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USING SYSTEMATIC SAMPLING SELECTION FOR MONTE

CARLO SOLUTIONS OF FEYNMAN-KAC EQUATIONS

Abstract

While convergence properties of many sampling selection methods can be

proven to hold in a context of approximation of Feynman-Kac solutions

using sequential Monte Carlo simulations, there is one particular sampling

selection method introduced by [2], closely related with “systematic sampling”

in statistics, that has been exclusively treated on an empirical basis. The main

motivation of the paper is to start to study formally its convergence properties,

since in practice it is by far the fastest selection method available. One will

show that convergence results for the systematic sampling selection method are

related to properties of peculiar Markov chains.
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1. Introduction

Let (Xk)k≥0 be a non-homogeneous Markov chain on a locally compact metric space

E, with transition kernels (Kn)n≥1 and initial law η0 defined on the Borel σ-field B(E).

Further let Bb(E) be the set of bounded B(E)-measurable functions.

Given a sequence (gn)n≥1 of positive functions in Bb(E), suppose that one wants to

calculate recursively the following Feynman-Kac formulae (ηn)n≥1:

ηn(f) =
γn(f)

γn(1)
, f ∈ Bb(E), (1)

where

γn(f) = E

(

f(Xn)

n
∏

k=1

gk(Xk−1)

)

. (2)

Note that most nonlinear filtering problems are particular cases of Feynman-Kac

formulae.

Following [7] and [12], letM1(E) denotes the set of probability measures on (E,B(E)).

If µ ∈M1(E) and n ≥ 0, let µKn be the probability measure defined on Bb(E) by

µKn(f) = µ(Knf) =

∫

E

∫

E

f(z)Kn(x, dz)µ(dx).

In order to understand the relation between the ηns, for any n ≥ 1, let ψn : M1(E) 7→

M1(E) be defined by

ψn(η)f =
η(gnf)

η(gn)
, η ∈M(E), f ∈ Bb(E),

and let Φn denote the mapping from M1(E) to M1(E) defined by

Φn(η) = ψn(η)Kn.

Then it is easy to check that for any n ≥ 1,

ηn = Φn(ηn−1). (3)
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Note also that for any n ≥ 1, the mapping Φn can be decomposed into

η̂n = ψn+1(ηn),

ηn+1 = η̂nKn+1,
n ≥ 0, η0 ∈ M1(E). (4)

Further remark that the first transformation, ηn 7→ η̂n, is non-linear, while the second

one, η̂n 7→ ηn+1, is linear.

Even if the forward system of equations (3) looks simple, it can rarely be solved

analytically, and even if this is the case, it would require extensive calculations. This

is why algorithms for approximating (ηn)n∈N
, starting from η0, are so important.

One such method, presented in the remarkable surveys [12, 8] and the book of [11],

is to build approximations of measures (ηn)n∈N using interacting particle systems. The

algorithm uses decomposition (4), and by analogy with genetics, the first step, which

is related to a sampling selection method, is often referred to as the selection step, and

the second one is termed the mutation step, while in reality it is a Markovian evolution

of the particles. The speed of any algorithm depends on the two steps. In [19] the

authors focus on the mutation step, but it is clear that it also depends on the sampling

selection process.

In this paper, one discusses properties of a particular algorithm that is called

“systematic sampling” selection herein, while in the genetic algorithms literature, it

has been strangely called “Stochastic universal sampling” selection. It seems to have

appeared first in [2]. It has been reintroduced in the filtering literature in [5], see

also [17].

In what follows, a description of the general algorithm is given in Section 2, with a

few examples of sampling selection methods, together with some tools for studying its

convergence. In Section 3, one focuses on the systematic sampling selection method,
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giving some properties, and stating some convergence results and a conjecture, based

on results from Markov chains proved in the appendix. Finally, in Section 4, numerical

comparisons between sampling selection methods are made through a simple model of

nonlinear filtering for noisy black-and-white images.

2. Algorithm and sampling selection methods

The general algorithm for approximating the solution of (3) is first given, following

the exposition in [7, 12], while particular sampling selection methods are presented

next. Throughout the rest of the paper, it is assumed that for any n ≥ 1,

0 < inf
x∈E

gn(x) ≤ sup
x∈E

gn(x) < +∞.

2.1. General algorithm

Let N be a integer, representing the number of particles and for any n ≥ 0, let

ξn =
{

ξ1n, · · · , ξN
n

}

denotes the particles at time n and set

ηN
n =

1

N

N
∑

i=1

δξi
n
.

• At time n = 0, the initial particle system ξ0 =
{

ξ10 , · · · , ξN
0

}

consist of N

independent and identically distributed particles with common law η0.

