
HAL Id: hal-00019353
https://hal.science/hal-00019353

Submitted on 21 Feb 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RSA-Based Secret Handshakes
Damien Vergnaud

To cite this version:
Damien Vergnaud. RSA-Based Secret Handshakes. Coding and Cryptography, International Work-
shop, WCC 2005, Mar 2005, Bergen, Norway. pp.252-274. �hal-00019353�

https://hal.science/hal-00019353
https://hal.archives-ouvertes.fr

RSA-Based Secret Handshakes

Damien Vergnaud

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, Campus II, B.P. 5186,

14032 Caen Cedex, France
Damien.Vergnaud@math.unicaen.fr

Abstract. A secret handshake mechanism allows two entities, members
of a same group, to authenticate each other secretly. This primitive was
introduced recently by Balfanz, Durfee, Shankar, Smetters, Staddon and
Wong and, so far, all the schemes proposed are based on discrete log
systems. This paper proposes three new secret handshake protocols se-
cure against active impersonator and detector adversaries. Inspired by
two RSA-based key agreement protocols introduced by Okamoto and
Tanaka in 1989 and Girault in 1991, our schemes are, in the random
oracle model, provably secure against active adversaries under the as-
sumption that the RSA problem is intractable.

1 Introduction

The concept of secret handshakes was introduced in 2003 [1] by Balfanz, Dur-
fee, Shankar, Smetters, Staddon and Wong. The present paper focuses on the
proposal of three new practical constructions of secret handshake protocol and
the security treatment of them: the schemes are secure against active adversaries
assuming the hardness of the RSA problem (and one of its weaker variants for
one scheme). These are the first constructs which can be instantiated with the
RSA primitive (and thus give a first step towards a problem raised in [5] by
Castelluccia, Jarecki and Tsudik)

Background. A secret handshake scheme is a cryptographic primitive recently
introduced by Balfanz et al. [1] which allows two members of the same group to
identify each other secretly, in the sense that each party reveals his/her affiliation
to the latter only if the other party is a member of the same group. These
protocols model in silico the secret handshake in the folklore of the in vivo
exclusive societies, or guilds.

The protocol proposed in [1] is a simple adaptation of the non-interactive key-
agreement scheme of Sakai, Ohgishi and Kasahara [19]. It uses one-time creden-
tials to insure that instances of the handshake protocol performed by the same
party cannot be linked. In [22], Xu and Yung proposed secret handshake schemes
that achieve unlinkability with reusable credentials. However, their schemes offer
weaker anonymity to the users who furthermore must be aware of the informa-
tion of other groups. Recently, Castelluccia et al. [5] showed how to build secret

handshake protocols using a novel tool they called CA-oblivious public-key en-
cryption which is an encryption scheme such that neither the public key, nor
the ciphertext reveal any information about the Certification Authority. Their
schemes are secure under a standard cryptographic assumption: the hardness of
the classical computational Diffie-Hellman problem. However, they also rely on
one-time credentials to reach the unlinkability property. In the first announce-
ment of their results, Castelluccia et al. stated that they know how to get CA
oblivious encryption scheme based on RSA, but the claim was incorrect and, so
far, there do not exist protocols based on RSA which offer full anonymity. In
[5], the authors explicitly stated as an open problem the construction of a secret
handshake protocol based on RSA. The investigation of this issue is the main
purpose of the present paper.

Underlying Technique. As mentioned above, in Balfanz et al.’s scheme, complet-
ing the secret handshake is essentially equivalent to computing a key in Sakai
et al.’s non-interactive key agreement protocol, that is particular to the two in-
teracting group members. The basic framework of our constructions builds on
very similar ideas from identity-based and self-certified key agreements protocols.
In 1984, Shamir [20] introduced the concept of identity-based cryptosystems in
which the public keys can be arbitrary bit strings and in particular can be de-
fined as a part of the publicly known identification information. In 1991, Girault
[9] refined the concept and introduced self-certified public keys which are com-
puted by both the authority and the user, so that the certificate is “embedded”
in the public key itself, and does not take the form of a separate value.

Our first scheme, that we call OT-SH, is based on an identity-based key
agreement protocol proposed in 1989 by Okamoto and Tanaka [16] and whose
security relies on the RSA problem [11]. The second and the third construction,
called Gi+SH and Gi×SH, relies on the non-interactive self-certified key agree-
ment scheme proposed by Girault in his seminal paper [9] whose security is also
based on the difficulty of solving RSA [15]. Adding suitable nonces and hash
functions in these schemes (along the lines drawn in [8]), we obtained secret
handshake protocols whose security against active impersonator and detector
adversaries relies, in the ROM, on the difficulty of solving the RSA problem
(with the notable exception of the impersonator resistance of Gi+SH which re-
lies on the hardness of the so-called Difference RSA problem [13]). The scheme
OT-SH takes four rounds (as the one in [5] based on CA-oblivious encryption),
whereas the schemes Gi-SH and Gi×SH take only three rounds (as the original
proposal from [1], and the Diffie-Hellman-based scheme from [5]). In fact, these
protocols are very similar to Balfanz et al.’s original proposal.

Finally, a protocol providing authentication without key exchange is suscep-
tible to an enemy who waits until the authentication is complete and then takes
over one end of the communications line. Therefore, we extend the new schemes
such that at the end of the handshake, the parties can set up a temporary session
key for securing further communication between them.

2

2 Preliminaries

2.1 Notations

The set of n-bit strings is denoted by {0, 1}n and the set of all finite binary
strings is denoted by {0, 1}∗. Concatenation of two strings x1 and x2 is denoted
by x1‖x2 and the empty string is denoted ε.

ϕ denotes the Euler totient function and λ denotes the Carmichael reduced
totient function. For any positive integer k, Prime(k) denotes the set of prime
numbers in [[2k, 2k+1]] and 2Factors(k) the set of integers n such that n = pq with
p < q < 2p and p, q ∈ Prime(k). An element of 2Factors(k) for any k is called an
RSA-modulus.

Let A be a probabilistic Turing machine running in expected polynomial time
(a PPTM, for short), and let x be an input for A. The probability space that
assigns to a string σ the probability that A, on input x, outputs σ is denoted
by A(x). Given a probability space S, a PPTM that samples a random element
according to S is denoted by x

R←− S. For a finite set X, x
R←− X denotes a

PPTM that samples an element uniformly at random from X.
A two-party protocol is a pair of interactive probabilistic Turing machines

(A,B). An execution of the protocol (A,B) on input x for A and y for B is an
alternating sequence of A-rounds and B-rounds, each producing a message m
to be delivered to the other party. We denote by “ m” the transmission of m
from one party to the other. The sequence of such message exchanges is called a
transcript of this execution of the protocol. If, for all x and y, the length of the
transcript, as well as the expected running time of A and B on inputs x and y
respectively, are polynomial in the length of x and y, then (A,B) is a polynomial
time two-party protocol.

2.2 Underlying problems

The security of asymmetric cryptographic tools relies on assumptions about the
hardness of certain algorithmic problems. The best known public-key primitive
is the RSA function. In order to highlight the fact that our schemes apply to any
RSA key generator, we do not pin down any particular generator, but instead
parameterize definitions and security results by a choice of generator.

Definition 1. An RSA-group generator is a PPTM that takes a security param-
eter k as input and outputs a 6-tuple (n, p, q, e, d, g) where n = pq ∈ 2Factors(k),
e ∈ [[3, 2k]], ed ≡ 1 mod ϕ(n) and g ∈ (Z/nZ)∗ of order λ(n).

The RSA assumption says, roughly speaking, that given a large RSA mod-
ulus n, an exponent e and α in (Z/nZ)∗, it is hard to find x in (Z/nZ)∗ such
that xe = α mod n. The difference RSA assumption was introduced by Naor in
[13]. This non-standard hypothesis deals with the hardness of finding two RSA
preimages such that the difference of their images is a given quantity α. The ad-
versary A has access to a sequence of m−1 pairs (xi, yi) ∈ [(Z/nZ)∗]2 such that

3

xe
i−ye

i = α mod n whereA chooses yi. It should find a new (xm, ym) ∈ [(Z/nZ)∗]2

such that xe
m − ye

m = α mod n. We denote by (α + (·)e)d the oracle that takes
input y ∈ (Z/nZ)∗ and returns (α + ye)d mod n. An adversary solving the dif-
ference RSA problem is given oracle access to (α + (·)e)d.

