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Abstract

This paper presents a new robotic programming
environment based on the probability calculus.
We show how reactive behaviours, like obstacle
avoidance, contour following, or even light follow-
g, can be programmed and learned by a Khep-
era robot with our system. We further demon-
strate that behaviours can be combined either by
progranmmation or learning. A homing behaviour
1s thus obtained by combining obstacle avoidance
and light following.

1. Introduction

We propose a new robotic programming environment,
which was tested on a Khepera robot. This system is
based on the probability calculus. The choice of proba-
bilities as a formal system allows an easy and rigorous
translation of mtuitive knowledge into a program. An
example 1s the expression of dependence or independence
between variables. In order to program a behaviour, the
programmer will first have to state such a priori knowl-
edge about the task at hand. This “seed” of program
can then be tuned by confronting it to experimental
data which the progrannmer gathers while showing to the
robot the expected behaviour. Probability calculus gives
the means for playing back the knowledge stored in the
program. By presenting a few examples, chosen mainly
for their clarity, we will show that, with this method,
programming and combining reactive behaviours is easy.

The plan of this paper 1s as follows. After explaining
this paper’s contribution with respect to previous works
and briefly presenting the Khepera robot, we present the
mathematical background needed to understand our pro-
gramming method. The main component of a program
15 a description which basically defines a joint proba-
bility distribution over relevant variables. Next we will
give examples of various reactive behaviours which can
easily be programmed with our system. The last section
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of this paper introduces a method for combining reactive
behaviours; we give an example where we combine obsta-
cle avoidance with light following to obtain a behaviour
used by the Khepera to return to its base. References
to much more detailed presentations, addressing all dif-
ficult techmical points and debates, can be found in the
text.

2. Related work

Our work is based on an implementation of the
principle of the Bayesian theory of probabilities.
In physics, since the precursor work of Laplace
(Laplace, 1774, Laplace, 1814) numerous results have
been obtained using Bayesian inference techniques (to
take into account uncertainty) and maximum entropy
principle (to take into account incompleteness). The late
Edward T. Jayunes has proposed a rigorous and synthetic
formalization of probabilistic reasoning with his “Prob-
ability as Logic” theory (Jaynes, 1998). An historic of
this approach is proposed by Jaynes (Jaynes, 1979) and
an epistemological analysis by Matalon (Matalon, 1967).
Theoretical justifications of probabilistic inference and
maximum entropy are numerous, the entropy concentra-
tion theorems (Jaynes, 1982, Robert, 1990) are the more
rigorous, Cox theorem (Cox, 1961) the most well known
even if this last one has been lately partially disputed by
Halpern (Halpern, 1999a, Halpern, 1999b). Numerous
applications and mathematical tools using bayesian -
ference have been developed (Smith and Grandy, 1985,
Tarentola, 1987, Bretthorst, 1988,
Erickson and Smith, 1988a, Erickson and Smith, 1988b,
Mohammad-Djafari and Demoment, 1992,

Kapur and Kesavan, 1992).

In artificial intelligence, the importance of reason-
ing with uncertain knowledge has been recognized
for a long time. However, the Bayesian approach
clearly appeared as one of the principle trend only
sice the proposal of Bayesian nets (Pearl, 1988) and
{Lauritzen and Spiegelhalter, 1988,

graphical models



Lauritzen, 1996, Jordan, 1998, Frey, 1998).
important technical progress have been
lately (See for iustance the JAIR! articles on that
subject (Saul et al., 1996, Zhang and Poole, 1996,
Delcher et al., 1996, Darwiche and Provan, 1997,
Ruiz et al., 1998, Jaakkola and Jordan, 1999,
Jordan et al., 1999)).