• For each n ≥ 1, the particle system ξn =
{

ξ1n, · · · , ξN
n

}

consists of N particles, is

obtained in the following way:

(Sampling/Selection) First calculate the weights vector Wn ∈ (0, 1)N , where

W i
n =

gn(ξi
n−1)

∑N

i=1 gn(ξi
n−1)

, i = 1, . . . , N. (5)
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Then, select, according to a given sampling selection method, a sample

ξ̂n−1 =
{

ξ̂1n−1, . . . , ξ̂
N
n−1

}

of size N from ξn−1 and with weights (W i
n).

(Evolution/Mutation) Given ξ̂n−1, the new particle system ξn consists of

particles ξi
n chosen independently from law Kn(ξ̂i

n−1, dx), 1 ≤ i ≤ N . In

other words, for any z = (z1, . . . , zN) ∈ EN ,

P
(

ξn ∈ dx|ξ̂n−1 = z
)

=

N
⊗

i=1

Kn(zi, dxi).

Note that in order to describe a sampling selection method, it suffices to define how

the numbers M1
n, . . . ,M

N
n ∈ {0, 1, . . . , N} are randomly selected, with M i

n representing

the number of times particle ξi
n−1 is appears in the new sample. Therefore, one can

write

η̂N
n−1 =

1

N

N
∑

i=1

δ
ξ̂i

n−1

=
1

N

N
∑

i=1

M i
nδξi

n−1

.

A sampling selection method will be said to be conditionally unbiased, if for any

i ∈ {1, . . . , N} and any k ≥ 1, E(M i
k|ξk−1) = NW i

k.

Remark 2.1. Conditional unbiasedness yields the following property:

E
(

ηN
k f |ξk−1

)

= Φk

(

ηN
k−1

)

(f), f ∈ Bb(E). (6)

For, in that case,

E
(

ηN
n f |ξn−1

)

= E
(

E
(

ηN
n f |ξn−1, ξ̂n−1

)

|ξn−1

)

= E

(

1

N

N
∑

i=1

M i
nKnf(ξi

n−1)

∣

∣

∣

∣

∣

ξn−1

)

=

N
∑

i=1

W i
nKnf(ξi

n−1) = Φn

(

ηN
n−1

)

(f).

The mean square error of a particular sampling selection method can be obtained

using the following useful result, obtained by [12, Theorem 2.36]. Before stating the
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result, define, for any measurable η with values in M(E),

‖η‖2
2 = sup

f∈Bb(E), ‖f‖∞≤1

E
(

(ηf)2
)

.

Theorem 2.1. Assume that the sampling selection method is conditionally unbiased

and that the following condition is verified for all 1 ≤ k ≤ n: there exists a constant

Ck such that for all N -dimensional vectors
{

q1, · · · , qN
}

∈ RN ,

E





(

1

N

N
∑

i=1

(M i
k −NW i

k)qi

)2
∣

∣

∣

∣

∣

∣

ξk−1



 ≤ 1

N
Ck max

1≤i≤N

∣

∣qi
∣

∣

2
. (7)

Then, for all 1 ≤ k ≤ n, there exists a constant C ′
k such that

‖ηN
k − ηk‖2

2 ≤ C ′
k/N.

In what follows, only conditionally unbiased sampling selection methods are consid-

ered. As shown in Remark 3.2, one can see that in general, the systematic sampling

selection method defined below does not satisfy condition (7) of the previous theorem,

while classical sampling selection methods, like the ones listed in Section 2.3, do satisfy

it. Therefore, weaker conditions must be imposed in order to obtain mean square

convergence. In fact, one has the following result.

Theorem 2.2. Let (aN ) be a sequence such that aN/N → 0, as N → ∞. Assume

that the sampling selection method is conditionally unbiased. Then

lim
N→∞

aN max
1≤k≤n

‖ηN
k − ηk‖2

2 = 0

if and only if, for any f ∈ Bb(E),

lim
N→∞

aN max
1≤k≤n

E





(

1

N

N
∑

i=1

(M i
k −NW i

k)f(ξi
k−1)

)2


 = 0. (8)
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Moreover, supN≥1 aN max
1≤k≤n

‖ηN
k − ηk‖2

2 is finite if and only if

sup
N≥1

aN max
1≤k≤n

E





(

1

N

N
∑

i=1

(M i
k −NW i

k)f(ξi
k−1)

)2


 <∞.

Proof. Suppose that aN/N → 0 and let f ∈ Bb(E) be given. First, note that using

the unbiasedness condition, together with (6), one has, for any k ∈ {1, . . . , n},

E
[

(ηN
k f − ηkf)2

]

= E
[

(ηN
k f − Φk(ηN

k−1)f)2
]

+E
[

(Φk(ηN
k−1)f − ηkf)2

]

. (9)

Since gk ≥ ck > 0 by hypothesis, for some positive constant ck, k ≥ 1, it follows that

lim
N→∞

aN max
1≤k≤n

‖ηN
k − ηk‖2

2 = 0

if and only if for any k = 1, . . . , n, lim
N→∞

aNE
[

(ηN
k f − Φk(ηN

k−1)f)2
]

= 0. Next, it

can be shown easily that for any k = 1, . . . , n, E
[

(

ηN
k f − Φn(ηk−1)f

)2
∣

∣

∣
ξk−1

]

can be

written as

E





(

1

N

N
∑

i=1

(M i
k −NW i

k)Kkf(ξi
k−1)

)2
∣

∣

∣

∣

∣

∣

ξk−1



+
1

N
Ψk(ηN

k−1)(Kkf
2 − (Kkf)2).