Definition 2. Let Gen be an RSA-group generator and let A be a PPTM. We
consider the following random experiments, where k ∈ N is a security parameter:

Experiment Exprsa
Gen,A(k)

(n, p, q, e, d, g) R←− Gen(k)
α

R←− (Z/nZ)∗

x
R←− A(n, e, α)

Return 1 if xe = α mod n,
0 otherwise

Experiment Expdiff−rsa
Gen,A (k)

(n, p, q, e, d, g) R←− Gen(k)
α

R←− (Z/nZ)∗

(x, y) R←− A(α+(·)e)d

(n, e, y)
Return 1 if the following hold and 0 otherwise

(1) xe − ye = α mod n
(2) y was not queried to (α + (·)e)d

We define the success of A via Succrsa
Gen,A(k) = Pr[Exprsa

Gen,A(k) = 1]. (resp.
Succdiff−rsa

Gen,A (k) = Pr[Expdiff−rsa
Gen,A (k) = 1]).

Let q, τ ∈ NN. A is a a τ -RSA-adversary if for all positive integer k, the
experiment Expdiff−rsa

Gen,A (k) ends in expected time less than τ(k). A is a (q, τ)-
DIFF-RSA-adversary if for all positive integer k, the experiment Exprsa

Gen,A(k)
ends in expected time less than τ(k) and in this experiment A makes at most
q(k) queries to the oracle (α + (·)e)d.

Let ε ∈ [0, 1]N. Gen is said to be (τ, ε)-RSA-secure if for any τ -RSA-adversary
A and any positive integer k, Succrsa

Gen,A(k) is smaller than ε(k). Gen is said
to be (q, τ, ε)-DIFF-RSA-secure if for any (q, τ)-DIFF-RSA-adversary A and any
positive integer k, Succdiff−rsa

Gen,A (k) is smaller than ε(k).

Finally, the weaker composite Diffie-Hellman assumption, related with those
described above, is defined as follows:

Definition 3. Let Gen be an RSA-group generator and let A be a PPTM. We
consider the following random experiments, where k ∈ N is a security parameter:

Experiment Expcomp−cdh
Gen,A (k)

(n, p, q, e, d, g) R←− Gen(k)
(x, y) R←− ([[1, 22k+1]])2 ; α← gx ; β ← gy

γ
R←− A(n, g, α, β)

Return 1 if γ = gxy, 0 otherwise

Let τ ∈ NN. A is a τ -COMP-CDH-adversary if for all positive integer k, the
experiment Expcomp−cdh

Gen,A (k) ends in expected time less than τ(k). We define the
success of A via Succcomp−cdh

Gen,A (k) = Pr[Expcomp−cdh
Gen,A (k) = 1]. Let τ ∈ NN and

ε ∈ [0, 1]N. Gen is said to be (τ, ε)-COMP-CDH-secure if for any τ -COMP-CDH-
adversary A and any positive integer k, Succcomp−cdh

Gen,A (k) is smaller than ε(k).

4

2.3 Ensuring that Handshakes do not reveal the group

A simple observation that seems to be folklore is that standard RSA does not
provide anonymity, even if all moduli in the system have the same length. One
approach to anonymizing RSA, suggested by Desmedt [7], is to add random mul-
tiples of the modulus n to the ciphertext. This padding removes any information
about the size of n and does not interfere with the reduction of the value modulo
n. In the following, we assume that such a technique is adopted and that the
adversary gains no information on the RSA modulus involved in some protocol
(in a statistical sense) from the encoding used in the transcript.

2.4 Proofs of knowledge of a discrete logarithm

In the design of his key agreement protocol, Girault [9] needs a zero-knowledge
proof of knowledge of a discrete logarithm in a group of unknown order.

To achieve our security reductions, the executions of the protocol have to
be simulated in the ROM. Therefore, in the design of our scheme, we rely on a
procedure allowing to prove in a non-transferable way the knowledge of a discrete
logarithm without revealing information on their value. We make use of non-
interactive designated verifier zero-knowledge proof of knowledge of the discrete
logarithm of y in base g (of unknown order). The notation is DVPK(a : y = ga).
We refer the reader to [9, 10] for further details.

3 Definition of Secret Handshakes

3.1 Syntactic definition

Roughly speaking, in a secret handshake scheme, there are group authorities
having a public key and a matching secret key (CreateGroup). They can provide
any user with a pair of keys based on its identity (AddMember) and they man-
age a certificate revocation list for the group (RemoveMember). The users can
then identify themselves in a protocol (Handshake) in which the parties involved
begin by knowing only the claimed identities and their own secret key provided
by their authority (not necessarily the same). The formal definition of secret
handshake schemes proposed by Castelluccia et al. and Xu and Yung in [5, 22]
is the following:

Definition 4 ([5, 22]). A secret handshake protocol SH is a 5-tuple
(Setup,CreateGroup,AddMember,RemoveMember,Handshake) such that

– SH.Setup is a PPTM which takes an integer k as input. The outputs are the
public parameters. k is called the security parameter.

– SH.CreateGroup is a PPTM which takes the public parameters as input and
outputs a pair of group keys (pkG, skG). It may also output a data structure
CRL called a certificate revocation list which is originally empty.

– SH.AddMember is a polynomial time two-party protocol (Member,Group)
where

5

1. SH.AddMember.Member takes the public parameters, a bit string ID and
a group public key pkG as inputs;

2. SH.AddMember.Group takes the public parameters, ID and the matching
group secret key skG as inputs.

SH.AddMember.Member outputs a pair of member keys (pkID, skID) associ-
ated with [pkG, ID].

– SH.RemoveMember is a PPTM which takes the public parameters, a bit string
ID, a group pair of keys (pkG, skG) and the corresponding current CRL as
inputs. It outputs an updated CRL which includes the newly revoked certifi-
cate ID.

– SH.Handshake is a polynomial time two-party protocol (Init,Match) where
1. SH.Handshake.Init takes the public parameters, a pair of (IDI, IDM), a

group public key pkGI
, (pkIDI

, skIDI
) a pair of member keys associated

with [pkGI
, IDI] and a member public key pkIDM

as inputs;
2. SH.Handshake.Match takes the public parameters, the pair (IDI, IDM), a

group public key pkGM
and (pkIDM

, skIDM
) a pair of member keys asso-

ciated with [pkGM
, IDM] and pkIDI

as inputs.
The algorithms jointly output Accept if pkGI

= pkGM
∧{IDI, IDM}∩CRL = ∅

and Reject otherwise.

3.2 The random oracle debate

The proof of security for our schemes takes place in the random oracle model,
introduced in [2]. In this model, cryptographic protocols are designed and proved
secure under the additional assumption that publicly available functions, that
are chosen truly at random, exist. These random oracles can only be accessed in
a black-box way, by providing an input and obtaining the corresponding output.
It has been pointed out that a proof of security in the ROM does not guarantee
the existence of an instantiation of the random oracle under which the scheme
is secure [4]. However, security proofs in the ROM remain “strong indicators”
of the security of an analyzed protocol. Note that, to prove the security of the
new schemes, there is no need to assume that all the involved hash functions
act as random oracles. Indeed, it is possible to model one of them as a non-
programmable random oracle. The NPROM is known to be strictly weaker than
the ROM [14]. In view of the previous remark, it is a legitimate desire to construct
protocols relying as little as possible on random oracles. Therefore, even if our
security analysis is carried out in the ROM, we will nevertheless modelize some
hash functions as (weaker) non-programmable random oracle.

3.3 Security requirements

This subsection recalls the security model formally defined in [5, 22]. Roughly
speaking, a secret handshake protocol must satisfy the following properties:

1. completeness: if two members engage in the protocol SH.Handshake with valid
pair of keys associated with the same group public key, then both parties
output Accept at the end of the protocol;

6

2. impersonator resistance: given a group public key, it is computationally in-
feasible without the knowledge of some secret key associated with it to suc-
cessfully execute the protocol SH.Handshake with a member of this group;

3. detector resistance: given a group public key pkG and a member public key
pkID, it is computationally infeasible to determine whether pkID is associated
with pkG without the knowledge of a secret key associated with pkG;

4. indistinguishability to eavesdropper: given two member public keys associated
with the same group public key, it is computationally infeasible to distinguish
a successful handshake between these members from an unsuccessful one.

