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Abstract. We present a Bayesian CAD modeler for robotic applications. We describe the method-
ology we use to represent and handle uncertainties using probability distributions on the system
parameters and sensor measurements. We address the problem of the propagation of geometric un-
certainties and how to take this propagation into account when solving inverse problems. The pro-
posed approach may be seen as a generalization of constraint-based approaches where we express
a constraint as a probability distribution instead of a simple equality or inequality. We also describe
appropriate numerical algorithms used to apply this methodology. Using an example, we show how
to apply our approach by providing simulation results using the implemented CAD modeler.

INTRODUCTION

The use of geometric models in robotics and CAD systems necessarily requires a more
or less realistic modeling of the environment. However, the validity of calculations with
these models depends on the capacity of these systems to represent and take into account
possible differences between the models and reality when solving a given problem.

Bayesian formalism [1, 2, 3] has been applied in diverse research fields. Numerous
applications have been developed in physics, in artificial intelligence [4], as well as in
mobile robotics [5, 6] and computer vision [7], and especially in parameter identification
problems [8].

This paper presents a new methodology based on Bayesian formalism to represent
and handle geometric uncertainties in robotics and CAD systems. For a given problem,
the marginal distribution of the unknown parameters is inferred using the probability
calculus. The original geometric problem is reduced to an optimization problem over
the marginal distribution to find a solution with maximum probability. In the general
case, this marginal probability may contain an integral on a large dimension space. The
resolution method used to solve this integration/optimization problem is based on an
adaptive genetic algorithm. The problem of integral estimation is approached using a
stochastic Monte Carlo method. The accuracy of this estimation is controlled by the
optimization process to reduce computation time.

A large category of robotic applications are instances of inverse geometric problems
in presence of uncertainties, for which our method is well suited. The proposed approach
has been applied to numerous robotic applications [9, 10] such as kinematics inversion
for possibly redundant systems, robot and sensor calibration, parts’ pose and shape cali-
bration using sensor measurements, as well as in robotic workcell design. Experimental



results have demonstrated the effectiveness and the robustness of our approach. An ex-
ample of this experimentation is presented in this paper.

This paper is organized as follows. Section 2 reports related work. In Sect. 3 we
present our specification methodology and how to obtain an optimization problem from
an original geometric problem. In Sect. 4 we describe our numerical resolution method.
We present an example to illustrate our approach in Sect. 5 and give some conclusions
in Sect. 6.

RELATED WORK

The representation and handling of geometric uncertainties is a central issue in the fields
of robotics and mechanical assembly. Since the work of Taylor [11], in which geometric
uncertainties were taken into account in the manipulator planning process for the first
time, numerous approaches have been proposed to model these uncertainties explicitly.

Methods modeling the environment using “certainty grids” [12] and those using un-
certain models of motion [13] have been extensively used, especially in mobile robotics.

Partially Observed Markov Decision Processes (POMDPs) [14] are a convenient
representation for reasoning and planning in mobile robot applications, but they are
inappropriate for more complex tasks such as manipulator planning.

Gaussian models to represent geometric uncertainties and to approximate their prop-
agation have been proposed in manipulators programming [15] as well as in assembly
[16]. Kalman filtering is a Bayesian recurrent implementation of these models. This tech-
nique has been used widely in robotics and vision [17], and particularly in data fusion
[18]. Gaussian model-based methods have the advantage of economy in the computa-
tion they require. However, they are only applicable when a linearization of the model
is possible and are unable to take into account inequality constraints.

Geometric constraint-based approaches [11, 19] using constraint solvers have been
used in robotic task-level programming systems. Most of these methods do not represent
uncertainties explicitly. They handle uncertainties using a least-squares criterion when
the solved constraints systems are over-determined. In the cases where uncertainties are
explicitly taken into account (as is the case in Taylor’s system), they are described solely
as inequality constraints on possible variations.

PROBABILISTIC GEOMETRIC CONSTRAINTS SPECIFICATION

In this section, we describe our methodology by giving some concepts and definitions
necessary for probabilistic geometric constraints specification. We further show how to
obtain an objective function to maximize from the original geometric problem.