Since Kkf ∈ Bb(E), 0 ≤ 1
N

Φk(ηN
k−1)(Kkf

2 − (Kkf)2) ≤ 1
N
‖f‖2

∞, and aN/N → 0, it

follows from the calculations above that

lim
N→∞

aN max
1≤k≤n

E
[

(ηN
k f − Φk(ηN

k−1)f)2
]

= 0

if and only if (8) holds true. The rest of the proof is similar, so it is omitted.

2.2. Systematic sampling

By obvious analogy with systematic sampling in Statistics, the first sampling selec-

tion method that is described is simply called “systematic sampling”. It appears that

this method was first proposed by [2] under the strange name “Stochastic Universal
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Sampling”, in a context of unbiased sampling selection for genetic algorithms. However,

nobody formally studied its convergence properties.

As opposed to the definition of [2], the sampling selection method can simply be

defined in the following way: For n ≥ 1, let Un a uniform random variable on [0, 1)

and note for w ∈ [0, 1], M(w,Un) := bNw + Unc, where bxc denotes the integer part

of x. Then

M1
n := M(W 1

n , Un),

Mk
n := M(W 1

n + · · · +W k
n , Un) −M(W 1

n + · · · +W k−1
n , Un), k = 2, . . . , N.

Since M(1, Un) = N , one gets that
∑N

i=1M
i
n = N . Therefore the number of particles

is always N . Properties of that sampling selection method are examined in Section 3.

2.3. Other sampling methods

One can grossly classify the various sampling selection methods into two categories,

according as the number of particles is constant or random. The following list is by

no means exhaustive. One concentrates on “classical” selection methods. For the first

two methods, N is constant, while Nn fluctuates in the last two methods. For other

sampling selection methods, one may consult [7, 12, 11] and references therein. See

also [4] for a recent review of comparison of various selections. Note that the last two

methods are particular cases of what is known as “Branching selection methods” in

the filtering literature. However, there are many others sampling methods, e.g., the

tree-sampling method proposed in [7]. The latter is more computationally demanding,

and since it is not as simple to implement as the other methods, it is not considered

here.
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2.3.1. Simple random sampling This selection method is based on simple random

sampling without rejection. It follows that

(

M1
n, · · · ,MN

n

)

∼ Multinomial
(

N,W 1
n , · · · ,WN

n

)

,

where
(

W i
n

)

1≤i≤N
are given by (5). This sampling selection method is the classical

selection method and has many interesting properties that have been studied mainly by

Del Moral and co-authors, e.g. see [11]. In particular, conditions (i)–(ii) of Theorem 2.1

are met; also one can prove a Central Limit Theorem and Large Deviations Properties.

2.3.2. The remainder stochastic sampling This algorithm was first introduced by [3] in

a context of unbiased sampling selection for genetic algorithms; see also [1, 2] for

comparisons between sampling selection methods in the latter context. It is also

defined as “Residual sampling” by [18]. It is a little much faster to implement than the

simple random sampling selection method, it satisfies conditions (i)–(ii) of Theorem

2.1, and recently, [13] investigated some of its convergence properties. See also [12]

and the references therein. To describe the selection method, first define Ñ = N −
∑N

i=1bNW i
nc =

∑N
i=1

{

NW i
n

}

, where {x} stands for the fractional part of x, i.e.

{x} = x− bxc. Next, allocate the (possibly) remaining Ñ particles via simple random

sampling, i.e.

(

M1
n − bW 1

nc, · · · ,MN
n − bWN

n c
)

∼ Multinomial
(

Ñ, W̃ 1
n , · · · , W̃N

n

)

,

with W̃ i
n =

{

NW i
n

}

/
∑N

j=1

{

NW j
n

}

, 1 ≤ i ≤ N . In fact Ñ is expected to be the half of

N , then the speed of the selection method is almost the same as for the simple random

sampling.
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2.3.3. Binomial sampling As stated before, for this sampling selection method and the

next one, the number of particles at time n is random and it is denoted by Nn, n ≥ 0.

Of course, N0 is fixed. For n ≥ 1, and given ξn−1 and Nn−1, M1
n, . . . ,M

Nn−1

n are

independent and M i
n ∼ Bin(Nn−1,W

i
n), for 1 = 1, . . . , Nn−1. It follows that

Nn =

Nn−1
∑

i=1

M i
n.

This sampling selection method is a little bit faster than the simple random sampling

selection method, but a major drawback is that there is no control on the number of

particles. Moreover, P (Nn = 0) > 0.