Recent

Very

achieved

robot programming architec-
tures (Alami et al., 1998, Borrelly et al., 1998,
Schuetider et al., 1998, Dekhil and Henderson, 1998,
Mazer et al., 1998) are in
with the problem of uncertainty. In robotics, the
uncertainty topic is either related to calibration
(Bernhardt and Albright, 1993) or to planning prob-
lems (Brafman et al., 1997). In this later case some
authors have considered modeling the uncertainty
of the robot motions to plan assembly operations
(Lozano-Perez et al., 1984, Donald, 1988) or modelling
the uncertainty related to the position of the robot on
the scene (Kapur and Kesavan, 1992). Bayesian tech-
niques are used 11 POMDP to plan complex paths in
partially known environments (Kaelbling et al., 1996).
HMM are also used to plan complex tasks and recognize
situations in complex environments (Aycard, 1998).
Finally, a couple of recent successful robots used prob-
abilities in modelling seusing, acting, localization and
mapping (Thrun, 1998b, Thrun, 1998a). But, to the
best of our knowledge, the design of a robot program-
ming system and architecture solely based on bayesian
inference has never been otherwise investigated.

general not concerned

Finally, a presentation of the epistemological foun-
dations of the approach described in this paper
may be found in two articles by Bessiére et al.
(Bessi¢re et al., 1998a, Bessiére et al., 1998b), and all
the techuical details in the Ph.D. dissertation of Olivier
Lebeltel and a related technical report (Lebeltel, 1999,
Lebeltel et al., 2000).

3. The Khepera robot

The Khepera (see Figure 1) is a miniature mobile robot
built by the EPFL (Ecole Polytechnique Fédérale de
Lausanne) and produced by K-Team. The IKhepera is
a mobile robot with two wheels, is 57 mm in diameter
and 29 mm tall, for a total weight of 80 g, in the ba-
sic configuration. It is equipped with eight light sensors
(6 m front and 2 behind) having values ranging from 0
to 511, values decreasing with increasing light (variables
Lm0 to LmT). These eight sensors can also be used as
infrared proximity sensors, with values from 0 to 1023
as a decreasing function of the obstacle distance (vari-
ables Pz to PaT). It also has rudimentary odometry
capacities that are not very reliable. The Khepera is
piloted using the left and right wheel speed, using vari-
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Figure 1: A picture of the Khepera.

ables Vieft and Vright. However, for convenience, we
actually use the rotation and translation speed obtained

by
Vieft =
Vright

Virans + Vrot
Virans — Vrot

(1)

4. Bayesian robot programming system

In this section, we will describe our programming
method. We introduce the few concepts, definitions, no-
tations and rules which are necessary to understand the
calculus and experiments presented in this paper.

4.1 Basic concepts

In our programming system, the manipulated objects are
logical propositions, which can be composed using the
usual operators and properties : if & and 3 are proposi-
tions, then oo A # (or af3) denotes the conjunction of a
and 3, -a denotes the negation of «, and so forth. We
can now define discrete variables. A discrete variable
X corresponds to a set Ex of kx logical propositions
[X = i;] such that these propositions are mutually ex-
clusive ([X = ;] A [X = z,] is false unless i = j) and
exhaustive (at least one of the proposition [X = 2] is
true). When introducing variables, we will merely give
the domain Ex of possible values for that variable, along
with its cardinal kx. The conjunction X @Y (or simply
XVY) of two variables X and Y then correspouds to the
set of kx ky propositions [X = 2;] A[Y = y;]. XY cor-
responds to a set of mutually exclusive and exhaustive
logical propositions; as such, it is a new variable?.

To be able to deal with uncertainty, we will attach
These probabilities will
always be assigned with respect to some preliminary
knowledge . Therefore, P(a|n) denotes the probabil-

probabilities to propositions.

2In  contrast, the disjunction of two  variables
is mnot a variable, since the associated propositions
[X =2;] v [Y = y;] are not mutually exclusive,



ity that the proposition a is true, knowing m; P(ag3|ym)
denotes the probability that the conjunction a/ is true,
knowing v and m; finally, by convention, if X is a vari-
able, P(X|7) means Va; € Ex, P([X = zi]|r).