In this paper, we consider active adversaries against the impersonator re-
sistance (IMP-ACT), the detector resistance (DET-ACT) and the indistinguisha-
bility (IND-ACT) of our schemes. The attacker is allowed to run the protocols
several times: she can see all exchanged messages, can delete, alter, inject and
redirect messages, can initiate communications with another party and can reuse
messages from past communications. The adversary is able to trigger several ex-
ecutions of the protocol Handshake. She is also able to interleave these instances,
asynchronously and concurrently, with executions with rightful members of the
group. The attacker is also allowed to corrupt some users and to ask for addi-
tional member keys at any time, and she can do so adaptively.

As usual an adversary is formalized by a PPTM A that is allowed access to
different oracles modeling the capacities mentioned above:

– OCG: it activates a new group authority via algorithm SH.CreateGroup. We
assume that a group authority is not under A’s control before the new group
is established.

– OAM: given as input the identity of a group authority, it executes the protocol
SH.AddMember. The algorithm admits an honest user and assigns it with a
unique pseudonym ID.

– OHS: given as inputs two pseudonyms IDI and IDM , it activates the proto-
col SH.Handshake between the corresponding members, where none, one or
both of them may have been corrupt. A corrupt user will execute what the
adversary is pleased of.

– ORM: given as input the identity of a group authority and a bit string ID, it
executes SH.RemoveMember to insert ID in the corresponding CRL.

– OCo: given as input the identity of a group authority G and possibly a
pseudonym ID associated with G, the oracle returns, to A, the current inter-
nal state information (including all secrets) of G or ID’s associated member.
Once a group or a member is corrupt it will execute what A is pleased of, un-
til such a corruption is detected. If the corruption of a member is detected,
it is excluded from its group via the algorithm SH.RemoveMember. If the
corruption of a group is detected, it is excluded from the system.

Resistance to impersonation attacks. This property captures the requirement
that an adversary who does not belong to or does not corrupt a member of
a group G managed by an uncorrupt group authority, has only a negligible
probability of convincing an honest user of G that she is also a member of

7

G. We consider an adversary A in the ROM. She takes the public parameters
as input, and outputs a triple (G?, ID?, d?). A has access to the random ora-
cle(s) OH and to the oracles OCG, OAM, OHS, ORM, and OCo. She succeeds
if ID? belongs to G?; G? remains uncorrupt during A’s execution; all corrupt
users from G? are excluded from G? (in particular ID? is uncorrupt) and if the
protocol SH.Handshake(A, ID?) returns Accept when d? = 0 or if the protocol
SH.Handshake(ID?,A) returns Accept when d? = 1 (i.e. A initiates the final
handshake if and only if d? = 0).

Definition 5. Let SH be a secret handshake scheme and let A be a PPTM. We
consider the following random experiment, where k ∈ N is a security parameter:

Experiment Expimp-act
SH,A (k)

P R←− SH.Setup(k)
(G?, ID?, d?)← AOH,OCG,OAM,OHS,ORM,OCo(P)
Return 1 if the following hold and 0 otherwise

(1) G? was obtained by a OCG query
(2) ID? was obtained by a OAM(G?) query
(3) neither OCo(G?) nor OCo(G?, ID?) was queried
(4) if OCo(G?, ID) for some ID is queried, then ORM(G?, ID) is queried
(5) if d? = 0, then SH.Handshake(A, ID?) returns Accept

if d? = 1, then SH.Handshake(ID?,A) returns Accept

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN. A is a (qH, qCG, qAM, qHS, qRM, qCo, τ)-
IMP-ACT-adversary if for all positive integer k, the experiment Expimp-act

SH,A (k)
ends in expected time less than τ(k) and in this experiment A makes at most
qx(k) queries to the oracle Ox for x in {H,CG,AM,HS,RM,Co}. We define the
success of the adversary A, via Succimp−act

SH,A (k) = Pr
[
Expimp−act

SH,A (k) = 1
]
.

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN and let ε ∈ [0, 1]N. The scheme SH is
said to be (qH, qCG, qAM, qHS, qRM, qCo, τ, ε)-resistant to impersonation against
active adversary, if for any (qH, qCG, qAM, qHS, qRM, qCo, τ)-IMP-ACT-adversary
A and any positive integer k, the function Succimp−act

SH,A (k) is smaller than ε(k).

Resistance to detection attacks. This property captures the requirement that
an adversary who does not belong to or does not corrupt a member of a group
G managed by an uncorrupt group authority, has only a negligible advantage
in distinguishing an interplay with an honest member of G from one with a
simulator. We consider an adversary A in the random oracle model, which runs
in two stages. In the find stage, she takes the public parameters P as input,
and outputs a triple (G?, ID?, d?), with some state information I?. In the guess
stage, she gets the information I?, executes SH.Handshake with the challenger
and outputs a bit b?.

The adversary A has access to the random oracle(s) OH and to the oracles
OCG, OAM, OHS, ORM, and OCo. In the guess stage, the challenger picks a bit
b at random, and the protocol SH.Handshake is executed with ID? if b = 0, or

8

executed with a simulator SIM delivering values sampled uniformly at random
in the suitable encoding space, if b = 1. A succeeds if ID? belongs to G?; G?

remains uncorrupt during A’s execution; all corrupt users from G? are excluded
from G? (in particular ID? is uncorrupt) and if d? = b.

Definition 6. Let SH be a secret handshake scheme and let A be a PPTM. We
consider the following random experiment, where k ∈ N is a security parameter:

Experiment Expdet-act-b
SH,A (k)

P R←− SH.Setup(k)
(G?, ID?, d?, I?)← AOH,OCG,OAM,OHS,ORM,OCo(find,P)
Ud? ← AOH,OCG,OAM,OHS,ORM,OCo(find, I?)
if b = 0 then U1−d? ← ID?, else U1−d? ← SIM
Execute SH.Handshake(U0,U1)
b? ← AOH,OCG,OAM,OHS,ORM,OCo(guess, I?)
Return 1 if the following hold and 0 otherwise

(1) G? was obtained by a OCG query
(2) ID? was obtained by a OAM(G?) query
(3) neither OCo(G?) nor OCo(G?, ID?) was queried
(4) if OCo(G?, ID) for some ID is queried, then ORM(G?, ID) is queried
(5) b? = b

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN. A is a (qH, qCG, qAM, qHS, qRM, qCo, τ)-
DET-ACT-adversary if for all positive integer k, the experiment Expdet-act

SH,A (k)
ends in expected time less than τ(k) and in this experiment A makes at most
qx(k) queries to the oracle Ox for x in {H,CG,AM,HS,RM,Co}. We define the
advantage of the adversary A, via

Advdet−act
SH,A (k) =

∣∣∣Pr
[
Expdet−act−0

SH,A (k) = 1
]
− Pr

[
Expdet−act−1

SH,A (k) = 1
]∣∣∣ .

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN and let ε ∈ [0, 1]N. The scheme SH
is said to be (qH, qCG, qAM, qHS, qRM, qCo, τ, ε)-resistant to detection against ac-
tive adversaries, if for any (qH, qCG, qAM, qHS, qRM, qCo, τ)-DET-ACT-adversary
A and any positive integer k, the function Advdet−act

SH,A (k) is smaller than ε(k).

Indistinguishability to eavesdropper. This property captures the requirement
that an adversary has only a negligible advantage of distinguishing a successful
handshake between uncorrupt members of a group G managed by an uncorrupt
group authority from an unsuccessful one. We consider an adversary A in the
ROM, which runs in two stages. In the find stage, she takes the public parame-
ters P as input, and outputs a triple (G?, ID?

I , ID
?
M) with some state information

I?. In the guess stage, she gets the information I? and Υ ?, generated by the
challenger depending on a random bit b. If b = 0, then Υ ? is the transcript of an
execution of SH.Handshake between (ID?

I , ID
?
M), otherwise Υ ? is a bit string sam-

pled uniformly at random in the transcript space. Eventually A(guess) outputs
a bit d?.

9

The adversary A has access to the random oracle(s) OH and to the oracles
OCG, OAM, OHS, ORM, and OCo. It succeeds if d? = b, if ID?

I and ID?
M belongs

to G?, and if G?, ID?
I and ID?

M remain uncorrupt during A’s execution.