2.3.4. Bernoulli sampling The Bernoulli sampling selection selection method was in-

troduced in [9]. See also [10, 6] for additional properties of the sampling selection

selection. It is worth noting that M i
n takes the same values as in the systematic

sampling selection method, provided Nn−1 = N . In fact, for n ≥ 1, and given ξn−1

and Nn−1, M1
n, . . . ,M

Nn−1

n are independent, where M i
n is defined by

M i
n = bNn−1W

i
nc + εi

n, εi
n ∼ Ber(

{

NnW
i
n

}

), 1 ≤ i ≤ Nn−1.

Note that Nn ≥ 1 and that the following alternative representation also holds:

M i
n = bN(W 1

n + · · · +W i
n) + U i

nc − bN(W 1
n + · · · +W i−1

n ) + U i
nc,

where U1
n, . . . , U

Nn−1

n are independent and U i
n ∼ Unif([0, 1)), given ξn−1, Nn−1.

3. Some properties and results for systematic sampling selection

Throughout the rest of paper, the selection method is the one defined in Section

2.2. Let’s start first with some elementary properties of systematic sampling selection.
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Lemma 3.1. Suppose that Un is uniformly distributed over [0, 1). Then, conditionally

on ξn−1, one has, for any i ∈ {1, · · · , N},

M i
n − bNW i

nc ∼ Ber(
{

NW i
n

}

). (10)

In particular, for any i ∈ {1, · · · , N}, E
(

M i
n|ξn−1

)

= NW i
n.

Proof. It suffices to show that whenever U ∼ Unif([0, 1)) and x, y ≥ 0, then

bU + x+ yc − bU + xc − byc is a Bernoulli random variable with parameter p = {y}.

To this end, first note that V = {U + x} is also uniformly distributed on [0, 1). Next,

bU + x+ yc − bU + xc − byc = b{U + x} + {y}c = bV + {y}c ∼ Ber({y}),

hence the result holds.

Remark 3.1. Using the same proof as in Lemma 3.1, then, conditionally on ξn−1, one

obtains M i
n + · · · +M j

n − bN(W i
n + · · · +W j

n)c ∼ Ber
({

N(W i
n + · · · +W j

n)
})

, for any

i ≤ j ∈ {1, · · · , N}. Note also that since the sampling selection method is unbiased,

i.e. condition (i) of Theorem 2.1 is satisfied, then for any n ≥ 1, one has formula (6).

To obtain L2 convergence of the algorithm based on the systematic sampling se-

lection method, one would like to apply Theorem 2.1 of [12]. All sampling selections

presented in Section 2.3 satisfies property (8). If Nn is random, there is an similar

condition to (8). But as shown next, systematic sampling behaves differently.

Remark 3.2. Inequality (7) is not verified in general for the systematic sampling

selection method. Here is an illustration. Suppose that N = 2m and let, for any

i ∈ {1, · · · , N/2}, W 2i
n = 1/(2N), and W 2i−1

n = 3/(2N). Then one can check that for
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any 1 ≤ i ≤ N/2,

M2i−1
n = 1 if Un ∈ [0, 1/2), M2i−1

n = 2 if Un ∈ [1/2, 1),

M2i
n = 1 if Un ∈ [0, 1/2), M2i

n = 0 if Un ∈ [1/2, 1).

Next, if 1 ≤ i ≤ N/2, set q2i = 1 and q2i−1 = −1. It follows that

E





(

1

N

N
∑

i=1

(M i
k −NW i

k)qi

)2
∣

∣

∣

∣

∣

∣

ξk−1



 =
1

4
,

showing that inequality (7) is false.

The description of all selections in Section 2.2 and 2.3 prove that the systematic

sampling selection method if the less computationally demanding. At the light of

Remark 3.2 one can see that the L2-convergence of the particle system with the sys-

tematic sampling selection method to the Feynman-Kac formulae is not easy. However

one believes that the following holds true.

Conjecture 3.1. Suppose that η0 and (Kn)n≥1 are absolutely continuous laws and

consider that M1
n, . . . ,M

N
n are obtained using the the systematic sampling selection

method. Then, for all f ∈ Bb(E) and n ≥ 1, (8) holds with aN ≡ 1, i.e.

lim
N→∞

E





(

1

N

N
∑

i=1

(M i
n −NW i

n)f(ξi
n−1)

)2


 = 0. (11)

Note that it follows from Theorem 2.2 that the above conjecture is equivalent to

‖ηN
n −ηn‖2 → 0, as N → ∞, for any n ≥ 0. In what follows, one tries to motivate why

Conjecture 3.1 might be true. To this end, first note that any 1 ≤ k ≤ N ,

Mk
n −NW k

n =
{

N(W 1
n + · · · +W k−1

n ) + Un

}

−
{

N(W 1
n + · · · +W k

n ) + Un

}

.
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Now, set F 0
n = 0 and F k

n =
k
∑

j=1

gn(ξj
n−1), 1 ≤ k ≤ N . For any α > 0 and any

f ∈ Bb(E), further define

ZN
n (f, α) =

1√
N

N
∑

k=1

f
(

ξk
n−1

)