To manipulate probabilities, we will use classical in-
ference rules, namely the product rule aud normalization
rule. The product rule for variables is written

P(X @Y|r) = P(X|m)P(Y|X7) = P(Y|r)P(X|V7),

and is also known as Bayes theorem. The normalization
rule states that

Y P(X|m)=1.
~

From these two rules we derive the inargimalization rule,
which allows for easier derivations :

Y P(X@Y|r)= P(Y]|n).
~

Given a set of n variables X, Xo,..., X,,, a question
is defined as a partition of this set in three subsets £,
Ex and &y, for the sets of searched, known and un-
known variables, respectively. Let Searched, Known
and Unknown be the conjunctions of the variables 1n
s, £x and &y, respectively. Given the joint distribution

P(X1 Xy - Xp|7) = P(Searched® K nown@Unknown|r),
it is possible to answer any question. We

first have to compute the probability distribution
P(Searched|Known @ w). The derivation is as follows :

P(Searched|Known @ m)

= E P(Searched @ Unknown|Known ® m)
Unknown
ZUﬂknown P(Searched @ Unknown @ Known|r)
P(Known|m)
Zumhmwﬂ P(Searched 3 Unknown & Known|w)

P(Searched & Unknown @ Known|w)

]

Searched,U'nknown

X E P(Searched & Unknown @ Known|w),

[SERS

Unknown

where Z 1s a normalization constant.  Answer-
g the question consists in deciding a value for
the variable Searched according to the distribution
P(Searched| Known ® ). Different decision policies are
possible, in our programming system we usually choose
to draw a value at random according to that distribution.

Please refer to (Jaynes, 1998) for a full-leugth presen-
tation of probabilities and bayesian inference.

4.2 Programs

In our robotic programuming method, a program consist
of two components, a description and a question. We

! Specificatinn

~ Variables
e o Dir o dinnain 3-10, -9, . 0y candinal 2t
* P dimism 19,1, 54 cardined ta
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Figure 2: Above, an example of a program. It shows both
the program structure our method defines, and an example
wlhere the robot follows contours. Below, a picture of the

Khepera following the contour of an object.

show Figure 2 an example of a contour following pro-
graii.

A description can be viewed as a knowledge base, in
which the programmer gives information to the robot
about the task to be performed. A description consists
of two parts, a specification phase, which aims at defin-
ing the parametrical form of a joint distribution over
relevant variables (the preliminary knowledge 7), and an
wdentification phase, where the parameters are defined,
eventually by gathering data A experimentally and as-
sessing the parameter values by a learning mechanism.
Therefore, a description is defined by a pair < 7, A >,
the latter one being eventually empty if there is no iden-
tification phase.

The specification phase has three components :

¢ Variables The programmer specifies which variables
are relevant for the task. In our runmning example,
we choose to sum up the information given by the
six frout proximeters the Khepera has, in the two
variables Dir aud Proz. Dir roughly corresponds
to the direction leading to the nearest object, with
lowest, (resp. highest) value -10 (resp. +10) for an
obstacle on the left (resp. right). It is computed from
the proxuneter values by :

Di [QD(P-J:S — Pz0) 4 45( P4 — Prl) + 5(Po3 — sz)J
o=

91+ P04 Pzl + Pz2 4+ Pe3 + Prd + Pz5)



Prox varies with the proximity of that object, vary-
ing from 0 (no obstacle) to 15 (contact), and is ob-
tained by :

Prox = [(Max(Pz0, Prl, P2, Pr3, Pod, Px5))/(64)] .

Concerning motor variables, we choose to set the
robot’s translation speed to a constant and keep only
one degree of freedom, the rotation speed Vrot of the
robot. These three variables, Dir, Prox and Vrot,
are the only ones considered for our contour following
task; their definitions are summed up as follows :

— Dir domain {—10,-9,..., 410}, cardinal
kpir = 21,

— Prox domain {0,+41,...,+15}, cardinal
kProx =16,

— Vrot © domain {—10,-9,...,410}, cardinal
erot = 2]

¢ Decomposition of the joint distribution The
second specification step consists in giving a de-
composition of the joint probability distribution
P(Dir & Prox © Vrot|A @ Treqetive), as a product
of simpler terms :

P(Dir @ Prox @ Vrot|A® Treactive)
= P(Dir|A @ mrcactive) X P(Proz|Dir ® A @ Treactive)
XP(Vrot|Dir @ Pror & A ® Treactive)
= P(Dir|A @ Treactive) X P(Prox|A @ Treactive)
XP(Vrot|Dir @ Prox & A ® Treactive)-

The first equality results from the application of
the product rule, while the second one simplifies
P(Proz|DirGA@ cqctive) It P(Prox|A@Treqetive)-
This simply means that we consider Prox and Dir
independent for our task; we think that the robot
can ignore the relation between the distance and di-
rection of obstacles, and yet be successful at following
their contour.

