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Abstract The Two-Fluid Model, an averaged model widely used in the modeling of two-phase compressible flows, generally fails
to be hyperbolic in its basic formulation. However, interfacial forces such as the interfacial pressure term and the virtual mass force,
bringing new differential terms to the system can change the previous analysis and make the problem hyperbolic. The case where the
two phases are incompressible has been studied by Stuhmiller ([1]) in 1977, but till now, no proof of their efficiency in rendering the
model hyperbolic exists in the compressible case. The aim of this paper is to detail the effects these forces have on the hyperbolicity
of the Two-Fluid Model in the compressible case. We characterise the location and topology of the non hyperbolic regions, and
propose a closure for the interfacial pressure that makes the system unconditionnally hyperbolic.

1 Introduction

The Two-Fluid Model equations have been used for more
than thirty years to model two phase flows. However, they suffer
the clear difficulty of not being hyperbolic in their basic formu-
lation. This means that the mathematical problem is ill-posed in
the sense of Hadamard ([2]), and numerical simulations on re-
fined meshes show unexpected oscillations. The simplest cases,
where the two phases are incompressible have been studied by
Stuhmiller ([1]), who showed that additional differential terms
due to the modeling of interfacial forces could make the prob-
lem hyperbolic. Interfacial pressure term and virtual mass force
have been used since then to make the problem hyperbolic in
the compressible cases (see Park and al. [3] and Watanabe and
Kukita [4]), but no theoretical study has been made to prove and
assess their efficiency. The reason is that the degree of the char-
acteristic polynomial of the two-fluid system switches from 2 in
the incompressible case to 4 in the compressible case, making
it much more difficult to state when it splits over the real field.
This paper proposes to describe the locus where the two-fluid
characteristic polynomial with interfacial pressure term and vir-
tual mass force admits 4 real roots. After recalling the Two-
Fluid Model basic equations in section 2, we deal in section 3
with the the problem of counting the number of real roots of a
polynomial having the form given in Eq.(7). For that seek, we
show that the number of real roots is the number of intersec-
tions between a given parabola (Eq.(11)) and a given hyperbola
(Eq.(10)). This leads us to the geometrical problem of charac-
terising the locus where the parabola and the hyperbola have
four intersections. From that study, in section 4, we deduce
the topology of the hyperbolic region of the Two-Fluid Model,
which enables us to propose a model that ensures the hyperbol-
icity of the Two-Fluid Model with interfacial pressure term and
virtual mass force.

2 The Two-Fluid Model

2.1 One dimensional equations for isentropic flows

The Two-Fluid Model equations for two-phase flow are ob-
tained by averaging the balance equations for each separated
phase, using space or time averaged quantities (see [5] and [6]).
We will be considering an inviscid isentropic two-phase flow,
call gas the lighter phase (subscript g), and liquid the heavier
(subscript l). Assuming no mass transfer between the phases,
and considering only interfacial forces, the mass and momen-
tum balance equations for each phase can be written as follows:

∂αgρg

∂t
� ∂αgρgug

∂x
� 0 � (1)

∂αlρl

∂t
� ∂αlρlul

∂x
� 0 � (2)

∂αgρgug

∂t
� ∂αgρgug

2

∂x
� αg

∂p
∂x

� Fg � (3)

∂αlρlul

∂t
� ∂αlρlul

2

∂x
� αl

∂p
∂x

� Fl � (4)

With the following closure relations:

αg
� αl

� 1 � Fg
�

Fl
� 0 � (5)

If we take Fg
� Fl

� 0, the system (1)-(4) can be written into the
matrix form:

∂U
∂t

�
A

∂U
∂x

� 0 �
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with the state vector U �

���� p
αg

ug

ul

����� .

It is well known that the matrix A can then have complex eigen-
values and thus system (1)-(4) is not hyperbolic. More precisely
except from the very special (but important) cases when αg

� 0,
αg

� 1 and ug
� ul , the system has real eigenvalues provided:�

ug � ul 	 2 
 c2
gc2

l

αgρlc2
l

� αlρgc2
g � � αlρg 	 1

3
� �

αgρl 	 1
3 � 3

� (6)

For most of the physical applications, ug 
 cg and ul 
 cl , and
thus the condition given in Eq.(6) is practically never satisfied.
This means the system is ill-posed in the sense of Hadamard
(see [2]) and numerical simulation on refined meshes show un-
physical oscillations, especially around shockwaves (see for ex-
ample [7]). This result generalises to the case where Fg and
Fl are algebraic expression involving no derivatives of the un-
knowns.

However, if Fg and Fl involve derivatives of the unknowns,
they bring additional terms to matrix A and can change the pre-
vious statement.
It is the case when considering the interfacial pressure term,
which is a correction term due to the fact that average pressure
and interfacial pressure are not exactly the same. It is modeled
using the following formula:

F p
g

� ��� P
∂αg

∂x
� � F p

l �

where � P ��� p � pi � is a positive parameter characterising the
difference between average pressure and interfacial pressure.