({

F k−1
n

α
+ Un

}

−
{

F k
n

α
+ Un

})

=
1√
N

N
∑

k=1

f
(

ξk
n−1

)({

Sk−1
n

}

−
{

Sk
n

})

,

where Sk
n = F k

n/α + Un and S0
n = Un. Then, setting ḡn =

1

N

N
∑

k=1

gn(ξk
n) and defining

Y N
n (f) = ZN

n (f, ḡn), one has Y N
n (f) =

1√
N

N
∑

i=1

(M i
n−NW i

n)f(ξi
n−1), so one can rewrite

(11) in the form

lim
N→∞

1

N
E
[

(

Y N
n (f)

)2
]

= 0.

Unfortunately, working with Y N
n appears to be impossibly difficult, so one could

work instead with a more tractable quantity, namely ZN
n . In the case n = 1, one has a

least the following result, which is a first step in proving Conjecture 3.1. Before stating

it, recall that D([0, 1]) is the space of càdlàg functions with Skorohod’s topology.

Theorem 3.2. Assume that the law of
{

g1(ξ10)
}

is absolutely continuous. Then, for

any α > 0 and any f ∈ Bb(E), the sequence of processes BN ∈ D([0, 1]) defined by

BN
f,α(t) = Z

bNtc
1 (f, α), t ∈ [0, 1],

converges in D([0, 1]) to σBf,α, where Bf,α is a Brownian motion and

lim
N→∞

E
[

(

ZN
1 (f, α)

)2
]

= σ2.

The proof on Theorem 3.2 is an easy consequence of Theorem A.2 applied with

Xk = f(ξk
0 ), Yk =

{

g1(ξk
0 )
}

and f(x, y, s) = x(y−s). In addition, there is an “explicit”

expression for σ2. More details can be found in Appendix A.
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Remark 3.3. Theorem 3.2 does not prove Conjecture 3.1 in the case n = 1. However,

if one is willing to deal with a random number of particles at step n = 1, one obtains

the following interesting result: Set N1 = bU1 +
∑N

j=1 g1(ξk
0 )/αc, and define

η̂N1

0 =
1

N1

N
∑

k=1

Mk
1 δξk

0

.

Then, as N → ∞, N1/N tends to η0(g1)/α and lim sup
N→∞

N‖ηN1

1 − η1‖2
2 <∞.

To prove convergence for higher orders, i.e n > 1, one would need results from non-

homogeneous Markov chains. The approach will be examined in a near future, using

for example the results of [20].

Remark 3.4. In order to keep N1 fixed, one could try to control the term ZN
1 (g1) −

ZN
1 (α). Since

√
N(g1 − α) 

√

η0(g2
1)Z , where Z ∼ N (0, 1), it follows that

√
N

[

1

g1

− 1

α

]

= −
√

η0(g2
1)

η2
0(g1)

Z + oP (1).

If one could differentiate term by term, one would then obtain

(

ZN
1 (g1) − ZN

1 (α)
)

 η0(K1fg1)

√

η0(g2
1)

η0(g1)2
Z = η1(f)

√

η0(g2
1)

η0(g1)
Z ,

so one could guess that YN  η1(f)

√

η0(g2
1)

η0(g1)
Z + Bf,α(1). On the other hand, if the

sequence ZN
1 (α) was tight for α in a closed interval not containing zero, then one would

get ZN
1 (g1) − ZN

1 (α) → 0 in probability. There is no indication so far in favor of one

of these two approaches.

4. Numerical comparisons

The numerical comparisons will be done through a simple model of filtering for

tracking a moving target using noisy black-and-white images, where the exact filter

can be calculated explicitly, that is, ηn is known for any n ≥ 1, e.g. [15].
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4.1. Description of the model

One will assume that the target moves on Z2 according to a Markov chain. Obser-

vations consist in black-and-white noisy images of a finite fixed region R ⊂ Z2. More

precisely, let (Xn)n≥0 be a homogeneous Markovian chain with values in X = {ω ∈

{0, 1}Z :
∑

x∈Z
ω(x) = 1}. Of course, the position of the target at step n is x0 if and

only if Xn(x0) = 1. Set

M(a, b) = P {Xn+1(a) = 1|Xn(b) = 1} , a, b ∈ Z2. (12)

Note that M describes exactly the movement of the target.