Probabilistic kinematic graph

A geometric problem is described as a “probabilistic kinematic graph,” which we de-
fine as the directed graph having a set of n frames (a frame is attached to each part and
geometric entity) S = {S1, · · · ,Sn} as vertices and a set of m edges A = {Ai1 j1 , · · · ,Aim jm},
where Aik jk denotes an edge between the parent vertex Sik and its child S jk and represents
a probabilistic constraint on the corresponding relative pose. We call these edges “prob-
abilistic kinematic links”. A given edge may describe:

• a modeling constraint (a piece of knowledge) on the relative pose between the
parent frame and its child,

• a sensor measurement of the pose of a given entity,
• or a constraint we wish to satisfy to solve the problem (an objective value with a

given precision, for example).

Each edge Aik jk is labeled by:

1. a probability distribution p(Qik jk) where Qik jk is the relative pose vector (6-vector)
Qik jk = (txtytzrxryrz)

T . The first three parameters of this 6-vector represent the
translation, while the remaining three represent the rotation.

2. possible equality/inequality constraints (Ek(Qik jk) = 0, Ck(Qik jk) ≤ 0). These con-
straints represent possible geometric relationships between the two geometric enti-
ties attached to these two frames. Their shapes depend on the type of the geometric
relationship. We implement several relationships between geometric entities in this
work, such as points, polygonal faces, edges, spheres and cylinders. The details on
equality/inequality constraints induced by these relationships can be found in [9].

3. a “status” 6-vector describing for each parameter of Qik jk , its role (nature) in the
problem. A status can take one of the three following values:

• Unknown (denoted by X ) for parameters representing the unknown variables
of the problem and whose values must be found to solve the problem.

• Free (denoted by L) for parameters whose values are only known with a
probability distribution.

• Fixed (denoted by F) for parameters having known fixed values that cannot be
changed.

In the general case, the kinematic graph may contain a set of cycles. The presence of
a cycle represents the existence of more than one path between two vertices (frames)
of the graph. To ensure the geometric coherence of the model, the computation of the
relative pose between these two frames using all paths must give the same value. For
each cycle containing k edges, we must have:

Tii = T si i+1
i i+1 ∗T si+1 i+2

i+1 i+2 ∗ · · · ∗T sk−1 k
k−1 k ∗T sk 1

k 1 ∗T s1 2
1 2 ∗ · · ·∗T si−1 i

i−1 i = I4, (1)

where Ti j is the 4× 4 homogeneous matrix corresponding to the pose vector Qi j, I4 is
the 4×4 identity matrix and si j ∈ {−1,1} is the direction in which the edge Ai j has been
used.



We call these additional equality constraints the “cycle-closing constraints”. They are
global constraints involving, for each cycle, all the parameters it contains. The minimal
number of cycles allowing coverage of a connected graph having n vertices and m edges
is p = m− n + 1 [20]. Consequently, we obtain p cycle-closing constraints for a given
problem.

Objective function construction

Given a probabilistic kinematic graph, we are interested in constructing a marginal
distribution over the unknown parameters of the problem. Maximizing this distribution
will give a solution to the problem.

To do so, we define the following sets of propositions:

• A set of p propositions {Ki}p
i=1 such as:

Ki ≡ “cycle ci is closed”.
• A set of m propositions {Hk}m

k=1 such as:
Hk ≡ “Ck(Qik jk) ≤ 0 and Ek(Qik jk) = 0”.

If we denote the unknown parameters of the problem by X , a solution to a problem is
a value of X that maximizes the distribution

p(X |H1 · · ·HmK1 · · ·Kp).

For each edge Ai j, if we denote by Li j the set of parameters having the L status, and
by Xi j the parameters having the X status, we can write, using the probability calculus
and the p cycle-closing constraints (Eq. 1), the following general form:

p(X |H1 · · ·HmK1 · · ·Kp) ∝ p(X)I(X),

where

I(X) =

Z

dL

p(Li1 j1)p(H1|Xi1 j1Li1 j1)
...
p(Lim−p jm−p)p(Hm−p|Xim−p jm−pLim−p jm−p)

pO1(F1(X ,L))p(Hm−p+1|F1(X ,L))
...
pOp(Fp(X ,L))p(Hm|Fp(X ,L)). (2)

For each cycle ci, where i = 1, · · · , p, Oi denotes a pose vector pertaining to ci and Fi
is the function allowing computation of the value of this pose vector using the values of
all other pose vectors pertaining to ci (using Eq. 1). pOi denotes the distribution over Oi,
while L is the concatenation of Li1 j1, · · · ,Lim−p jm−p .



RESOLUTION METHOD

We described in the previous section how to formulate an integration/optimization
problem:

X∗ = max
X

[p(X |H1 · · ·HmK1 · · ·Kp)] .