Definition 7. Let SH be a secret handshake scheme and let A be a PPTM. We
consider the following random experiment, where k ∈ N is a security parameter:

Experiment Expind-act-b
SH,A (k)

P R←− SH.Setup(k)
(G?, ID?

I , ID
?
M , I?)← AOH,OCG,OAM,OHS,ORM,OCo(P)

if b = 0 then Υ ? ← SH.Handshake(ID?
I , ID

?
M) else Υ ? R←− TranscriptSpace

Return 1 if the following hold and 0 otherwise
(1) G? was obtained by a OCG query
(2) ID?

I and ID?
M were obtained by a OAM(G?) query

(3) neither OCo(G?) nor OCo(G?, ID?) was queried
(4) d? = b

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN. A is a (qH, qCG, qAM, qHS, qRM, qCo, τ)-
IND-ACT-adversary if for all positive integer k, the experiment Expind-act-b

SH,A (k)
(b ∈ {0, 1}) ends in expected time less than τ(k) and in this experiment A makes
at most qx(k) queries to the oracle Ox for x in {H,CG,AM,HS,RM,Co}. We
define the advantage of the adversary A, via

Advind−act
SH,A (k) =

∣∣∣Pr
[
Expind−act−real

SH,A (k) = 1
]
− Pr

[
Expind−act−random

SH,A (k) = 1
]∣∣∣ .

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN and let ε ∈ [0, 1]N. The scheme SH is
said to be (qH, qCG, qAM, qHS, qRM, qCo, τ, ε)-indistinguishable against active ad-
versaries, if for any (qH, qCG, qAM, qHS, qRM, qCo, τ)-IND-ACT-adversary A and
any positive integer k, the function Advind−act

SH,A (k) is smaller than ε(k).

4 The new protocols

Let Gen be an RSA-group generator. For any integer k ∈ N (resp. r ∈ N), let
[{0, 1}∗ −→ {0, 1}k] (resp. [{0, 1}∗ −→ {0, 1}r]) be a hash function family and
Hk (resp. Gr) be a random member of this family. Let f : N −→ N, we denote in
the following r = f(k) (this map is derived from the security proofs; in practice,
for a security requirement of 280 operations, we use the values k = 1024 and
r = 160). For all tuple (n, p, q, e, d, g) output by Gen, and all bit strings ID in
{0, 1}∗, with overwhelming probability the integer x, whose binary encoding is
Hk(ID), is invertible modulo n. For the sake of simplification, we suppose that
this always happens. Moreover, let us recall that an appropriate mechanism is
used in order to ensure that encodings of integers modulo n do not reveal the
value of n.

10

4.1 Heuristic of the constructions

As described above, the adversaries are afforded enormous power. Therefore, it
appears prudent to follow general principles in the design of secret handshake
protocols (paraphrased from [8]):

– asymmetry principle: asymmetry in a protocol is desirable.
Symmetries in a protocol should be used with caution, due to both the
possibility of reflection attacks, and attacks in which responses from one
party can be re-used within a protocol.

– chronology principle: messages within a particular protocol run should be
logically linked or “chained” in some manner.
This principle is aimed at precluding replay attacks and interleaving attacks.

– ”add your own salt” principle: a party should be able to incorporate into
the data being operated on a reasonable amount of data which he himself
randomly selects.
In other words, a protocol should not require a party to carry out a crypto-
graphic operation on inputs which may be entirely under the control of an
adversary. The objective is to prevent the so called chosen-ciphertext attacks.

Moreover, mutual authentication is hardly an end in itself: a party goes
through a secret handshake protocol in order to then conduct some transaction
that is allowed only to member of his group. In an open setting, the authenti-
cation by itself is largely useless because an adversary can “hijack” the ensuing
session. Therefore, to have secure transactions, some information from the hand-
shake protocol must be used to authenticate flows in the transaction. We will
come back to this issue in section 7, but note hic et nunc that this session key
exchange should be designed with caution:

– link principle: authentication and key exchange should be linked.
If mutual authentication and key exchange are independent, then an attacker
could allow two parties to carry out authentication unhindered, and could
take over one’s party role in key exchange.

4.2 Description of OT-SH

Okamoto and Tanaka’s Identity-Based Key Agreement Scheme. The
identity-based key exchange protocol proposed by Okamoto and Tanaka in 1989
[16] is described as follows: on input a security parameter k, a trusted authority
(the Private Key Generator, PKG) runs the RSA-group generator Gen, publishes
(n, e, g), and keeps (p, q, d) secret. Let Alice and Bob be two entities of which
identification information is IDA and IDB , respectively.

Alice keeps sA = Hk(IDA)−d mod n computed by the PKG as her own secret
(and so does Bob with sB = Hk(IDB)−d mod n). The scheme is then basically
the Diffie-Hellman scheme implemented over (Z/nZ)∗ (see figure 1). The security
of this scheme remained open until 1998 when a solution was given by Mambo
and Shizuya [11].

11

Alice Bob

kA
R←− [[1, n]]

cA ← sAgkA mod n
cA−−−−−−−−−−−−−−−−→

kB
R←− [[1, n]]

cB←−−−−−−−−−−−−−−−− cB ← sBgkB mod n

K = (Hk(IDB)ce
B)kA mod n K = (Hk(IDA)ce

A)kB mod n

Fig. 1. Description of Okamoto-Tanaka identity-based key exchange protocol

Description of OT-SH. Our first new secret handshake scheme OT-SH is a
simple variant of the previous protocol. The Setup algorithm establishes as public
parameters the RSA-group generator and the hash functions Hk and Gr. The
algorithm CreateGroup is identical to the PKG key generation and the protocol
AddMember to a user registration. The 4-round protocol Handshake is designed
thanks to appropriate used of nonces and hash values (following the principles
exemplified in the previous section) in the key exchange protocol. The scheme
is described with all details in figure 2.

Algorithm Setup

Input: k ∈ N
Output: P
P = (k, Gen,Hk)

Algorithm CreateGroup

Input: P
Output: (pkG, skG)

(n, p, q, e, d, g)
R←− Gen(k)

pkG ← (n, e, g) skG ← d

Protocol AddMember

Common Input: P,pkG = (n, e, g), ID
Member Input: ε
Group Input: skG = d
Output: (pkID, skID)

pkID ← ε

skID ← (Hk(ID))−d mod n

Protocol Handshake

Common Input: P, IDI, IDM, pkIDI , pkIDM

Init Input: pkGI = (nI, eI, gI), skIDI Match Input: pkGM = (nM, eM, gM), skIDM

Output: (bI, bM) ∈ {Accept, Reject}2

① Init’s round: kI
R←− {0, 1}nI , cI ← skIDI · g

kI
I mod nI cI

❶ Match’s round: kM
R←− {0, 1}nM , cM ← skIDM · g

kM
M mod nM cM

② Init’s round: VI ← Gr

ˆ
(Hk(IDM) · ceI

M)kI mod nI‖IDI‖IDM‖cI‖cM‖0
˜

 VI

❷ Match’s round

If Gr

ˆ
(Hk(IDI) · ceM

I)kM mod nM‖IDI‖IDM‖cI‖cM‖0
˜

= VI

then bM = Accept ; VM ← Gr((Hk(IDI) · ceM
I)kM mod nM‖IDI‖IDM‖cI‖cM‖1)

else bM = Reject ; VM
R←− {0, 1}r VM

• Init’s execution ending

If Gr

ˆ
(Hk(IDM) · ceI

M)kI mod nI‖IDI‖IDM‖cI‖cM‖1
˜

= VM

then bI ← Accept else bI ← Reject

Fig. 2. Description of the scheme OT-SH

12

4.3 Description of Gi+SH and Gi×SH

Girault’s Self-Certified Key Agreement Scheme. In 1991, Girault [9] pro-
posed a key agreement which allows to obtain a shared secret key without ex-
change of messages (but it does require that the public keys of each party are
known to the other), based on his new idea of self-certified public key. Rigor-
ous security of this protocol (and variants) has been made clear only recently
[15] by Oh, Mambo, Shizuya and Won. With the notations from section 4.2,
Alice picks uniformly at random sA ∈ Z/nZ, computes S = gsA mod n and
sends SA together with a designated verifier proof of knowledge of sA to the
authority. If the proof is valid, the authority computes Alice’s public key PA

as the RSA signature of the difference (resp. quotient) of SA and Hk(IDA):
PA = (SA − Hk(IDA))d mod n (resp. PA = (SA/Hk(IDA))d mod n), there-
fore gsA = P e

A + Hk(IDA) mod n (resp. gsA = P e
A · Hk(IDA) mod n). Sim-

ilarly, Bob’s public key is PB such that gsB = P e
B + Hk(IDB) mod n (resp.

gsB = P e
B · Hk(IDB) mod n) and sB is known only to Bob. Alice and Bob can

thereafter simply exchange an authenticated key by choosing

K = (P e
A +Hk(IDA))sB = (P e

B +Hk(IDB))sA mod n(
resp. K = (P e

A · Hk(IDA))sB = (P e
B · Hk(IDB))sA mod n

)
This protocol is clearly related to Diffie-Hellman’s one, but contrary to it, makes
Alice sure that she shares K with Bob and conversely.