The model for observations Yk ∈ {0, 1}R, k = 1, . . . , n is the following: Given

X0, . . . , Xn, assume that {Yn(x)}x∈R are independent and for any x ∈ R,

P (Yn(x) = 0|Xn(x) = 0) = p0, P (Yn(x) = 1|Xn(x) = 1) = p1, (13)

where 0 < p0, p1 < 1. For a more realistic result one can assume that 1/2 < p0, p1 <

1. One wants to compute the distribution of Xk conditionally to Yn, where Yn is

the sigma-algebra generated by observations Y1, . . . , Yn, and Y0 is the trivial sigma-

algebra. As in Section 2 of [15], note that for any (ω, ω′) ∈ {0, 1}R⊗X, the conditional

probability P (Yk = ω|Xk = ω′) = Λ(ω, ω′) satisfies

Λ(ω, ω′) = p
|R|−1
0 (1 − p1)

(

1 − p0

p0

)<ω>(
p0p1

(1 − p0)(1 − p1)

)<ωω′>

,

where < ω >=
∑

x∈R ω(x) and < ωω′ >=
∑

x∈R ω(x)ω′(x).

Let P be the joint law of the Markovian targets with initial distribution ν, and

the observations, and let Q be the joint law of the Markovian targets with initial

distribution ν, and independent Bernoulli observations with mean 1/2. Further let Gn

be the sigma-algebra generated by Y1, . . . , Yn, X0, . . . , Xn. Then it is easy to check
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that with respect to Gn, P is equivalent to Q and
dP

dQ

∣

∣

∣

∣

Gn

=

n
∏

j=1

2|R|Λ(Yj , Xj). Further

define Ln =

n
∏

j=1

Λ(Yj , Xj). Denoting by EP (resp. EQ) expectation with respect to P

(resp. Q), observe that for any f ∈ Bb(X), one has

η̂n(f) = EP (f(Xn)|Yn) =
EQ (f(Xn)Ln|Yn)

EQ (Ln|Yn)
. (14)

This formula is a consequence of the properties of conditional expectations, and in the

context of filtering, (14) is known as the Kallianpur-Stribel formula, e.g. [16].

Denote by K the Markov kernel associated with the Markov chain (Xn)n≥0 defined

by M , as in (12). One can check that ηn and η̂n satisfy (4) with gn(x) = Λ(yn, x) and

Kn = K. Note also that in that case, gn takes only two values which can be assumed

to belong to Q because of rounding errors. It follows from Remark A.2 that

sup
N0≥1

E
[

N1‖ηN1

1 − η1‖2
]

<∞.

The results proved in Section 2 of [15] provide an algorithm for computing recursively

the exact filter, i.e. the law of Xn given Yn. In the next section, one will compare

the results from the exact filter with those obtained by the Monte Carlo algorithm

described in Section 2 with various sampling methods.

4.2. Simulation results

In what follows, R is chosen to be the window of size 100 × 100 defined by R =

{0, . . .99}2. To makes things simple, the target starts at (50, 50) and it moves according

to a simple symmetric random walk, i.e its goes up, down, right or left to the nearest

neighbor with probability 1/4. The estimation of the position of the target is taken to

be the mean of the various measures. The simulations were performed with p0 = 0.9

and p1 = 0.9, that there are 10% of errors in pixels.
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We use two methods to compare the sampling methods described in section 2,

i.e. simple random sampling (SRS), remainder stochastic sampling (RSS), systematic

sampling (SyS), binomial sampling (BiS), and Bernoulli sampling (BeS).

The first method is a comparison between the sampling method and the Optimal

Filter (OF). For the systematic sampling we illustrate Conjecture 3.1 and compute

∥

∥ηN
n − ηn

∥

∥

2
for different values of n (1, 2, 3, 4, 5 and 100) and N (1000, 10000, 30000

and 50000). One find that the conjecture seems to be true. We also illustrate with the

others sampling methods and observe that the convergence of all samplings methods

are quite similar. These results are reported in Table 1.

The second method illustrates how the sampling methods are efficient to estimate

the exact position of the target. In that setting, we compare also with the result

obtained with the optimal filter. We compute the mean absolute error between the

estimated position and the true one was calculated over several time intervals, namely

[2, 100], [10, 100] and [30, 100]. The number of particles N takes values 1000, 10000,

30000 and 50000. The results are reported in Table 2.

According to these results, one may conclude that the algorithm based on the

systematic sampling selection method performs quite well, provided the number of

particles is large enough. Surprisingly, the Monte Carlo based approximate filters

seem to perform better than the optimal filter. However the difference may not be

statistically significant. Next, based on the results of Table 2 for the time interval

[30, 100], note that when the target is precisely detected, the error seems to stabilize

near zero, indicating that the distance between ηN
n and ηn might be uniform on n.

Finally, other simulations performed with several moving targets seem to indicate that

the algorithm based on systematic sampling also give impressive results.
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Appendix A. Convergence results for a Markov chain

Suppose that (Xi, Yi)i≥1 are independent observations of (X,Y ) ∈ Z := R × [0, 1)

of law P , with marginal distributions PX and PY respectively. Further let λ denotes

Lebesgue’s measure on [0, 1). Given Z0 = (X0, S0) ∈ R × [0, 1), set Zi = (Xi, {Si}),

where Si = Si−1 + Yi, i ≥ 1.