We are also going to consider the virtual mass force, charac-
terising inertial effects on an accelerated particle. We have taken
the following modeling proposed by Drew and Lahey (see for
example [3]):

Fvm
g

� � Cvm ��� ∂ug

∂t
�

ug
∂ug

∂x � � � ∂ul

∂t
�

ul
∂ul

∂x ���
� � Fvm

l �

We are going to study how both the interfacial pressure term
and the virtual mass force can affect the diagonalisability of ma-
trix A by taking Fg

� F p
g

�
Fvm

g and Fl
� F p

l
�

Fvm
l .

2.2 The key polynomial for the study of hyperbolicity

Let us introduce the following abbreviation:

γ2 � αgαlρgρl

αgαlρgρl
� �

αgρg
� αlρl 	 Cvm

c2
gc2

l

αgρlc2
l

� αlρgc2
g

�

Now let λ be an eigenvalue of A, set X � λ � ug � ul
2

γ . Then, up to
a constant factor, the characteristic polynomial rewrites:

P
�
X 	 �

�
X � δ 	 2 � X � δ 	 2 � K1

�
X � δ 	 2 � K2

�
X

� δ 	 2 �
K3 � (7)

with

K1
� αlρg

� αg

c2
g
� P

� 1
αg

Cvm �

K2
� αgρl

� αl
c2

l
� P

� 1
αl

Cvm �

K3
��� P

γ2 �

δ � ug � ul

2γ �

System (1)-(4) is said to be strictly hyperbolic if and only if P
has four distinct real roots. In this case, the matrix A is neces-
sarily diagonalisable with real eigenvalues.

Main results
In the following sections, by a carefull analysis of the poly-

nomial P, we are going to show the following results :

- For any value of the parameters αg � ρg � ρl � cg � cl � Cvm, the
hyperbolic region is an unbounded and connected subset of
the

� � P�
�
ug � ul 	 2 	 plane. It is possible from the diagram

of the non hyperbolic regions (figure 15) to predict the
effect a given modeling of � P and Cvm will have on the
hyperbolicity of the Two-Fluid Model.

- Taking Cvm
� 0, a carefull modeling of the only interfa-

cial pressure term can indeed ensure the hyperbolicity of
the Two-Fluid Model. If we are interested in small relative
velocities, the critical value of � P is :

� Pc
� αgαlρgρl

αgρl
� αlρg

�
ug � ul 	 2 �

A modeling with � P �
�
1

� ε 	 � Pc, ε � 0 will ensure hy-
perbolicity for a certain range of small relative velocities.
The higher ε is, the larger the range is. The reason is that
the double roots is nearly always convex (see Eq(19)).

- Knowing the location of the non hyperbolic regions, it
is possible to correct or build closure relations for the only
interfacial pressure term in order that they avoid non hyper-
bolic regions. In the case Cvm

� 0, the simplest modeling
is � P � ρg

�
ug � ul 	 2 �

which ensures hyperbolicity of the Two-Fluid Model at
least for

�
ug � ul 	 2 � c2

g.

- Virtual mass alone has no impact on the hyperbolicity of
small relative velocities.

- Coupling interfacial pressure term and virtual mass helps
making the double roots curve concave and thus hyperbol-
icity is more easily ensured for greater velocities. The crit-
ical value for � P to ensure hyperbolicity of both small and
large relative velocities is then given by:

� Pc
� � αlρg

� Cvm
αg
� � αgρl

� Cvm
αl
�

αgρl
� αlρg

� Cvm
αgαl

�
ug � ul 	 2 �
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The critical value � Pc is an increasing function of Cvm so,
the higher the virtual mass coefficient is the higher the crit-
ical value for � P to ensure hyperbolicity is.

In the following, we give the proof of all these assertions.

3 Mathematical analysis of the characteristic
polynomial

3.1 A geometric interpretation

Let us determine when a polynomial having the form

P
�
X 	 �

�
X � δ 	 2 � X � δ 	 2 � K1

�
X � δ 	 2 � K2

�
X

� δ 	 2 �
K3 � (8)

with K1

 0 and K2


 0 admits 4 real roots.
If X is a real root of P, then calling

x �
�
X

� δ 	 2 � y �
�
X � δ 	 2 � (9)

leads to the following relation between x and y:�
x � K1 	 � y � K2 	 � K1K2 � K3 � (10)

Note that x and y also satisfy:

8δ2 � x �
y 	 �

�
x � y 	 2 �

16δ4
� (11)

with x 
 0 and y 
 0 � (12)

Conversely if x and y are positive and satisfy Eq.(11) and
Eq.(10), then there exists an X satisfying Eq.(9). As Eq.(10) is
true, X is a root of P.
Therefore the number of real roots of P is the number of inter-
secting points between the parabola defined by Eq.(11) and the
hyperbola defined by Eq.(10) in the x 
 0, y 
 0 quarter.
Note that if x and y satisfy Eq.(11) with δ �� 0, x and y are nec-
essarily positive. So only in the δ � 0 case should we truncate
the parabola.