Description of Gi+SH and Gi×SH. The new secret handshake schemes Gi-
SH and Gi×SH are completely analogous to the one proposed in [1] by Balfanz et
al.: the non-interactive key-agreement protocol of Sakai et al. being replaced by
Girault’s additive and multiplicative scheme (respectively). They are described
in figure 3.

Remark 1. Note that, in the schemes Gi⊕SH (with ⊕ = + or ⊕ = ×), after the
run of the protocol Gi⊕SH.AddMember, the group authority does not learn the
secret key of the member and thus in contrast to the previous scheme, cannot
impersonate that member. However, in [18], Saeednia described a shortcoming of
Girault’s self-certified model that may be exploited by the authority to compute
users’ secret keys. This attack applies as well on Gi⊕SH, but it is easy to make
this attack ineffective by taking additional precautions. This might be interesting
for high-security needs (e.g. in traitor tracing).

5 Security results

The following theorems state that the advantage of any active impersonator,
detector or distinguisher adversary against the schemes OT-SH and Gi⊕SH in
the ROM can be upper-bounded via an explicit function related to the success
of solving the RSA problem, the difference RSA problem or the composite Diffie-
Hellman problem in Gen. More precisely, the hash function Hk is modeled by a

13

Algorithm Setup

Input: k ∈ N
Output: P
P ← (k, Gen,Hk)

Algorithm CreateGroup

Input: P
Output: (pkG, skG)

(n, p, q, e, d, g)
R←− Gen(k) ; pkG ← (n, e, g) ; skG ← d

Protocol AddMember

Common Input: P,pkG, ID Group Input: skG

Output: (pkID, skID)

① Member’s round: skID
R←− [[2k, 2k+1]], S ← gskID , p

R←− DVPK(γ|S = gγ) (S, p)

❶ Group’s round: Verify p ; pkID ← (S 	Hk(ID))d mod n pkID

Protocol Handshake

Common Input: P, IDI, IDM, pkIDI , pkIDM

Init Input: pkGI = (nI, eI, gI), skIDI

Match Input: pkGM = (nM, eM, gM), skIDM

Output: (bI, bM) ∈ {Accept, Reject}2

① Init’s round: rI
R←− {0, 1}r rI

❶ Match’s round: rM
R←− {0, 1}r ;

VM ← Gr

h
(pkIDI

eM ⊕Hk(IDI))
skIDM mod nM‖IDI‖IDM‖rI‖rM‖0

i
 (rM, VM)

② Init’s round: KI ← (pkIDM
eI ⊕Hk(IDM))skIDI mod nI

If Gr [KI‖IDI‖IDM‖rI‖rM‖0] = VM

then bI ← Accept; VI ← Gr [KI‖IDI‖IDM‖rI‖rM‖1]

else bI ← Reject; VI
R←− {0, 1}r VI

• Match’s execution ending

If Gr

h
(pkIDI

eM ⊕Hk(IDI))
skIDM mod nM‖IDI‖IDM‖rI‖rM‖1

i
= VI

then bM ← Accept ; else bM ← Reject

Fig. 3. Description of the schemes Gi+SH and Gi×SH ((⊕,) = (+,−) and (×, /))

random oracle, while the hash function Gr is modeled by a non-programmable
random oracle (more precisely, we only suppose that Gr has the evaluation point
knowledge (EPK) property: it is not possible to learn the value of what Gr(σ)
without knowing the bit string σ).

In all cases but two, the proof is more or less routine: the main difficulty of
the analysis comes from the introduction of the RSA challenge into the public
base. Indeed in the reductionist security proofs, the element g, supposed to be of
maximal order in (Z/nZ)∗, is replaced by a random element of (Z/nZ)∗. Lemma
1 asserts that with probability close to exp(−1), among (k + 1)2 such random
elements there is an element with order λ(n).

Lemma 1. Let k ≥ 1 be an integer, and let n ∈ 2Factors(k). If an integer g is
drawn uniformly at random from [[1, n]], then Pr[ord(g) = λ(n)] > 1/(110 ln k).

Proof. This lemma is a simple consequence of [17, Theorem 15]. ut

14

We illustrate the application of this lemma in the proof of the impersonation
resistance of OT-SH (cf. Theorem 1). The impersonation resistance (as the de-
tection resistance) of Gi+SH rely on the difference RSA problem. Since this is
a less classical assumption, we carry out the arguments in full detail (cf. Theo-
rem 2). The remaining four security results are left to the reader and will follow
similar proofs for the two given here. In the theorems, TExp(k) denotes the time
complexity for an exponentiation modulo a 2k + 1-bit integer.

5.1 Security of the scheme OT-SH

Theorem 1. Let Gen be an RSA-group generator, let f : N→ N and let OT-SH
be the secret handshake protocol instantiated with Gen and f .
Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN.

1. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IMP-ACT-adversary against OT-
SH, in the ROM. There exist a τ ′-RSA adversary B such that{

Succrsa
Gen,B(k) ≥ Succimp−act

OT-SH,A(k)/(110 ln(k) · qCG(k)qH(k))
τ ′(k) ≤ [τ(k) + (qH(k) + qCG(k) + qAM(k) + 3qHS(k) + O(1))TExp(k)]

for all positive integers k.
2. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-DET-ACT-adversary against OT-

SH, in the ROM. There exist a τ ′-RSA adversary B such that{
Succrsa

Gen,B(k) ≥ Advdet−act
OT-SH,A(k)/(220 ln(k) · qCG(k)qH(k))

τ ′(k) ≤ [τ(k) + (qH(k) + qCG(k) + qAM(k) + 3qHS(k) + O(1))TExp(k)]

for all positive integers k.
3. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IND-ACT-adversary against OT-

SH, in the ROM, making at most qG(k) queries to the non-programmable
random oracle OG in the experiments Expind-act-b

OT-SH,A(k) (for b ∈ {0, 1} and
k ∈ N). There exist a τ ′-COMP-CDH adversary B such that{

Succcomp−cdh
Gen,B (k) ≥ Advind−act

OT-SH,A(k)/[2qG(k)]
τ ′(k) ≤ τ(k) + (qH(k) + 3qHS(k) + O(1))TExp(k)

for all positive integers k.

Proof. We prove only the first part of the theorem. Our method of proof is
inspired by Shoup [21]: we define a sequence of games Game0, . . . , Game5 starting
from the actual adversary A and modify it step by step until we reach a final
game whose success probability has an upper bound related to solving the RSA
problem. All the games operate on the same underlying probability space: the
setup, the public and private keys of the groups and the members, the coin tosses
of A and the random oracle.

Let k be a security parameter, let (n, p, q, e, d, g) be a 6-tuple generated by
Gen(k) and let α ∈ (Z/nZ)∗ be a random instance of the RSA problem. We
construct a reduction algorithm B which on input (n, e, α) outputs an element
x ∈ (Z/nZ)∗ aimed to satisfy xe = α mod n.