For n ∈ Z, set en(s) = e2πins, s ∈ [0, 2), and let ζn = E (en(Y )). Further set

N = {n ∈ Z; ζn = 1}. Recall that (en)∈Z is a complete orthonormal basis of the

Hilbert space H = L2([0, 1), λ) with scalar product (f, g) =
∫ 1

0
f(s)ḡ(s)ds and norm

‖f‖2 =
√

(f, f).

It is easy to check that (Zi)i≥0 is a Markov chain on Z with kernel K defined by

Kf(x, s) :=

∫

Z

f(x′, {s+ y})P (dx′, dy), f ∈ Bb(Z), (15)

and stationary distribution µ = PX ⊗ λ. Note that for any f ∈ L2(µ), by Tonelli’s

theorem, Kf is well defined, it depends only on s ∈ [0, 1), and it belongs to H since

‖Kf‖2
2 ≤

∫ 1

0

∫

Z

f2(x, {s+ y})P (dx, dy)ds =

∫

Z

∫ 1

0

f2(x, u)duP (dx, dy)

=

∫

Z

f2(z)µ(dz) = ‖f‖2
L2(µ).

Finally, let L and A be the linear bounded operators from L2(µ) to H defined by

Lf(s) =
∑

n∈N

(Kf, en)en(s), Af(s) =

∫

R

f(x, s)PX(dx), s ∈ [0, 1).

Theorem A.1. Let f ∈ L2(µ) be given and set WN =
1

N

N
∑

k=1

f(Zk). Then:

(i) If the initial distribution of Z0 = (X0, S0) is µ, then WN converges almost

surely and in mean square to W given by

W = Lf(S0) =
∑

n∈N

(Kf, en)en(S0). (16)
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If, in addition,

∑

n∈Z\N

|(Kf, en)| |(Af, en)|
|1 − ζn|

<∞, (17)

then NE
[

(WN −W)
2
]

converges, as N → ∞, to

‖f‖2
L2(µ) − ‖Lf‖2

2 + 2
∑

n∈Z\N

(Kf, en)(Af, en)

1 − ζn
. (18)

(ii) If the initial distribution of Z0 = (X0, S0) is µ, if N = {0} and

∑

n∈Z\{0}

|(Kf, en)|2
|1 − ζn|2

<∞, (19)

then the sequence of processes BN , defined by BN(t) =
√
N
(

WbNtc − µ(f)
)

,

t ∈ [0, 1], converges in D([0, 1]) to σB, where B is a Brownian motion and σ2 is

given by (18).

(iii) If PY admits a square integrable density h, then the Markov chain is geomet-

rically ergodic, that is, there exists ρ ∈ (0, 1) such that for any f ∈ L2(µ),

|Knf(Z0) − µ(f)| ≤ ‖h‖2ρ
n−2‖f‖L2(µ), n ≥ 2.

Proof. For simplicity, set ψ = Kf ∈ H . To prove (i), start the Markov chain from

µ and denote the law of the chain by Q. Then the sequence (Zn)n≥0 is stationary, and

Birkhoff’s ergodic theorem, e.g. [14, Section 6.2], can be invoked to claim that WN

converges almost surely and in mean square to some random variable W . To show

that W is indeed given by (16), it suffices to show that E
[

(WN −W)2
]

tends to 0, as

N → ∞. First, note that E(W2) = ‖Lf‖2
2 =

∑

n∈N

|(ψ, en)|2. Next, set ϕ(s) = Af(s).

If n ∈ N , then en(Y ) = 1 P-a.s., and it follows, by Fubini’s theorem, that

(ψ, en) =

∫ 1

0

∫

Z

f(x, {s+ y})en(s)P (dx, dy)ds

=

∫ 1

0

∫

Z

f(x, u)en(u)P (dx, dy)du = (ϕ, en).
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As a result, E(W2) =
∑

n∈N

|(ϕ, en)|2. Next, using the fact that for any k ∈ Z, and any

s, y ∈ [0, 1), one has ek({s+ y}) = ek(s+ y) = ek(s)ek(y), and it follows that

Kek(s) =

∫

Z

ek({s+ y})P (dx, dy) =

∫

[0,1)

ek({s+ y})PY (dy) = ζkek(s), s ∈ [0, 1).

Hence, for any k ≥ 1 and any n ∈ Z, one obtains

Kken = ζk
nen. (20)

Now, using the Markov property of the chain together with (20), one has

E(WNW) = E(WNW)=
1

N

N
∑

k=1

∑

n∈N

(ψ, en)E
[

f(Zk)en(S0)
]

=
1

N

N
∑

k=1

∑

n∈N

(ψ, en)E
[

Kkf(S0)en(S0)
]

=
1

N

N
∑

k=1

∑

n∈N

(ψ, en)
(

Kk−1ψ, en

)

=
1

N

∑

j∈Z

N
∑

k=1

∑

n∈N

(ψ, ej)(ψ, en)
(

Kk−1ej , en

)

=
1

N

∑

j∈Z

N
∑

k=1

∑

n∈N

(ψ, ej)(ψ, en)ζk−1
j (ej , en)

=
1

N

N
∑

k=1

∑

n∈N

|(ψ, en)|2ζk−1
n =E(W2),

since, by definition, ζn = 1, for any n ∈ N .