3.2 Description of the parabola and the hyperbola

The Parabola:
Figure 1 shows the graphic of the parabola defined by

Eq.(11).
It is the 45 � clockwise rotation of the parabola defined by the
equation y � 1

8δ2 x2 �
2δ2.

It is located on the x 
 0 and y 
 0 quarter and is tangent to
both x and y axis at ordinate 4δ2.
If δ � 0 it degenerates into the x � y half straight line as we
should consider only the positive values of x and y.
Its base point coordinates are

�
δ2

� δ2 	 . Hence, the parabola
translates along the first bisector and dilates to keep tangency
to both axes with increasing values of δ.

The Hyperbola:
Figure 2 shows the graphic of the hyperbola defined by

Eq.(10).
Its asymptotes are the x � K1 and y � K2 lines.
Its main parameter is K1K2 � K3 which tells us on which side

Figure 1. The parabola

Figure 2. The hyperbola

Figure 3. Hyperbolic case: four intersecting points

of the asymptotes it lies. Figure 3 shows an example of a four
points configuration.
If we increase δ2, we may loose two of the intersecting points

as shown on figure 4.
If δ2 goes further enough, we reach again a four intersection

points configuration as shown on figure 5.

3.3 Topology of the roots regions

In the previous section, we described the respective geome-
tries of the parabola defined by Eq.(11) and of the hyperbola de-
fined by Eq.(10). We also proved that the number of real roots of
P was the number of intersections between the parabola and the
hyperbola. This means we have to study the following system
with K � K1K2 � K3:

� �
x � K1 	 � y � K2 	 � K �

8δ2 � x �
y 	 �

�
x � y 	 2 �

16δ4
�
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Figure 4. Non hyperbolic case: only two intersecting points

Figure 5. Hyperbolic case: again four intersecting points

Assume K1 and K2 are known, then the hyperbola asymp-
totes are fixed. The values of the two remaining parameter δ2

and K enable us to determine the number of intersecting points
between the parabola and the hyperbola. From the possible rel-
ative position of the parabola and the hyperbola, we can sketch
the shape of the regions where there will be 0, 2, or 4 inter-
secting points as on figure 6. These regions are separated by 3
double root curves, one starting from point D, and the two other
from point C.

Figure 6. Sketch of configurations between the parabola and the hyperbole

The exact shape of the delimiting curves between the differ-
ent regions depends on K1 and K2. Their equations can be cal-
culated as is explained in section 6, but are very complicated.
However, whatever the values for K1 and K2 are, the topology
of the 0, 2 or 4 roots regions is the same and there are a few
more invariants: the double root curves will be tangent to the x
axis in 2 points A and B and join the y axis in 2 other points C
and D. Each of these points corresponds to a very specific con-
figuration enabling us to compute their coordinates.

3.4 Description of the K � 0 axis

On the K � 0 axis, the hyperbola consists of its two asymp-
totes. An example of the configuration on the segment � O � A � is
given on figure 7. On segment � A � B � the configuration is that of
figure 8.

Figure 7. K � 0 axis: configuration for δ2 between O and A

Figure 8. K � 0 axis: configuration for δ2 between A and B

Coordinates of points A and B:
Let us seek for a double root on the K � 0 axis. As the

parabola always crosses the hyperbola four times, the only way
we can get a double root is by having the parabola passing
trough the hyperbola center as on figure 9.

This is equivalent to the point
�
K1 � K2 	 being on the parabola.

It corresponds to a second order polynomial in δ2 to solve:

8δ2 � K1
�

K2 	 �
�
K1 � K2 	 2 �

16δ4
�
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whose solutions are δ2 � � � K1 � � K2
2

� 2
and δ2 � � � K1 � � K2

2
� 2

.

Hence the following
�
δ2

� K 	 coordinates for A and B:

A :

� ��� K1 � � K2

2 � 2

� 0 � B :

� ��� K1
� � K2

2 � 2

� 0 � (13)

Figure 9. Configuration at point A

3.5 Description of the δ2 � 0 axis

In this case the parabola degenerates into the half line:

y � x � x 
 0

. Figures 10 -13 show the different possible configurations for
the parabola and for the hyperbola.
Segment � � ∞ � C � corresponds to figure 10, segment � C � D � to
figures 11 and 12, segment � D � ∞ � to figure 13.