15

Game0 We consider a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IMP-ACT-adversaryA, against
the scheme OT-SH instantiated with the RSA-group generator Gen, in the
random oracle model. A takes the public parameters as input, and outputs
a triple (G?, ID?, d?). A has access to the random oracle OH and to the
oracles OCG, OAM, OHS, ORM, and OCo. A succeeds if ID? belongs to G?,
G? remains uncorrupt during A’s execution, all corrupt users from G? are
excluded from G? and if in the protocol OT-SH.Handshake(A, ID?) (resp.
OT-SH.Handshake(ID?,A)), the member ID? returns Accept when d? = 0
(resp. when d? = 1).
In any game Gamei (i ∈ [[1, 5]]), we denote by Impi this event. Without loss
of generality we can suppose that any time A makes a query involving a
pseudonym ID to one of the oracles OCG, OAM, OHS, ORM, and OCo, A has
previously queried ID to the random oracle OH. In particular, we suppose
that A has queried ID∗ and IDA (the pseudonym used by A in the final
execution of OT-SH.Handshake) to the random oracle OH. By definition, we
have Pr[Imp0] = Succimp−act

OT-SH,A(k).
Game1 The algorithm B picks uniformly at random an index `1 ∈ [[1, qCG(k)]] and

aborts if the group G? was not obtained at the `1’s query to the oracle OCG.
We obtain Pr[Imp1] = Pr[Imp0]/qCG(k).

Game2 B simulates the OCG oracle. For the i-th query (i ∈ [[1, qCG(k)]] \ {`1}), B
executes Gen(k) and gets (ni, pi, qi, ei, di, gi). It outputs (ni, ei, gi) as the
answer to A’s i-th query for the group denoted by Gi and stores di.
For the `1-th query, B picks uniformly at random r′ ∈ (Z/nZ)∗, computes
r = re mod n and outputs (n, e, (rα)e). We denote by Λ the event that (rα)e

is of order λ(n) in (Z/nZ)∗. If Λ happens, then the distribution of the group
authorities keys is unchanged. Therefore, we have Pr[Imp2|Λ] = Pr[Imp1].

Game3 The algorithm B picks uniformly at random an index `2 ∈ [[1, qH(k)]]. For
the i-th bit string ID queried to OH, B picks at random sID ∈ (Z/nZ)∗ and
B sets hID = se2

ID if i 6= `2, otherwise it sets hID = se
ID ·α. B returns hID as the

answer to the oracle call and stores the 4-tuple (ID, hID, sID, i) in the Hk-List.
B discards execution such that IDA was not the `2-th query to the oracle H.
We obtain Pr[Imp3] = Pr[Imp2]/qH(k).

Game4 Now, B simulates the OAM and the OCo oracles. The queries OAM(Gi) for
i ∈ [[1, qCG(k)]] are easily simulated since OT-SH.AddMember outputs only a
secret key associated with a pseudonym.
For all i ∈ [[1, qCG(k)]] \ {`1}, thanks to the knowledge of di, B can perfectly
simulate the member key generation protocol for the group Gi, and therefore
can reply to A’s queries involving members of Gi. For a member of G? with
pseudonym ID queried to theOAM or theOCo oracle, we know that ID 6= IDA.
Therefore B can retrieve sID in the Hk-List and computes the d-th power of
OH(ID)−1 = h−1

ID as s−e
ID . Thanks to the knowledge of this value B can reply

to A’s queries involving members of G?. This perfectly simulates the oracles,
therefore we have Pr[Imp4|Λ] = Pr[Imp3|Λ].

Game5 Finally, B simulates the handshake protocols for members with pseudonyms
say IDI and IDM . The only difficulty happens when IDI = IDA or IDM = IDA.
In this case, B picks uniformly at random u ∈ [[1, n]], sets cI = (rα)eu · s−e

IDI

16

or cM = (rα)eu · s−d
IDM

(respectively). The algorithm B picks uniformly at
random v ∈ [[1, n]], sets cA = s−1

IDA
r′(rα)v (so that [cA(sIDAαd)] ∈ 〈g〉) and

K = (ce
AhIDA)u. Querying these suitable values to the non-programmable

random oracle Gr, B can perfectly simulate the OHS. Therefore, we have
Pr[Imp5|Λ] = Pr[Imp4|Λ].

To summarize, when the Game5 terminates, A outputs the triple (G?, ID?, d?)
such that G?’s public key is (n, e, (rα)e) and OH(ID?) = se2

ID? . Equiped with
the pseudonym IDA, A interacts with the reduction algorithm B emulating the
member with pseudonym ID? to execute the protocol OT-SH.Handshake(A, ID?)
(or OT-SH.Handshake(A, ID?) depending on d?).
From the simulation, we know that OH(IDA) = se

IDA
α. Whatever the bit d? is,

B picks uniformly at random t ∈ [[1, n]] such that t is coprime to e and sets
cID? = (rα)tse

ID? in the execution of the handshake protocol.

• If the protocol is successful, thanks to the EPK property of Gr, B retrieves
in its transcript K and cIDA such that K = gek?kA , cIDA = gkAs−1

IDA
α−d and

cID? = gk?

(s−e2

ID?)d = gk?

s−e
ID? = (rαe)k?

s−e
ID? .

If Λ happens, then ek? ≡ t mod λ(n), ct
IDA

= gtkAs−t
IDA

α−dt = Ks−t
IDA

α−dt

and thus we have (ct
IDA

K−1st
IDA

)e = α−t. Finally, using the extended Eu-
clidean algorithm B finds integers u, v such that ev − tu = 1, and computes
x = (ct

IDA
K−1s−t

IDA
)uαv mod n such that[

(ct
IDAK−1s−t

IDA
)uαv

]e
= α−tuαev = α mod n.

• Otherwise, B picks uniformly at random x ∈ [[1, n]].

The output of B is x and with probability at least Pr[Imp5|Λ] + 2−2k−1 it is
equal to the e-th root of the RSA challenge α. This probability is greater than
Succimp−act

OT-SH,A(k)/(qCG(k)qH(k)). By lemma 1, we get the claimed bounds for
Succrsa

Gen,B and τ ′. ut

5.2 Security of the scheme Gi+SH

Theorem 2. Let Gen be an RSA-group generator, let f : N→ N and let Gi+SH
be the secret handshake protocol instantiated with Gen and f .
Let qH, qG , qCG, qAM, qHS, qRM, qCo, τ ∈ NN.

1. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IMP-ACT-adversary against Gi+SH,
in the ROM. There exist a τ ′-DIFF-RSA adversary B such that{

Succdiff−rsa
Gen,B (k) ≥ Succimp−act

Gi+SH,A(k)/[exp(2)qCG(k)(qAM(k) + qCo(k) + 1)]
τ ′(k) ≤ τ(k) + (2qH(k) + 2qCG(k) + qAM(k) + qHS(k) + O(1))TExp(k)

for all positive integers k.

17

2. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-DET-ACT-adversary against Gi+SH,
in the ROM. There exist a (qAM + qCo, τ

′)-DIFF-RSA adversary B such that{
Succdiff−rsa

Gen,B (k) ≥ Advdet−act
Gi+SH,A(k)/[2 exp(2)qCG(k)(qAM(k) + qCo(k) + 1)]

τ ′(k) ≤ (2qH(k) + 2qCG(k) + qAM(k) + qHS(k) + O(1))TExp(k)

for all positive integers k.
3. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IND-ACT-adversary against Gi+SH,

in the ROM, making at most qG(k) queries to the non-programmable random
oracle OG in the experiments Expind-act-b

Gi+SH,A(k) (for b ∈ {0, 1} and k ∈ N).
There exist a τ ′-COMP-CDH adversary B such that{

Succcomp−cdh
Gen,B (k) ≥ Advind−act

Gi+SH,A(k)/[2qG(k)]
τ ′(k) ≤ τ(k) + (qH(k) + O(1))TExp(k)

for all positive integers k.

Proof. Again, we prove only the first part of the theorem. Let k be a security pa-
rameter, let (n, p, q, e, d, g) be a 6-tuple generated by Gen(k) and let α ∈ (Z/nZ)∗

be a random instance of the RSA problem. We construct a reduction algorithm
B which on input (n, e, α) outputs a pair (x, y) ∈ [(Z/nZ)∗]2 aimed to satisfy
xe − ye = α mod n.

We follow essentially the previous proof with games Game0 and Game1 anal-
ogous to the corresponding games. With the same notation, we get

Pr[Imp1] = Succimp−act
GI+SH,A(k)/qCG(k).

Game2 B simulates the OCG oracle. For the i-th query (i ∈ [[1, qCG(k)]]\{`}), B exe-
cutes Gen(k) and gets (ni, pi, qi, ei, di, gi). It outputs (ni, ei, gi) as the answer
to A’s i-th query for the group denoted by Gi and stores di. For the `-th
query, B outputs (n, e, ge2

) as G?’s public key. The distribution of the group
authorities keys is unchanged, and therefore, we have Pr[Imp2] = Pr[Imp1].