¢ Parametrical forms To be able to compute the
Jomt distribution, we finally need to assign paramet-
rical forms to each of the terms appearing in the de-
composition :

P(Dir|A @ reactine)
P(Prox|A @ Treactive)

Uniform,

Uniform,

P(Vrot|Dir @ Prox & A & Treactine)
= G(u(Dir, Proz), o(Dir, Pror)).

We have no a priori knowledge about the direc-
tion and distance of the obstacles, therefore we as-
sign uniform distributions to P(Dir|A & Treactive)
and P(Prox|A® Treactive). On the other hand, we

assume that, for each sensory situation, there is one
rotation speed that should be prefered. Hence, the
distribution P(Vrot| Dir® Prox © A& T, eqctive) has to
be unmimodal. However, the confidence m this choice
may vary with the situation; this leads to assigning
gaussian parametrical forms to this term.

This completes the specification phase.

In the identification phase, the programmer has to as-
sess the values of the free parameters. In simple cases,
the programmer may do it himself, by writing a function
or table that stores these parameters. We obtained ob-
stacle avoidance programs for our Khepera this way; we
call this method a priori programming. However, it is
often easier to justify parameters when they have been
computed by a learning algorithm. In our example, since
we only have mean values and standard deviations to set,
this learning phase is simple. Using a joystick, we pilot
the Khepera to follow contours. Every tenth of a sec-
ond, we record experimental data < dir, proz,vrot >,
where dir and proz are computed from the proximeter
values at time ¢, and vrot is the motor command given
by the user at the same time t. Given a set Atollow
of such data, computing the mean values and standard
deviations of the gaussian distributions associated with
the P(Vrot|Dir & Proz @ Afuiow & Treactive) term is
straightforward.

The description being now completed, we can have
the robot play back the knowledge it has been given, by
a question. In this case, the robot should answer the
following question :

Draw(P(Vrot|[Dir = dil @ [Prox = p® Ajotiow ® Treactive)). (2)

We observed as a result a very robust contour following
behaviour, with only a few (20-30) seconds of learning.
The interested reader should refer to
(Bessiére et al., 1998a, Bessiére et al., 1998b) for a
more detailed presentation of our progrannning method.

5. Reactive behaviour learning

In this section, we describe two reactive programiming
experiments we did with the Khepera. The first one
shows variations on the contour following program we
presented earher. The second one presents the facility
our method provides for programming a light following
behaviour for the Khepera. We end this section by ana-
lyzing the performance of a behaviour obtained by learn-

ing.
5.1 Proximity based behaviours

We presented in the previous section a contour following
program which, in our system, is defined by the pair
< Treactive, Afoliow > and a question (see Equation 2).
Several variations are possible :



e It is possible to change the question, keep-
ing the description unchanged. For example,
Draw(P(Vrot|[Dir = di] @ Afottow & Treactive)) al-
lows the robot to operate even if some failure prevents
the computation of Proz.

o It is possible to change the experimental data, keep-
ing the preliminary knowledge m.5cti0.. 1t should
be clear at this point that m,.cactive 1s rather generic,
stating only a few modelization choices. What ac-
tually makes the robot follow contours is the identi-
fication phase, where the user shows what to do in
some sensory situations. We can thus create com-
pletely different behaviours with the same specifi-
cation Teqctive. For example, we programmed the
robot to push or avoid obstacles, by merely chang-
ing the learning phase, and pairing m,cqetipe With the
correspouding data sequence, respectively Apush and

Aauoid~

5.2 Luminosity based behaviours

4 Specificalion
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Figure 3: A straightforward program where the robot follows
light. The plot shown represents the probability distributions
P(Vrot|Lum @ mphototary ), one lor each value of Lum, that

were defined a priori.