This section will present the practical numerical methods we use to solve the integra-
tion and the optimization problems.

Numerical integration method

Integral calculus is the basis of Bayesian inference. Unfortunately, analytic methods
for integral evaluation seem very limited in real-world applications, where integrands
may have complex shapes and integration spaces may have very high dimensionality.

Domain subdivision-based methods (such as trapezoidal or Simpson methods) are of-
ten used for numerical integration in low-dimensional spaces. However, these techniques
are poorly adapted for high-dimensional cases.

Monte Carlo methods for numerical estimation

Monte Carlo methods (MC) are powerful stochastic simulation techniques that may be
applied to solve optimization and numerical integration problems in large dimensional
spaces. Since their introduction in the physics literature in the 1950s, Monte Carlo
methods have been at the center of the recent Bayesian revolution in applied statistics
and related fields, including econometrics [21] and biometrics. Their application in other
fields such as image synthesis [22] and mobile robotics [23] is more recent.

Principles.
The principle of using Monte Carlo methods for numerical integration is to approximate
the integral

I =
Z

p(x)g(x) ddx,

by estimating the expectation of the function g(x) under the distribution p(x)

I =

Z

p(x)g(x) ddx = 〈g(x)〉.

Suppose we are able to get a set of samples {x(i)}N
i=1 (d-vectors) from the distribution

p(x), we can use these samples to get the estimator

Î =
1
N ∑

i
g(x(i)).



Clearly, if the vectors {x(i)}N
i=1 are generated from p(x), the variance of the estimator

Î = 1
N ∑i g(x(i)) will decrease as σ2

N where σ2 is the variance of g:

σ2 =

Z

p(x)(g(x)− ĝ)2 ddx,

and ĝ is the expectation of g.
This result is one of the important properties of Monte Carlo methods:

“The accuracy of Monte Carlo estimates is independent of the dimensionality of the
integration space”.

Using MC methods for our application

Using an MC method to estimate the integral (2) requires the following steps.

1. Sample a set of N points {L(i)}N
i=1 from the prior distribution p(L) such that the

sampled points respect local equality/inequality constraints (i.e. {Hi}m−p
i=1 have the

value true).
2. Estimate the integral I(X) using the set {L(i)}N

i=1 of points as follows.

Î(X) =
1
N

N

∑
i=1

pO1(F1(X ,L(i)))p(Hm−p+1|F1(X ,L(i)))

...
pOp(Fp(X ,L(i)))p(Hm|Fp(X ,L(i)))

Points sampling.
The set of N points used to estimate the integral may be sampled in various ways. Since
parameters pertaining to different kinematic links are independent, we can decompose
the “state vector” L to m− p components {Lik jk}

m−p
k=1 and apply a local sampling algo-

rithm [21]. Updating the state vector L

L(t) = (L(t)
i1 j1,L

(t)
i2 j2 , · · · ,L

(t)
ik jk , · · · ,L

(t)
im−p jm−p

)

only requires updating one component Lik jk

L(t+1) = (L(t)
i1 j1 ,L

(t)
i2 j2, · · · ,L

(t+1)
ik jk , · · · ,L(t)

im−p jm−p
).

N iterations of this procedure give us the set {L(i)}N
i=1, which will be used to estimate

the integral.
To update a component Lik jk (a set of parameters pertaining to the same pose vector

Qik jk), we must take into account possible dependencies between these parameters.
Consequently, we have to face the following two problems.

• Candidate point sampling
A candidate Lc

ik jk is drawn from the distribution p(Lik jk). If we do not have a direct



FIGURE 1. The candidate point is rejected because it does not respect the Face-On-Face constraint.

sampling method from this distribution at our disposal, an indirect sampling method
must be used. In this work, we chose to use a Metropolis sampling algorithm [21].

• Candidate validity checking
Suppose we have a geometric relationship between two geometric entities Ei
and E j. A geometrical calculus depending on the type of this relationship al-
lows checking of the constraint Ck(Qik jk) ≤ 0. If this constraint is respected (i.e.
p(Hk|Xik jkLik jk) = 1), the candidate Lc

ik jk is accepted, otherwise it is rejected. Fig-
ure 1 shows a Face-On-Face relationship example.

Optimization method

For our application, we chose a genetic-based algorithm. Since their introduction by
Holland [24] in the 1970s, these stochastic techniques have been used for numerous
global optimization problems, thanks to their ease of implementation and their indepen-
dence of application fields [25]. However, practical problems related to the nature of our
objective function have to be faced. We propose two major improvements to the genetic
algorithm (abbreviated GA) we use. In the following, we will use G(X) to denote the
objective function p(X |H1 · · ·HmK1 · · ·Kp).