Following Coron’s technique [6], a random coin decides whether B introduces
the challenge α in the hash answer to the oracle OH, or an element with a known
preimage. Let δ ∈ [0, 1].

Game3 In this game, for each fresh bit string ID queried to OH, B picks at random
a bit tID

R←− Bδ, where Bδ is the probability distribution over {0, 1} where
0 is drawn with probability δ and 1 with probability 1 − δ. B stores in a
list denoted by Hk-List a 4-tuple (ID,OH(ID),⊥, tID). B discards execution
which outputs a triple (G?, ID?, d?) such that tID? = 1 or tIDA = 0.
Since for each bit string ID queried to OH, the bit tID is picked independently
of the execution of the game Game4, we have Pr[Imp3|Λ] = δ(1−δ) Pr[Imp2|Λ].

Game4 Now, B immediately aborts if A makes a query to OAM or OCo involving a
pseudonym ID such that tID > 0. Thus Pr[Imp4|Λ] = δqAM(k)+qCo(k) Pr[Imp3|Λ].

18

Game5 In this game, B simulates the random oracle OH. For each fresh bit string ID
queried to OH, B picks uniformly at random mID ∈ [[1, n]]. With probability
p, it sets hID = me

ID · α and tID = 0; otherwise B picks tID ∈ [[1, n]], coprime
to e, and sets hID = ge·tID −me

ID. B returns hID as the answer to the oracle
call and stores the 4-tuple (ID, hID,mID, tID) in the Hk-List. In the random
oracle model, this game is clearly identical to the previous one, therefore
Pr[Imp5] = Pr[Imp4].

Game6 Now, B simulates the OAM and the OCo oracles.
For all i ∈ [[1, qCG(k)]] \ {`}, thanks to the knowledge of di, B can perfectly
simulate the member key generation protocol for the group Gi, and therefore
can reply to A’s queries involving members of Gi.
For queries OAM(G?), B picks uniformly at random a pseudonym ID and
queries OH on ID, B act as follows:
• If tID = 0, then B picks uniformly at random sID ∈ [[1, n]] and queries

TID = (−mID)−ege2sID to its oracle (α + (·)e)d. It gets the value UID, and
sets pID = −UID×mID mod n. It outputs pID as the public key associated
with G? and ID and stores (pID, sID) in a list denoted by KeyList.
• Otherwise, B outputs mID as the public key associated with G? and ID

and stores (mID,⊥) in a KeyList.
The behaviour of B is identical for queries OAM(G?, ID) (with always tID = 0
in this case).
Finally, for members of G? with pseudonym ID queried to the OCo oracle, we
know that tID = 0. B can retrieve sID in the KeyList. This perfectly simulates
the oracles, therefore we have Pr[Imp6] = Pr[Imp5].

Game7 Finally, B can easily simulates the handshake protocols for members with
pseudonyms say IDI and IDM . Again, the only non trivial case occurs when
tIDI
6= 0 and tIDM

6= 0. In this case, B sets K = gtIDI
·tIDM .

If we denote kIDI
= logge2 (pe

IDI
+ hIDI

) and kIDM
= logge2 (pe

IDM
+ hIDM

), we
get e2kIDI

= e · tIDI
mod λ(n) and e2kIDM

= e · tIDM
mod λ(n), and there-

fore K = ge2kIkM . Querying this value with suitable nonces to the non-
programmable random oracle Gr, B can perfectly simulate the oracle OHS,
and we have Pr[Imp7] = Pr[Imp6].

Finally, when Game7 terminates, A outputs a triple (G?, ID?, d?) such that
G?’s public key is (n, e, ge2

), OH(ID?) = get?
ID −me

ID? and the public key asso-
ciated with G? and ID? is mID? . Equipped with the pseudonym IDA, A inter-
acts with B emulating the member with pseudonym ID? to execute the hand-
shake protocol. From the simulation, we know that OH(IDA) = me

IDA
α. What-

ever the bit d? and the nonces are, if the protocol is successful, thanks to the
EPK property of Gr, B retrieves in its transcript pA the public key of A and
K = ge2s?sA where e2s? = e · tID? mod λ(n) and pe

A − ge2sA = me
IDA

α. We
have K = getID? sA = (gesA)tID? , and using the extended Euclidean algorithm
B finds integers u, v such that tID?u + ev = 1, and sets x = pA/mIDA and
y = Ku(pe

A + me
IDA

α)v/mIDA such that xe − ye = α mod n. It remains to prove
the bounds on Succdiff−rsa

Gen,B and τ ′. The computation follows readily the one sup-
plied in details in the previous proof. ut

19

5.3 Security of the scheme Gi×SH

Theorem 3. Let Gen be an RSA-group generator, let f : N→ N and let Gi×SH
be the secret handshake protocol instantiated with Gen and f .
Let qH, qG , qG , qCG, qAM, qHS, qRM, qCo, τ ∈ NN.

1. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IMP-ACT-adversary against Gi×SH,
in the random oracle model. There exist a τ ′-RSA adversary B such that{

Succrsa
Gen,B(k) ≥ Succimp−act

Gi×SH,A(k)/[exp(2)qCG(k)(qAM(k) + qCo(k) + 1)]
τ ′(k) ≤ τ(k) + (2qH(k) + 2qCG(k) + qAM(k) + qHS(k) + O(1))TExp(k)

for all positive integers k.
2. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-DET-ACT-adversary against Gi×SH,

in the random oracle model. There exist a τ ′-RSA adversary B such that{
Succrsa

Gen,B(k) ≥ Advdet−act
Gi×SH,A(k)/[2 exp(2)qCG(k)(qAM(k) + qCo(k) + 1)]

τ ′(k) ≤ τ(k) + (2qH(k) + 2qCG(k) + qAM(k) + qHS(k) + O(1))TExp(k)

for all positive integers k.
3. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IND-ACT-adversary against Gi×SH,

in the random oracle model, making at most qG(k) queries to the non-
programmable random oracle OG in the experiments Expind-act-b

Gi×SH,A(k) (for
b ∈ {0, 1} and k ∈ N). There exist a τ ′-COMP-CDH adversary B such that{

Succcomp−cdh
Gen,B (k) ≥ Advind−act

Gi×SH,A(k)/[2qG(k)]
τ ′(k) ≤ τ(k) + (qH(k) + O(1))TExp(k)

for all positive integers k.
ut

6 Efficiency issues

In this section, we compare the performance of all the secret handshake schemes
proposed up to now. For concreteness, we assume that our schemes are instan-
tiated with 1024-bits RSA moduli, and that the Diffie-Hellman protocols from
[5] are instantiated on a 160-bits prime order subgroup of a prime finite field
of size 1024 bits. We denote by CJT1 the scheme based on the CA-oblivious
encryption and by CJT2 the scheme using the additional proof of knowledge.
We assume that the scheme from [1], denoted BDSSSW, is instantiated with
the Tate pairing on an elliptic curve of MOV degree 6 on a ground base field of
size 171 bits and that computing this bilinear map using Miller’s algorithm [12]
is 10 times more expensive than computing a discrete exponentiation in a 160
bits subgroup of a prime finite field of size 1024 bits (whose computation time
is arbitrarily set to 1). In the table 1, we summarize the schemes’ complexity
in terms of bits exchanged during the protocol Handshake (in addition to the
identification information IDI and IDM) and the computational cost of the pro-
tocols AddMember and Handshake. The new schemes compare very favorably in
performance with respect to the discrete log systems proposed so far [1, 5] and
they can be used over a low bandwidth channel.