Figure 10. δ2 � 0 axis: configuration for K below C

Coordinates of points C and D:
As δ2 � 0, P is a second degree polynomial in X 2:

P
�
X 	 � X4 � � K1

�
K2 	 X2 �

K � K1K2 �

Figure 11. δ2 � 0 axis: configuration for K between C and O

Figure 12. δ2 � 0 axis: configuration for K between O and D

Figure 13. δ2 � 0 axis: configuration for K above D

It’s fourth order discriminant is� � 16
�
K1K2 � K 	 � 4K � � K1 � K2 	 2 	 �

Thus we obtain double roots when either

K � � � K1 � K2

2 � 2

or K � K1K2 �

Note that the last case is simply equivalent to K3
� 0.

The
�
δ2

� K 	 coordinates for C and D are then the following:

C :
�
0 � K1K2 	 D :

�
0 � � � K1 � K2

2 � 2 � (14)
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4 Hyperbolicity analysis of isentropic flows

In the previous section, we have studied the location and
topology of the hyperbolic region for a polynomial having the
form:

P
�
X 	 �

�
X � δ 	 2 � X � δ 	 2 � K1

�
X � δ 	 2 � K2

�
X

� δ 	 2 �
K3 �

In this section our aim is to deduce from the analysis in the
previous section, the hyperbolicity domain when K1, K2, K3 take
the following forms:

K1
� αlρg

� αg

c2
g
� P

� 1
αg

Cvm � (15)

K2
� αgρl

� αl

c2
l
� P

� 1
αl

Cvm � (16)

K3
� � P

γ2 � (17)

δ � ug � ul

2γ � (18)

4.1 Case � P � 0 and Cvm �� 0

Here, as � P � 0 we have that K3
� 0 and, from section 6.4,

we know there will be a critical value for the relative velocity
for the system (1)-(4) to be hyperbolic:

K1
� αlρg

� 1
αg

Cvm � 0 �

K2
� αgρl

� 1
αl

Cvm � 0 �

As Cvm should be positive, the only degenerate case is the
case δ � 0 which corresponds to equal velocities for both
phases. Thus the system is hyperbolic if one of the two fol-
lowing conditions is satisfied:

ug � ul
� 0,�

ug � ul 	 2 
 γ2 � � αlρg
� 1

αg
Cvm � 1

3 � � αgρl
� 1

αl
Cvm � 1

3 � 3

.

And thus small relative velocities do not lead to hyperbolic
systems. In absence of interfacial pressure, the virtual mass has
no effect on the hyperbolicity of small relative velocities.

4.2 Case � P �� 0 and Cvm
� 0

Description of the roots diagram
Our key parameter value has the following expression:

K � K1K2 � K3
� αgαl

c2
gc2

l

� � P � ρgc2
g 	 � � P � ρlc

2
l 	 �

We would like to deduce from the
�
K � δ2 	 diagram on figure 6

a
� � P� δ2 	 diagram. K equation is a parabola in the variable� P as shown on figure 14. As � P moves from 0 to infinity, K

first decreases, from point D on figure 6 (as � P � 0 � K3
� 0)

Figure 14. K describes a parabola as � P moves

towards its minimum at � P � ρgc2
g � ρlc

2
l

2 . As will be shown
later, that minimal value is below the point C on figure 6. From
that minimal value it increases to the infinity.

Throughout this process, K value cancels twice and passes
twice over C. Key points A, B, and C are thus split into
points A1, A2, B1, B2, C1, C2 as shown in the following

� � P� δ2 	
roots diagram. Figure 15 shows the type of diagram we get

Figure 15. � P �� 0 and Cvm � 0: Hyperbolicity diagram

when studying the roots diagram of P. It has been drawn with
logarithmic coordinates on the � P axis.

Point E:
From section 6 we know that the two double root curves start-

ing from C: Kb and Kc, have respectively � 4K1 and � 4K2 as
slopes at infinity. So the one with the smaller of the Ki is above.
Thus if K1 � K2 changes sign while increasing � P, the order is
reversed and thus the two curves emerging from C1 or C2 may
have to cross. This crossing is materialized by point E on the
diagram. It corresponds to the case when K is negative and the
two branches of the hyperbola are symmetrical through the first
bisector. The parabola can be tangent to both branches at the
same time as can be view in picture (16). The cross can happen
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Figure 16. Cvm � 0: Configuration at point E

for example when

αlρg
� αgρl and

αg

c2
g
� αl

c2
l

�

as K1 is smaller at the beginning when � P � 0 but moves faster
than K2 with increasing � P. This will be the case in physical
applications as ρg 
 ρl and cg

� cl . The last condition to be
satisfied is K � 0.

Computation of A1, A2, B1, B2 coordinates:
This points correspond to the K � 0 case. The parameter K

cancels when � P � ρgc2
g or � P � ρlc

2
l �

THe values for K1 and K2 are then:

K1
� ρg and K2

�
c2

g

γ2 at points A1 and B1 �

K1
� ρl and K2

� c2
l

γ2 at points A2 and B2 �

Thus using the formulas given in Eq.(13) we get the corre-
sponding values for δ2 at points A1 and A2, B1 and B2.