1t is also possible to change the specification. We present
Figure 3 a program based on luminosity information,
where the robot follows the (most powerful) light source.
This phototaxy program necessitates few comments :

o The variables of interest are only Lumn and Vrot,
Lum being obtained by a simple computation on
the luminosity variables the Khepera provides, and
roughly corresponding to the direction the most pow-
erful source of light is coming from.

e Here again, the term P(VrollLum & Tppototazy) is
associated with a set of gausstan distributions. How-
ever, for this program, we decided it would be easier
to set the few pararmeter values a priori.

e The result is also satisfactory : the robot quickly
orientates itself toward the light source, and follows
it if 1t 1s moving in the environment.

More experiments are to be found
in (Bessiére et al., 1994, Lebeltel, 1999,
Lebeltel et al., 2000) the first presents a very

simple experiment, with one degree of freedom and one
sensory variable, while the second and third explore
the power of our programming method, with scores of
experiments on the Khepera.

5.8 Quantitative resulls on learning
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Figure 4: Performance of the obstacle avoidance behaviour
as it 18 learned.

The goal of this section is to show some numerical results
on our learning method. We chose to conduct experi-
ments concerning the learning of the obstacle avoidance
behaviour. The experimental setup was as follows.

We put the Khepera in a very crowded enviromment
: roughly 10% of the environment area was occupied by
lego bricks, that were evenly scattered. The result is an
environment with very few and narrow (with respect to
the Khepera diameter) paths to move around. The task
was made even more challenging to the robot by adding
legos of dark colours®.

The Khepera was then taught how to avoid obstacles
for three minutes. We then reset the knowledge of the
robot to its initial ignorance and play back the learning
sequence, evaluating the performance of the behaviour
learned so far every ten seconds. The performance of
the KKhepera was taken by a human watcher, who would
measure the time spent touching obstacles, on runs of 1
minute. The results, averaged over five experiments, are
shown Figure 4.

In Figure 4, we plotted the average time spent in col-
lision with obstacles, versus the time of learning. We

“Because such colours absorb the infrared lights, the proxime-
ters do not sense them easily.



clearly see how the performance increases as the number
of data given to the robot increases. In the first 30 sec-
onds or so, the time spent in collision decreases slowly,
because we usually teach the robot at the beginning to
go straight when it does not see any obstacle. 'This ob-
viously is not very useful for avoiding obstacles, since
the behaviour stays random when anything is sensed,
but it gives a more stable behaviour, which is also more
pleasant to the observer. After about a hundred seconds
of learning, we see that the performance has reached a
very good mark, resulting in a behaviour that is very sat-
isfying to the observer (the robot mainly brushes dark
obstacles when trying to avoid them late). Finally, we
see that the performance increases more slowly after 100
seconds, corresponding to limits inherent of the environ-
ment. This hypothesis is supported by reporting much
better performances when decreasing the number of ob-
stacles, organizing them in straight walls (this results in
more open spaces), or even when the translation speed
is reduced.

6. Learning how to combine behaviours

With the programming method sketched in the previous
sections, we have implemented a “nightwatchman” task,
where the Khepera has to :

¢ patrol its environment and alert whenever movement
1s detected,

¢ alert in case of fire and extinguish it (the fire is sim-
ulated by a lit candle, and we added a mini-fan on
top of the Khepera for this task),

e recognize objects, if requested,
¢ go back to its base when appropriate,

¢ manage its energy level, by going back to its base to
recharge batteries.

The program written to achieve this goal was obtained
very eastly by putting together 10 simpler programs, or-
ganized in 4 hierarchical layers, and which concern 42
variables. More details on how well our approach scales
to complex behaviours are contained in the technical de-
scription of the “nightwatchman” program, which can
be found in (Lebeltel, 1999, Lebeltel et al., 2000).

In the environment designed for the “nightwatchman”
task, we usually put in a corner a base for the I(hepera.
It consists of a recess in the environment, with a light
over 1t. Thus, going back to the base is simply made by
combining a light following and an obstacle avoidance
behaviour. In this section, we first present a program
that implements such a combination; we then show how
we recently managed to learn by experimentation how
these behaviours were to be combined.