Narrowness of the objective function - constraints relaxation

In our applications, the objective function G(X) may have a narrow support (the
region where the value is not null) for very constrained problems. The initialization
of the population with random individuals from the search space may give null values
of the function G(X) for most individuals. This will make the evolution of the algorithm
very slow and its behavior will be similar to random exploration.

To deal with this problem, a concept inspired from classical simulated annealing
algorithms consists of introducing a notion of “temperature”. The principle is to first
widen the support of the function by changing the original function to obtain non-
null values even for configurations that are not permitted. To do so, we introduce an
additional parameter we call T (for temperature) for the objective function G(X). Our
goal is to obtain another function GT (X) that is smoother and has wider support, with

lim
T→0

GT (X) = G(X).
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FIGURE 2. The distribution (in grey level) corresponding to inequality constraints induced by a Point-
On-Face relationship for a square face at different values of temperature. The left figure shows the original
constraints (T = 0), while the middle and the right ones show these constraints relaxed at (T = 50) and
(T = 100) respectively.

To widen the support of G(X), all elementary terms (distributions) of this later are
widened, namely:

• distributions pOi(Fi(X ,L)), where i = 1, · · · , p.
• inequality constraints p(Hm−p+ j|Fj(X ,L)), where j = 1, · · · , p.

For example:

• for a Gaussian distribution:

f (x) =
1√
2πσ

e−
1
2

(x−µ)2

σ2

f T (x) =
1√

2πσ(1+T)
e
− 1

2
(x−µ)2

[σ(1+T)]2

• for an inequality constraint over the interval [a,b]:

f (x) =

{

1 if a ≤ x ≤ b
0 else

f T (x) =











1 if a ≤ x ≤ b

e−
(x−a)2

(b−a)T if x < a

e−
(x−b)2

(b−a)T otherwise

In the general case, inequality constraints may be more complex. Figure 2 shows the
case of a Point-On-Face inequality constraint for a square face.

Accuracy of the estimates - multiprecision computing

The second problem we must face is that only an approximation Ĝ(X) of G(X) is
available, of unknown accuracy. Using a large number of points to obtain sufficient
accuracy may be very expensive in computation time, which makes the use of a large
number of points in the whole optimization process inappropriate.

Since the accuracy of the estimate Ĝ(X) of the objective function depends on the
number N of points used for the estimation, we introduce N as an additional parameter
to define a new function ĜN(X). Suppose we initialize and run for some cycles a genetic



algorithm with ĜN1(X) as evaluation function. The population of this GA is a good
initialization for another GA having ĜN2(X) as evaluation function with N2 > N1.

General optimization algorithm

In the following, we label the evaluation function (the objective function) by the
temperature T and the number N of points used for estimation. It will be denoted by
GT

N(X). Our optimization algorithm may be described by the following three phases.

1. Initialization and initial temperature determination.
2. Reduction of temperature to recreate the original objective function.
3. Augmentation of the number of points to increase the accuracy of the estimates.

Initialization:. The population of the GA is initialized at random from the search
space. To minimize computing time in this initialization phase, we use a small number
N0 of points to estimate integrals.

The choice of the initial temperature T0 is crucial for the behavior of the algorithm.
It depends strongly of the problem to solve: the more constrained the problem, the
higher must be the initial temperature to allow a sufficient relaxation of constraints. We
propose the following algorithm as an automatic initialization procedure for the initial
temperature T0, able to adapt to the complexity of the problem.

INITIALIZATION(GA)
BEGIN

FOR each population[i] ∈ GA’s population DO
REPEAT

population[i] = random(S)
value[i] = GT

N0
(population[i])

if (value[i] == 0.0)
T = T + ∆T

UNTIL ( value[i]> 0.0)
FEND
Re-evaluate(population)

END
where ∆T is a small increment value.

Temperature reduction:. To get the original objective function (T = 0.0), a possible
scheduling procedure consists of multiplying the temperature, after running the GA for
a given number of cycles nc1, by a factor α (0 < α < 1). In this work, the value of α has
been experimentally fixed to 0.8. We can summarize the proposed algorithm as follows.



TEMP_REDUCTION(GA)
BEGIN

WHILE (T >Tε) DO
FOR i=1 TO nc1 DO

Run(GA)
FEND
T = T * α

WEND
T = 0.0
Re-evaluate(population)

END
where Tε is a small threshold value.