A1 : � � cg � γ
�

ρg
2γ

� 2
� ρgc2

g � A2 : � � cl � γ
�

ρl
2γ

� 2
� ρlc2

l �
B1 : � � cg � γ � ρg

2γ
� 2

� ρgc2
g � B2 : � � cl � γ

�
ρl

2γ
� 2

� ρlc2
l �

Computation of C1, C2 and D coordinates:
This time we have δ � 0 and have to solve the equations

defined by the formulas Eq.(14) at each of the points C and D to
find the corresponding values for � P.

Equation K1K2 � K3
� � K1 � K2

2
� 2

is a second degree equa-

tion in � P which is equivalent to
�
K1

�
K2 	 2 � 4K3.

Its discriminant is 16 αgαl

c2
gc2

l γ2

�
ρl � ρg 	 � c2

l � c2
g 	 and is positive if

and only if
�
ρl � ρg 	 and

�
c2

l � c2
g 	 have the same sign, which is

the case in physical applications. In this case the two solutions
correspond to C1 and C2 ordinates, which are not given here
because their formulas are quite big and will not be used in the
following.

Point D correspond to K � K1K2 which is equivalent to K3
�

0 � � P
γ2 . Hence the coordinates for D are:

D: (0,0 )

Computation of E and F coordinates:
Solving K1

� K2 we obtain E ordinate � P � c2
gc2

l
αgρl � αlρg

αgc2
l � αlc2

g
.

Then we have K1
� K2

� αg
2ρlc

2
l � αl

2ρgc2
g

αgc2
l � αlc2

g
,

and K � � αgαl c
2
gc2

l
γ4

�
c2

g � γ2ρg � �
c2

l � γ2ρl ��
αgc2

l � αlc2
g � 2 .

K is positive if and only if αg is on the segment

I �

�
ρg
�
c2

l � c2
g 	

ρlc2
l � ρgc2

g
�
c2

g
�
ρl � ρg 	

ρlc2
l � ρgc2

g �
.
For αg outside I, we have a crossing point materialized by E.
From section 6 we know that K � � 4K1δ2 and thus we get E
abscissa:

E : � αgαlc
2
gc2

l
4γ4

�
c2

g � γ2ρg � �
c2

l � γ2ρl ��
αgc2

l � αlc2
g � �

αg2ρlc
2
l � αl

2ρgc2
g � � c2

gc2
l

αgρl � αlρg

αgc2
l � αlc2

g �
For air-water mixtures (ρg

� 1kg � m3, ρl
� 1000kg � m3, cg

�

340m � s2, cl
� 1500m � s2), I � � 10 � 7

� 5 � 10 � 2 � . The crossing
happens most of the time.

From section 6.4 we have

F : � � αgρl 	 1
3

� �
αlρg 	 1

3 � 3
� 0 �

Diagram for small relative velocities
Zooming on figure 15 around the origin, and setting the

diagram into � � P�
�
ug � ul 	 2 � coordinates, we get figure 17.

It has been drawn in real coordinates, with air and water numer-
ical values: ρg

� 1kg � m3, ρl
� 1000kg � m3, cg

� 340m � s2,
cl

� 1500m � s2 and αg
� 0 � 7 .

As will be shown below, the double roots curve is nearly
always convex near the origin. The monotony of the OB1 part
of the double root curve is ensured by the fact that the gap
between the two branches of the hyperbola vanishes as � P gets
closer to ρgc2

g.

Tangent line and curvature at the origin
From the Taylor expansion in Eq.(21) and using:

K3
� � P

γ2 �

K1
� αlρg

�
O
� �

ug � ul 	 2 	 �

K2
� αgρl

�
O
� �

ug � ul 	 2 	 �

we get that the tangent line at the origin is:

� P � αgαlρgρl

αgρl
� αlρg

�
ug � ul 	 2

Checking the second derivative of the double roots curve at the
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Figure 17. Hyperbolicity diagram for small relative velocities

origin using this time:

K1
� αlρg

� αg

c2
g

αgαlρgρl

αgρl
� αlρg

�
ug � ul 	 2 �

O
� �

ug � ul 	 4 	 �

K2
� αgρl

� αl
c2

l

αgαlρgρl

αgρl
� αlρg

�
ug � ul 	 2 �

O
� �

ug � ul 	 4 	 �

We find that the curvature at the origin is:

αgαlρgρl

c2
gc2

l

�
αlρg

� αgρl 	 4 � αg
2ρl � αl

2ρg 	 � αg
2ρl

2c2
l � αl

2ρg
2c2

g 	
The double roots curve is convex provided:

αg

 � ρg

ρl

1
� � ρg

ρl

or αg � ρgcg
ρlcl

1
� ρgcg

ρlcl

�

As usually ρg 
 ρl and cg
� cl , the double roots curve is

most of the time convex near the origin.