6.1 Combining obstacle avoidance with light
following

/" Specification
- Variables
+ Dir Prox, Luni, Vo 1T doinain a. pl.vardioal 2
— Decampusilinn
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Figure 5: A homing program where the robot [ollows light
while avoiding obstacles on the way.

Figure 5 shows a program implementing a combination
of programs obtained from specifications m,y0i4 (the a
priori version of our obstacle avoidance behaviour) and
Tphototawy (the light following behaviour). Some com-
ments are necessary about it.

e Variables : we keep all variables appearing in specifi-
cations Tayeid ahd Tppototany, and add a new vartable
H. 1t can take two values, a for avoid and p for
phototazy.

¢ Decomposition of the joint distribution : the term
P(H|Prox & Thoming) results from the independence
hypothesis between H on the one hand, and Dir and
Lum on the other hand. It means that we think
the proximity of obstacles is a good enough criterion
when deciding whether to avoid an obstacle or to
follow the light.

e Parametrical forms since we do not have
any knowledge about the different sensory situa-
tions, terms P(Dir|Thoming), P(Pro&|Thoming) and
P(Lum|Thoming) are set to uniforms. The term
P(H|Prox ® Thoming) 1s defined a priort, by giving
intuitive values : we define the probability of doing
obstacle avoidance, P({H = a]|Proa & Thoming), as
varying like Proz. Therefore, when Prox is near
0, no obstacle is seen, and the probability of doing
obstacle avoidance 1s near 0 too. Conversely, high
values for Proz mean an imminent collision, thus a
high probability of avoiding the obstacle. The last
term of the decomposition, P(Vrot|H & Diria Prox®
Lum & Thoming), Makes the link between specifica-
tions Thoming, Tavoid aNd Tphototary. We state here
that, when [H = a], the motor command V7ot is cho-
sen accordingly to the obstacle avoidance knowledge



Tavoid; Otherwise, [H = p], and Vrot follows the light
following knowledge myhototany -

e Question : uotice that in the probabilistic question
P(Vrot|[Dir = di][Prox = p][Lum = L]Thoming),
the set of unknown variables is {H}. The iufereuce
thus gives :

P(Vrot|[Dir = dy][Prox = py][Lum = L]mhoming)
P([H = a]l[Proz = pt}Thomong) )

_ x  P(Vrot|[Dir = dy][Proz = py]mayoia)
= . P(LH = p)[Proz = pilmnomina)
X PVrot|[Lum = L]Tpnototney

which means that the resulting counmand is a
weighted combination of motor commands given by
the obstacle avoidance and light following prograins,
aud not just a all-or-nothing kind of combination.

¢ Result : with this programn, we successfully combine
obstacle avoidance with light following. However, as
expected, the robot can be stuck in local maxima
of the light gradient, should a U-shaped corridor be
taken.

6.2  Learning the combination term

What we show in this section is how it is possible to
mclude learning in the previous program. Given the
two base behaviours, we want to learn how to combine
them, which in our systeni corresponds to identify the
P(H|Proz & A ® Thoming) term.

One straightforward solution is to give control to the
user via the f variable. Wheun piloting the Khepera, the
user thus commands whether it should follow the light or
avoid obstacles, resulting in gathering experimental data
of the form < dir,prox,lum, h,vrot >. Identification of
the P(H|Prox & A ® Thoming) teru is then very easy.

For various reasous, we prefered to keep the same
piloting method as in the previous experiments, that
is to say, the user pilots the robot with the joy-
stick. Therefore, the data gathered is of the form
< dir, proz,lum,vrot >. Notice that the data coutalins
no wformation about the variable H. However, it can be
mferred using probability rules, by asking the question

PHdDp@1l®vE® A® Thoming)s

propositions
lum] and

where d, p, {, and v stand for
[Dir = dir], [Prox = proz], [Lum =
[Vrot = wrot], respectively. For clarity purposes, we
omit the @ and the mhoming symbols in the following
expressions :

P(H|DirProzLumV rotA)
P(HDirProvLumV rot|A)
ZH P(HDirProcLumV rot|A)