20

Scheme BDSSSW [1] CJT1 [5] CJT2 [5] OT-SH Gi+SH Gi×SH

Underlying Problem CBDH CDH CDH RSA Diff-RSA RSA

Number of rounds 3 4 3 4 3 3

Bits exchanged 640 8512 6304 1344 640 640

Computational cost
AddMember 1.8 1 1 6.4 7.4 7.4
Handshake 22 8 6 4 2 2

Table 1. Efficiency comparison

7 Authenticated key exchange from secret handshakes

An authenticated key exchange protocol enables two parties to end up with
a shared secret key in a secure and authenticated manner (i.e. no adversary
can impersonate any party during the protocol or learn any information about
the value of the exchanged secret). At the end of the execution of the protocol
OT-SH.Handshake (resp. Gi⊕SH.Handshake), the parties can set up a temporary
session key for securing further communication between them:

session = Gr

[
(Hk(IDM) · ce

M)kI mod n‖IDI‖IDM‖cI‖cM‖2
]

= Gr

[
(Hk(IDI) · ce

I)
kI mod n‖IDI‖IDM‖cI‖cM‖2

]
(

resp. session = Gr

[
(pkIDI

e ⊕Hk(IDI))skIDM mod n‖IDI‖IDM‖nI‖nM‖2
]

= Gr

[
(pkIDM

e ⊕Hk(IDM))skIDI mod n‖IDI‖IDM‖nI‖nM‖2
])

As mentioned in [3], a number of desirable attributes of key agreement pro-
tocols have been identified:

1. known session keys: a protocol still achieves its goal in the face of an
adversary who has learned some previous session keys.

2. (perfect) forward secrecy: if long-term secrets of one or more entities are
compromised, the secrecy of previous session keys is not affected.

3. unknown key-share: entity i cannot be coerced into sharing a key with
entity j without i’s knowledge.

4. key-compromise impersonation: the knowledge of i’s secret value does
not enable an adversary to impersonate other entities to i.

5. loss of information: compromise of information that would not ordinarily
be available to an adversary does not affect the security of the protocol.

6. key control: neither entity should be able to force the session key to a
preselected value.

In these scenarii, the adversary controls all communication between entities,
and can at any time ask an entity to reveal its long-term secret key. Furthermore
she may initiate sessions between any two entities, engage in multiple sessions
with the same entity at the same time, and in some cases ask an entity to
enter a session with itself. In the random oracle model, the key control security

21

Property OT-SH Gi+SH Gi×SH

known session keys ✔ ✔ ✔

forward secrecy ✔ ✘ ✘

unknown key-share ✔ ✔ ✔

key compromise impersonation ✔ ✔ ✔

loss of information ✔ ✘ ✘

Table 2. Security properties of the new AKE-SH

requirement of the privacy-preserving authenticated key exchange derived from
OT-SH, Gi+SH and Gi×SH is unconditional (in the standard model, forcing
a session key to a preselected value is at least as hard as breaking the one-
wayness of Gr). The other security requirements against active adversaries are
summarized in table 2 (where the symbol ✘ means that the scheme does not
reach this security requirement, whereas the symbol ✔ means that in the random
oracle model the security requirement reduces to the composite Diffie Hellman
problem). The proofs are straightforward adaptations of the proofs of security
of the secret handshake protocols and therefore they are left to the reader.

8 Conclusion

A secret handshake protocol is a cryptographic primitive that allow members
of a group to authenticate each other secretly. In this paper, we designed three
efficient constructions for secret handshake based on the RSA assumption. These
constructs are the first fully anonymous protocols relying on the RSA primitive.
The new secret handshake protocols can handle roles just as easily as the one in
[1, 5]. An interesting open issue is to design simple and efficient fully anonymous
secret handshake schemes, relying as little as possible on random oracles (ideally
without any).

Ackowledgements The author expresses his gratitude to Benôıt Libert for his
suggestions on improving the exposition and for pointing out some errors in an
earlier draft of the paper.

References

1. D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Staddon, and H. C. Wong,
Secret Handshakes from Pairing-Based Key Agreements., 2003 IEEE Symposium
on Security and Privacy (S&P 2003), IEEE Computer Society, 2003, pp. 180–196.

2. M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols., Proceedings of the First ACM Conference on Computer
and Communications Security, 1993, pp. 62–73.

3. S. Blake-Wilson, D. Johnson, and A. Menezes, Key Agreement Protocols and their
Security Analysis., 6th IMA International Conference on Cryptography and Coding
(M. Darnell, ed.), Lect. Notes Comput. Sci., vol. 1355, Springer, 1997, pp. 30–45.

22

4. R. Canetti, O. Goldreich, and S. Halevi, The Random Oracle Methodology, Revis-
ited., J. Assoc. Comput. Mach. 51 (2004), no. 4, 557–594.

5. C. Castelluccia, S. Jarecki, and G. Tsudik, Secret Handshakes from CA-Oblivious
Encryption., Advances in Cryptology - Asiacrypt 2004 (P. J. Lee, ed.), Lect.
Notes Comput. Sci., vol. 3329, Springer, 2004, pp. 293–307.

6. J.-S. Coron, On the Exact Security of Full Domain Hash., Advances in Cryptology
- Crypto 2000 (M. Bellare, ed.), Lect. Notes Comput. Sci., vol. 1880, Springer,
2000, pp. 229–235.

7. Y. Desmedt, Securing Traceability of Ciphertexts - Towards a Secure Software Key
Escrow System., Advances in Cryptology - Eurocrypt’95 (L. C. Guillou and J.-J.
Quisquater, eds.), Lect. Notes Comput. Sci., vol. 921, Springer, 1995, pp. 147–157.

8. W. Diffie, P. C. van Oorschot, and M. J. Wiener, Authentication and Authenticated
Key Exchanges., Des. Codes Cryptography 2 (1992), no. 2, 107–125.

9. M. Girault, Self-Certified Public Keys., Advances in Cryptology - Eurocrypt’91
(D. Davies, ed.), Lect. Notes Comput. Sci., vol. 547, Springer, 1991, pp. 490–497.

10. M. Jakobsson, K. Sako, and R. Impagliazzo, Designated Verifier Proofs and Their
Applications., Advances in Cryptology - Eurocrypt’96 (U. M. Maurer, ed.), Lect.
Notes Comput. Sci., vol. 1070, Springer, 1996, pp. 143–154.

11. M. Mambo and H. Shizuya, A Note on the Complexity of Breaking Okamoto-
Tanaka ID-Based Key Exchange Scheme., First International Workshop on Prac-
tice and Theory in Public Key Cryptography, PKC ’98 (H. Imai and Y. Zheng,
eds.), Lect. Notes Comput. Sci., vol. 1431, Springer, 1998, pp. 258–262.

12. V. S. Miller, The Weil Pairing, and Its Efficient Calculation., J. Cryptology 17
(2004), no. 4, 235–261.

13. M. Naor, On Cryptographic Assumptions and Challenges., Advances in Cryptology
- Crypto 2003 (D. Boneh, ed.), Lect. Notes Comput. Sci., vol. 2729, Springer, 2003,
pp. 96–109.

14. J. B. Nielsen, Separating Random Oracle Proofs from Complexity Theoretic Proofs:
the Non-committing Encryption Case, Advances in Cryptology - Crypto 2002
(M. Yung, ed.), Lect. Notes Comput. Sci., vol. 2442, Springer, 2002, pp. 111–126.

15. S.-H. Oh, M. Mambo, H. Shizuya, and D.-H. Won, On the Security of Girault Key
Agreement Protocols against Active Attacks., IEICE Trans. Fundamentals E86-A
(2003), no. 5, 1181–1189.

16. E. Okamoto and K. Tanaka, Key Distribution System Based on Identification In-
formation, IEEE J. Selected Areas in Communications 7 (1989), 481–485.

17. J. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime
numbers, Ill. J. Math. 6 (1962), 64–94.

18. S. Saeednia, A Note on Girault’s Self-Certified Model., Inf. Process. Lett. 86 (2003),
no. 3, 323–327.

19. R. Sakai, K. Ohgishi, and M. Kasahara, Cryptosystems Based on Pairings., Pro-
ceedings of the Symposium on Cryptography and Information Security (SCIS
2000), 2000.

20. A. Shamir, Identity-Based Cryptosystems and Signature Schemes., Advances in
Cryptology - Crypto’84 (G. R. Blakley and D. Chaum, eds.), Lect. Notes Comput.
Sci., vol. 196, Springer, 1985, pp. 47–53.

21. V. Shoup, OAEP Reconsidered., J. Cryptology 15 (2002), no. 4, 223–249.
22. S. Xu and M. Yung, k-Anonymous Secret Handshakes with Reusable Credentials.,

Proceedings of the 11th ACM Conference on Computer and Communications Se-
curity (V. Atluri, B. Pfitzmann, and P. McDaniel, eds.), ACM, 2004, pp. 158–167.

23