For example, in the case of air-water mixtures (ρg
� 1kg � m3,

ρl
� 1000kg � m3, cg

� 340m � s2, cl
� 1500m � s2), the condition

for convexity rewrites: αg � 2 � 10 � 4 or αg

 0 � 03.

Hyperbolicity line
Now that we have located the non hyperbolic regions, we can

easily predict the effect any particular modeling of the interfa-
cial pressure has on the hyperbolicity of the Two-Fluid Model.
We can also build a simple model that avoids the non hyperbolic
regions. Let us find a straight line that always stays in the hy-
perbolic region.
The � � ug � ul 	 2 � � P � coordinates for A1 and B1 are:

A1 � � cg � γ � ρg
� 2

� ρgc2
g
� B1 � � cg

� γ � ρg
� 2

� ρgc2
g
�

Let us define M as the point with coordinates
�
c2

g � ρgc2
g 	 . We

know from A1 and B1 coordinates that M is always left of B1.

The point M is right of A1 as long as
�
cg � γ � ρg 	 2 � c2

g

This is equivalent to αg
� ρg

�
c2

l � c2
g �

ρlc
2
l � ρgc2

g
.

For air-water mixtures (ρg
� 1kg � m3, ρl

� 1000kg � m3, cg
�

340m � s2, cl
� 1500m � s2), the condition for M to be on � A1 � B1 �

rewrites:

αg
� 2 � 10 � 4

�

Thus, because of the monotony and the convexity of the double
roots curve, when αg � 2 � 10 � 4, the

�
OM 	 line is in the hyper-

bolic region as long as
�
ug � ul 	 2 � c2

g. We actually remarked
that it did not meet any non hyperbolic region even for higher
relative velocities for air-water mixture numerical values. If
αg
� 2 � 10 � 4, the point A1 is left from the point M and thus,

the
�
OM 	 line meets the non hyperbolic region above point A1

which has ordinate ρgc2
g. That means we stay in the hyperbolic

region as long as
�
ug � ul 	 2 � c2

g. Figures 18 and 19 show the
graphics of lines

�
0A1 	 , � OB1 	 and

�
OM 	 slopes as functions

of αg in the case of an air-water mixture.

Figure 18. � P �� 0 and Cvm � 0: slopes of lines � OA1 � , � OM � and � OB1 �

Figure 19. � P �� 0 and Cvm � 0 : slopes of lines � OA1 � , � OM � and � OB1 �
for small void fractions

Thus the line � P � ρg
�
ug � ul 	 2 makes the problem hyper-

bolic for every αg � ρg � ρl � cg � cl as long as
�
ug � ul 	 2 � c2

g.

Numerical comparisons
As can be seen from equations Eq.(15-18), as long as � P

remains negligible compared to ρgc2
g and ρlc2

l , a small pertur-
bation of � P value has very little effect on the computation of
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the eigenvalues and eigenvectors of the two-fluid system.
We have compared the solutions given in numerical tests by the
two formulas:

� P1
� 1 � 01

αgαlρgρl

αgρl
� αlρg

�
ug � ul 	 2 � (19)

� P2
� ρg

�
ug � ul 	 2 � (20)

� P1 is the formula introduced by D. Bestion in the industrial
code CATHARE (see [8]) to obtain hyperbolicity for a certain
range of small relative velocities. It is obtained by increasing
the slope of the tangent line at the origin by a small factor:
1 � 01 . Note we have no control on the maximum relative
velocity allowed in order to stay in the hyperbolic region.� P2 is the formula we have seen in the previous section that
guarantees hyperbolicity at as long as

�
ug � ul 	 2 � c2

g.

To compare the results obtained with these two formulas, we
have chosen the Ransom faucet problem with an air and water
mixture at ambient pressure. The faucet has length L � 12m
and initial and boundary conditions are:
At inlet: αg

� 0 � 2, ug
� 0m � s, ul

� 10m � s.
At outlet: P � 105 Pa.
The initial data is an uniform field with the following parameter
values: αg

� 0 � 2, ug
� 0m � s, ul

� 10m � s, P � 105 Pa.
Below are the solutions obtained at time t � 1 � 2s. The results

are the same.
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Figure 20. Void fraction and liquid velocity

4.3 Case � P �� 0 and Cvm �� 0

Description of the roots diagram
The analysis is exactly the same as that of the previous sec-

tion, but the formula are a litle more complicate. The expression
of our key parameter is:

K � αgαl

c2
gc2

l
� � P � ρgc2

g � 1
� Cvm

αgαlρl � ���� � P � ρlc
2
l � 1

� Cvm

αgαlρg � � �

Assume Cvm value is known. We would like to deduce from
the

�
K � δ2 	 diagram on figure 6 a

� � P� δ2 	 diagram. As in the
previous section, K equation is a parabola in variable � P can-
celling twice. The topology of the roots regions will be the same
as that of figure 15, with a splitting of points A, B, and C into
points A1, A2, B1, B2, C1, C2.