Augmenting the number of points:. At the end of the temperature reduction phase,
the population may contain several possible solutions for the problem. To decide be-
tween these solutions, we must increase the accuracy of the estimates. One approach
is to multiply N, after running the GA for a given number of cycles nc2, by a factor β
(β > 1) so that the variance of the estimate is divided by β:

Var(G0
β∗N(X)) =

1
β

Var(G0
N(X)).

We can describe this phase by the following algorithm.

N_POINTS_AUGMENTATION(GA)
BEGIN

WHILE (N <Nmax) DO
FOR i=1 TO nc2 DO

Run(GA)
FEND
N = N * β

WEND
END
where Nmax is the number of points that allows convergence of the estimates Ĝ0

N(X) for all individu-
als of the population.

EXAMPLE

In this section, we describe how to use our CAD system for concrete problems. We
present in detail a kinematics inversion problem under geometric uncertainties.

Problem description

Using two Stäubli Rx90 robot arms with six revolute joints, we are interested in
placing two prismatic parts one against the other. The only constraint is that a face of the
first part will be in a Face-On-Face relationship with a face of the second.
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TABLE-FACE

ARM 1 ARM 2

AXIS 1 2AXIS 1 1

GRIPPER 1 GRIPPER 2

RED-CUBE BLUE-CUBE

FACE 1 FACE 2

FIGURE 3. Kinematics inversion example using two Stäubli Rx90 arms and the corresponding kine-
matic graph.

The two arms are modeled as a set of parts attached to each other using probabilistic
kinematic links. We assume that the more significant uncertainties are on zero positions.
The two parts are also attached to arms’ end effectors using probabilistic kinematic
links. The added constraint we wish to satisfy to solve the problem is represented by
a link between the two faces to place in Face-On-Face relationship. We use for in this
link three Gaussians on the three constrained parameters tz, rx and ry with zeros as mean
values and 0.5mm, 0.01rad and 0.01rad respectively as standard deviations. Figure 3
shows the two arms and gives the corresponding kinematic graph.

We suppose in this example that zero positions uncertainties of the arm on the right of
Fig. 3 (Arm1) are five times more important than the ones of the arm on the left (Arm2)
(for each joint, we suppose a Gaussian distribution on the zero position with 0.01rad
as standard deviation for Arm1 and with 0.05rad for Arm2). Our aim is to comment
qualitatively on the solution obtained and to show the importance of taking uncertainties
propagation into account when choosing a solution.

Results

Figure 4 shows the solution obtained by the system. This solution gives a maximal
precision for the required Face-On-Face relationship because:

1. Arm1 (the less accurate) is coiled to minimize the propagation of the uncertainties
on its zero positions.

2. Rotation axes are perpendicular to the common normal of the two faces.

Table 1 summarizes the problem complexity and the system performances for this
problem using a PowerPC G3/400 machine.

Discussion

This example shows how the proposed method takes geometric uncertainties into
account in a general and homogeneous way. No assumptions have been made, either
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FIGURE 4. The solution obtained by the system.

TABLE 1. Some parameters summariz-
ing the problem complexity and the sys-
tem performances for this kinematics in-
version problem.

Integration space dimension 50

Optimization space dimension 12

Number of cycles 1

Number of frames 28

Number of inequality constraints 16

Computation time (seconds) 13

on the uncertainties models (shapes of the used distributions), nor on the linearity of the
model or the possibility of it being linearized. It also shows how possible redundancy of
the system relating to the required task is used to find the most accurate solution.

CONCLUSION

We have presented a generic approach for geometric problems specification and reso-
lution using a Bayesian framework. We have addressed the problem of the propagation
of geometric uncertainties, and how to take this propagation into account when solving
inverse problems. We have shown how a given geometric problem is first formulated as
a probabilistic inference problem, and then reduced to an integration/optimization one.
For generality, no assumptions have been made on the shapes of the distributions or on
amplitudes of uncertainties.

Experimental results made on our system have demonstrated the effectiveness, the
robustness and the homogeneity of representation of our approach. However, we are
considering to improve the integration module by avoiding numerical integration when
the integrand is a product of generalized normals (Dirac’s delta functions and Gaussians)
and when the model is linear or can be linearized (errors are small enough). Future work



will aim to extend our system so that it allows using high-level sensors such as vision-
based ones. It will also aim to include non-geometrical parameters (inertial parameters
for example) in problem specification.
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