1− [1 + µ(t)Γ(t)]2,
0 = ṖO + µ(t)2 − 2µ(t)(1 + µ(t)Γ(t))PO(t).

(5.9)

While (3.17) becomes:

dZ̃t = [1 + µ(t)Γ(t)]dW
O

t . (5.10)

Thus

Var(Z̃t) =
∫ t

0
[1 + µ(s)Γ(s)]2ds. (5.11)

The equilibrium pricing rule becomes :

1
ηO

[β(t)− σ(t)(1 + µ(t)Γ(t))QO(t)] +
1
ηI

[β(t)− σ(t)QI (t)] = 0, (5.12)

1
ηI σ(t)

[µ(t)− PI (t)]− 1 = 0, (5.13)

[µ(t)− (1 + µ(t)Γ(t))PO(t)]Var(Z̃t) = 0. (5.14)

The latter equation (5.14) allows us to obtain the expression of µ(t). Indeed, it is equivalent
to: 

µ(t)− (1 + µ(t)Γ(t))PO(t) = 0,

or
1 + µ(t)Γ(t) = 0.

(5.15)

By deriving any of the two above equations and using the relationship we had on Γ̇, and
ṖO , we obtain the same following equation for µ:

µ̇(t)
µ2(t)

= 1, t ∈ [0, T ] (5.16)

As such,

µ(t) = µT

1
1 + µT (T − t)

(5.17)

which raises no problem of definition in the case of µT > 0.
From equation (5.12) and (5.13),we obtain the explicit expression of σ and β, and therefore
α.
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σ(t) =
1
ηI

[
µ(t) +

1
3

µ2(t)
µT

(
1− µ3(t)

µ3
T

)]
(5.18)

α(t) = σ(t)µ(t) (5.19)

β(t) = 0 (5.20)

where µ(t) =
µT

1 + µT (T − t)
. (5.21)

We check that when µT > 0, µ and σ are positive for t ∈ [0, T ]. 2

Appendix 1

Proof of Theorem 3.1
We set:

φ(t, z) =
1
2
PI(t)z2 + QI (t)z + χI (t)

g(t, v, z) = −ηI v − φ(t, z)

Where PI , QI , and χI are expressed as above [see(3.11), (3.12), (3.13)]
By differentiating, we obtain:

∂g

∂t
= −∂φ

∂t
,
∂g

∂v
= −ηI ,

∂g

∂z
= −∂φ

∂z
Lxg = −ηI (αz + β)x− LZ φ

By applying Itô’s formula to g(t, Vt, Zt) for any X ∈ A(F) between t and T , we obtain :

g(T, VT , ZT ) = g(t, Vt, Zt) +
∫ T

t

(
∂g

∂t
+ LXug

)
(u, Vu, Zu)du

+
∫ T

t
(
∂g

∂v
Xσ + (

∂g

∂z
)γ)(u, Vu, Zu)dBu

= g(t, Vt, Zt) +
∫ T

t

(
−∂φ

∂t
− LY φ− ηI X(αZ + β)

)
(u, Zu)du

+
∫ T

t

(
−ηI Xuσ(u)− (

∂φ

∂z
)(u, Zu)γ(u)

)
dBu

= g(t, Vt, Zt)−
∫ T

t

(
∂φ

∂t
+ LY φ + ηI Xu(αZ + β)− 1

2

∣∣∣∣ηI Xσ + γ
∂φ

∂z

∣∣∣∣2
)

(u, Zu)du

−
∫ T

t

(
ηI Xuσ(u) + (

∂φ

∂z
)(u, Zu)γ(u)

)
dBu

−1
2

∫ T

t

∣∣∣∣ηI Xσ + γ
∂φ

∂z

∣∣∣∣2 (u, Zu)du. (5.22)

11



We now consider the exponential local (P, F)-martingale for any X ∈ A(F) :

ξX
t = exp

{
−
∫ T

t

(
ηI Xuσ(u) + (

∂φ

∂z
)(u, Zu)γ(u)

)
dBu

−1
2

∫ T

t

∣∣∣∣ηI Xσ + γ
∂φ

∂z

∣∣∣∣2 (u, Zu)du.

}
.

From PDE (3.4) satisfied by φ, relation (5.22) yields for all X ∈ A(F) :

exp (g(T, Vt, ZT )) ≥ exp (g(t, Vt, Zt)) .
ξX
T

ξX
t

. (5.23)

Since g(T, v, z) = −ηI v and ξX is a (P, F)-supermartingale, we obtain by taking conditional
expectation in the previous inequality :

E [− exp (−ηI VT )|Vt = v, Yt = y] ≤ − exp (g(t, v, z)) ,

for all X ∈ A(F) and so :

JF(t, v, z) ≤ − exp (g(t, v, z)) . (5.24)

Consider now the control strategy X̂t = x̂(t, Zt), 0 ≤ t ≤ T , where x̂ is defined in (3.6)
or more explicitly in (3.14). Then, we clearly have X̂ ∈ A(F), and we have now equality in
(5.23) since x̂ attains the supremum in the PDE (3.4) :

exp (g(T, Vt, ZT )) = exp (g(t, Vt, Zt)) .
ξX̂
T

ξX̂
t

. (5.25)

Observe that :

ηI X̂uσ(u) + (
∂φ

∂z
)(u, Zu)γ(u) = Zu(ηI Φ(u)σ(u) + PI (u)γ(u)) +

ηI H(u)σ(u) + QI (u)γ(u).

Since Z is a Gaussian process, it follows that for some δ > 0, we have :

E

[
exp

(
δ

∣∣∣∣ηI Xuσ + γ
∂φ

∂z

∣∣∣∣2 (u, Zu)

)]
< ∞.

Therefore by Liptser, Shiryaev (1977, p.220), ξX̂ is a (P, F)-martingale and so by taking
conditional expectation in (5.25), we have :

E [− exp (−ηI VT )|Vt = v, Zt = z] = − exp (g(t, v, z)) ,

for the wealth process V controlled by the trading portfolio X̂. This last equality combined
with (5.24) ends the proof. 2
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