Computation of the key points
We can compute the key points coordinates, us-

ing K1, K2, K3, K expressions in terms of � P and Cvm,
following exactly the same steps as in the previous subsection.
These coordinates are complicate expressions and will not be
given here.

Diagram for small relative velocities
We have shown on figure 21, the � � P�

�
ug � ul 	 2 � hyperbol-

icity diagram with Cvm
� 1

2 αgαl
�
αgρg

� αlρl 	 (case of spherical
bubbles).
It has been drawn with the same air and water numerical values
as on figure 17: ρg

� 1kg � m3, ρl
� 1000kg � m3, cg

� 340m � s2,
cl

� 1500m � s2 and αg
� 0 � 7 .

Figure 21. Hyperbolicity diagram for small relative velocities

The topology is the same as that of figure 21, but this time
the double roots curve is most of the time concave near the
origin.
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Tangent line and curvature at the origin
As in the previous subsection, we can get that the tangent line

at the origin is:

� P �

�
αl ρg � Cvm

αg � � αgρl � Cvm
αl �

αgρl � αlρg � Cvm
αgαl

�
ug � ul 	 2

The slope of the tangent line is an increasing function of Cvm.
Thus, the more virtual mass we add to the system, the more we
increase the slope of the tangent line at the origin, which is the
minimal slope for a line to stay in the hyperbolic region.

As in the previous subsection we can check the second
derivative of the double roots curve at the origin and find:

� P � � αlρg
� Cvm

αg
� � αgρl

� Cvm
αl
�

αgρl
� αlρg

� Cvm
αgαl

�
ug � ul 	 2 �

� αlρg
� Cvm

αg
� � αgρl

� Cvm
αl
�

c2
gc2

l � αgρl
� αlρg

� Cvm
αgαl

� 4 �

� αgρlc
2
l � αgρl

� Cvm

αl � � αlρgc2
g � αlρg

� Cvm

αg � ��
1
ρl
� αgρl

� Cvm

αl � 2 � 1
ρg
� αlρg

� Cvm

αg � 2 � � ug � ul 	 4
�

O
�
ug � ul 	 6 �

Thus the sign of the curvature at the origin is given by:

� αgρlc2
l � αgρl

� Cvm
αl
� � αlρgc2

g � αlρg
� Cvm

αg
� �
�� 1

ρl � αgρl
� Cvm

αl
� 2 � 1

ρg � αlρg
� Cvm

αg
� 2 �

Figure 22 is the plot of the curvature function with
Cvm

� 1
2 αgαl

�
αgρg

� αlρl 	 .

Figure 22. Curvature with Cvm � 1
2 αgαl � αgρg � αlρl �

5 Conclusion

We have characterised the respective effects of interfacial
pressure term and virtual mass force on the hyperbolicity of the
Two-Fluid Model. It appears that enough interfacial pressure
indeed ensure hyperbolicity for small relatives velocity (as for
example with the formula given in equation Eq.(19)), while with
the formula given in Eq.(20) hyperbolicity is ensured even for a
much larger range of velocities. Virtual mass force alone has no
impact on the hyperbolicity of small relatives velocities. How-
ever, coupled with the interfacial pressure term, virtual mass
force helps making he double roots curve concave and thus hy-
perbolicity is more easily ensured for greater velocities.
The tools developped here can be applied to study the impact of
other differential terms (as for example turbulent dispersion, or
the case Fg �� Fl) on the hyperbolicity of the Two-Fluid Model,
or to study model that are derived from the Two-Fluid Model,
as long as the characteristic polynomial of the system takes the
form given in Eq.(7).

6 Appendix: Algebraic expressions

6.1 Existence of the 3 double roots curves

Writing the polynomial P
�
X 	 in the form�

X � δ 	 2 � X � δ 	 2 � K1
�
X � δ 	 2 � K2

�
X

� δ 	 2 �
K1K2 � K �

its discriminant � turns out to be a third degree polynomial in
K. We can solve explicitly the equation � � 0 which always
admits 3 real roots Ka, Kb and Kc . Algebraic expressions can
then be found for the 3 double roots curves Ka, Kb and Kc

depending on δ2
� K1 � K2 with Ka


 Kb

 Kc. Unfortunately as

they are complicated, the formulas are of little help and are not
given here.