L Ll P(H|ProrA)
“Dir KProx KL um
P(Vrot|HDir ProzLum)
1 1 1

S { Bpgr FReer Frgm b I Prora)

H P?Vrot]HDerro;rLum)

P(H[ProzA)P(Vrot|HDir ProxLum)
ZH P(H|ProzA)P(V rot|H Dir ProzLum)

(3

We see that Equation 3 ueeds P(H|ProxA), which is
the termr we want to identify. In order to simplify fur-
ther this equation, we choose to cousider each exper-
mental datwin as if it were the first seen. We thus
set P(H|ProzA) to P(H|ProrAg), which is the initial
value of the term, as defined by the parametrical form
and learning mechanism. Iu our case, the P(H|ProzAy)
term is identical to a uniform distribution; Equation 3
thus becoes

P{H|DirProzLumVrotA)
II?P(Vrr)t]IIDirProerum)
ZH LI?P(Vrot]HDirPro:rLum)
P(Vrot|HDir ProrLum)
ZH P(Vrot|HDirProcLum)

(4)

Equation 4 can be given an interesting intuitive inter-
pretation. It means the probability for H, given the
experimental data < dir, proz, lum, vrot > is

P(v[Hdpl)

P(H|dplvA) = m
H

Replacing terms in Equation 6.2 by their definition given
Figure 5, we obtain :

P([H = alldpleA)
P([Vrot = vrot]|[Dir = dir][Proz = proz]maye,a)
P([Vrot = vrot]|[Dir = dir][Prox = proz]manc.d)
+  P([Vrot = vrot]][Lum = lum]rphrototacy)
P([H = plldpiva)
P([Vrot = vrot]][Lum = lum]rppototacy)

P([Vrot = vrot]][Dir = dir][Prox = prozina,omw)
+  P([Vrot = vrot]][Lum = lum]Tphototary)

The probability distribution for H is thus a comparison
of probabilities of the motor comniand given by the user,
considering the sensory situation, in the coutext of pro-
grams obtained from specifications 74404 and Tphototacy-
In a sense, it corresponds to context recognition : “in the
current sensory situation, does the motor command vrot
looks more like obstacle avoidance or light following?”.

We therefore obtain a probability distribution
over M. We propagate the knowledge it con-
talus by generating unew experimental data.  For

example, if the inference gave a probability for
[H = a] of 0.82, given some experimental datum
< dir,proz,lum,vrot >, we would generate 82
< dir, prox,lum, a, vrot > data, and 18

< dir,proz,lum, p,vrot > data. We can now eas
ily learn the P(H|Prox © A ® Thoming) terni.
We report very satisfactory results from this exper-

iment. We have successfully learned how to combine



obstacle avoidance with light following to obtain a lrom-
ing behaviour. Notice that our method is homogeneous
with our system used for reactive behaviour program-
ming. Moreover, we believe it is quite general, since we
stated no hypothesis concerning the behaviours to be
combined. One could actually imagine using our system
to combine more than two programs. If we had a library
of base components, we could program a new behaviour
by combining them all using our method, then dropping
the ones with lowest (overall) probabilities, until only a
few pertinent behaviours are combined. This tool could
provide great help for the designer of the robot.

A longer description of this experiment is in
(Diard, 1999), which also addresses all technical difficul-
ties not mentioned in this paper.

7. Conclusion

We have presented a robotic programming environment
that allows easy programming and combining of be-
haviours. We have shown that it also nicely included ex-
perimental learning. In further experiments described in
(Lebeltel, 1999, Lebeltel et al., 2000), we also have man-
aged, with the same formalism, to do sensor fusion, in-
verse programming, temporal sequences, and a “night-
watchman” task, which integrates all these various kinds
of descriptions. Future work will aim at including exper-
tmental learning in all these different types of program,
so that a whole hierarchy of behaviours could be learned,
from reactive to high level ones. We have in thought to
make a Koala robot, our next experimental platform,
become a robotic pet, detecting and chasing intruders,
showing visitors around, carrying or bringing back items
from room to room, etc. ..
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