Proof Ka, Kb and Kc are real
Here is the expression for � :� � � 256K3 � � � 256δ2 � δ2 � � K1 � K2 	 � 128

�
K1 � K2 	 2 	 K2

� �
832δ2K2

2 K1 � 6656δ4K2K1 � 16K4
2

�
1024K1δ6� 16K4

1 � 352K2
1 K2

2
�

192K3
1δ2 � 768K2

1δ4 �
192K3

2K1
�

192K3
1 K2

�
1024δ6K2

�
832δ2K2K2

1
�

192δ2K3
2 � 768δ4K2

2 	 K� 256δ2K4
2 K1 � 64K4

1 K2
2

�
16K5

2 K1
�

16K5
1 K2

�
96K3

1 K3
2

�
256δ2K3

2 K2
1

�
4096δ8K2K1 � 4096δ6K2K2

1 � 4096δ6K2
2 K1

�
256δ2K2

2 K3
1

�
1536δ4K2K3

1 � 64K2
1 K4

2
�

1536δ4K3
2 K1 � 256K4

1 K2δ2 �
1024δ4K2

2 K2
1 �� is a third degree polynomial in K which admits 3 roots. To

prove its 3 roots are real, we need to show that its discriminant
is positive:

16777216 δ2 � K1 � K2 	 2 � 16δ6 �
24δ4 � K1

�
K2 	� δ2 � � 15

�
K2

1
�

K2
2 	 �

78K1K2 	 �
2
�
K1

�
K2 	 3 	 
 0 �

As the first three factors are positive, let us consider the last
factor : ��� � δ2 	 � 16δ6 �

24δ4 � K1
�

K2 	
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�
K2

1
�

K2
2 	 �

78K1K2 	
�

2
�
K1

�
K2 	 3 �

Now ��� is a third degree polynomial in δ2. It’s own discrimi-
nant � � � turns out to be always negative.

� � � � � 5038848K1K2
�
K1 � K2 	 4 �

Thus there is only one real value of δ2 that cancels the last factor
of � � with a change of sign.
As � � � 0 	 
 0 and because limδ2 � � ∞ � � � � ∞, that value is
negative. Thus, for real δ, � � never cancels, and as limδ � ∞ � � �

� ∞, we have that � � 
 0.
Hence � � 0 admits three real roots in K wathever the values
for δ, K1 and K2.

6.2 Taylor expansions

The algebraic expressions for Ka, Kb and Kc are very compli-
cate. However, they give the Taylor expansions of Ka, Kb and Kc

for small values of δ2:

Ka
� K1K2 � 4

K1K2

K1
�

K2
δ2 �

16
K2

1 K2
2�

K1
�

K2 	 4 δ4 �
O
�
δ6 	 � (21)

Kb
� � � K1 � K2

2 	 2 � � 2
�
K1

�
K2 	 � K1 � K2 	 δ �

O
�
δ2 	 �(22)

Kc
� � � K1 � K2

2 	 2 �
�

2
�
K1

�
K2 	 � K1 � K2 	 δ �

O
�
δ2 	 �(23)

And thus Ka represents the curve starting at point D on figure 6
with a slope value of � 4 K1K2

K1 � K2
and a second derivative value of

16
K2

1 K2
2�

K1 � K2 � 4 .
Kb and Kc are the curves starting at point C on figure 6 with a
vertical tangent.

We can also get the Taylor expansions of Ka, Kb and Kc

at δ � ∞:

Ka � δ4
�

Kb � � 4K1δ2
�

Kc � � 4K2δ2
�

(24)

6.3 Case K1
� K2

In this case, Ka, Kb and Kc formulas simplify to:

Ka
� δ4 � 2K1δ2 �

K2
1 �

Kb
� Kc

� � 4K1δ2
�

6.4 Case K3
� 0

Considering the hyperbola and the parabola defined by
Eq.(10-11), K3

� 0 corresponds to the case when the hyperbola
passes through the origin. We see from figures 23 and 24 that
δ then admits a critical value below which there are only 2 real
roots and above which there are 4 real roots

Figure 23. K3 � 0: δ below critical value

Figure 24. K3 � 0: δ above critical value

Computation of the critical value
As K3

� 0, the polynomial P rewrites:�
X � δ 	 2 � X � δ 	 2 � K1

�
X � δ 	 2 � K2

�
X

� δ 	 2
As it is well known (see for example [7]) P admits 4 real

roots if and only if one of the following conditions is satisfied:

K1
� 0, K2

� 0, or δ � 0.

4δ2 
 � K
1
3

1
�

K
1
3

2 � 3

.

NOMENCLATURE

cg = Gas sound speed, m � s
cl = Liquid sound speed, m � s
Fg = Forces applied from the liquid to the gas, kgm � s2

Fl = Forces applied from the gaz to the liquid, kgm � s2

p = Pressure, Pa
pi = Interfacial pressure, Pa
ug = Convection speed of the gas, m � s
ul = Convection speed of the liquid, m � s

αg = Gas volume fraction, dimensionless
αl = Liquid volume fraction, dimensionless
ρg = Gas density, kg � m3

ρl = Liquid density, kg � m3
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