Next, using stationarity, the Markov property, (20), and also using identity

2

N2

N−1
∑

k=1

k
∑

j=1

zj−1 =
N − 1

1 − z
− z − zN

(1 − z)2
, z ∈ C, z 6= 1,
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it follows that

E(W 2
N ) =

1

N
E
[

f2(Z0)
]

+
2

N2

N−1
∑

k=1

k
∑

j=1

E
[

Kj−1ψ(S0)f(Z0)
]

=
1

N
‖f‖2

L2(µ) +
2

N2

N−1
∑

k=1

k
∑

j=1

(

Kj−1ψ, ϕ
)

=
1

N
‖f‖2

L2(µ) +
∑

n∈Z

(ψ, en)(ϕ, en)





2

N2

N−1
∑

k=1

k
∑

j=1

ζj−1
n





=
1

N
‖f‖2

L2(µ) +
N − 1

N

∑

n∈N

(ψ, en)(ϕ, en)

+
2

N2

∑

n∈Z\N

(ψ, en)(ϕ, en)

[

N − 1

1 − ζn
− ζn − ζN

n

(1 − ζn)2

]

=
1

N
‖f‖2

L2(µ) +
N − 1

N
E(W2)

+
2

N2

∑

n∈Z\N

(ψ, en)(ϕ, en)

[

N − 1

1 − ζn
− ζn − ζN

n

(1 − ζn)2

]

.

Collecting the expressions obtained for E(W 2
N ) and E(WNW), one gets

E
[

(WN −W)2
]

=
1

N
‖f‖2

L2(µ) −
1

N
E(W2) (21)

+
2

N2

∑

n∈Z\N

(ψ, en)(ϕ, en)

[

N − 1

1 − ζn
− ζn − ζN

n

(1 − ζn)2

]

.

Since
∑

n∈Z\N |(ψ, en)||(ϕ, en)| is finite,

sup
nZ\N

∣

∣

∣

∣

N − 1

1 − ζn
− ζn − ζN

n

(1 − ζn)2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

N−1
∑

k=1

k
∑

j=1

ζj−1
n

∣

∣

∣

∣

∣

∣

≤ N2

2
,

it follows from (21) and the Dominated Convergence Theorem that

lim
N→∞

E
[

(WN −W)2
]

= 0

and under the additional condition (17), one also obtains

lim
N→∞

NE
[

(WN −W)2
]

= ‖f‖2
L2(µ) −E(W2) + 2

∑

n∈Z\N

(ψ, en)(ϕ, en)

1 − ζn
,
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completing the proof of (i).

The proof of (ii) is inspired by [14]. First, note that since N = {0}, Lf = µ(f)

for any f ∈ L2(µ) and it follows from (i) that 1
N

∑N

k=1 f(Zk) converges almost surely

and in Lp to µ(f), for any 1 ≤ p ≤ 2. Moreover given any f ∈ L1(µ), one can find

fn ∈ L2(µ) such that ‖f − fn‖L1(µ) <
1
n

. It follows that for any n ≥ 1,

lim sup
N→∞

E

[∣

∣

∣

∣

∣

1

N

N
∑

k=1

f(Zk) − µ(f)

∣

∣

∣

∣

∣

]

≤ 2

n
+ lim sup

N→∞
E

[∣

∣

∣

∣

∣

1

N

N
∑

k=1

fn(Zk) − µ(fn)

∣

∣

∣

∣

∣

]

=
2

n
.

Since the latter is true for any n ≥ 1, one may conclude that 1
N

∑N

k=1 f(Zk) converges

in L1 to µ(f). By Birkhoff’s ergodic theorem, 1
N

∑N
k=1 f(Zk) converges almost surely

to µ(f). Next, let D be the subset of H defined by

D =







h ∈ H ;
∑

n∈Z\{0}

|(h, en)|2
|1 − ζn|2

<∞







,

and let Ξ be the operator from D to H that satisfies

Ξh =
∑

n∈Z\{0}

(h, en)

1 − ζn
en.

Note that since (I −K)Ξh = (I −L)h, then Ξ = (I −K)−1(I −L) on D. Let D be the

set of all f ∈ L2(µ) such that f satisfies (19), i.e. Kf ∈ D. Then Ξ can be extended

to a mapping from D to  L2(µ) viz. Ξf = (I −L)f + ΞKf . Using KL = LK = L, one

obtains that Ξ = (I−K)−1(I−L) on D. Next, if f ∈ D, set g = Ξf . Since Lf = µ(f),

it follows that

√
N(WN − µ(f)) =

1√
N

N
∑

k=1

[g(Zk) −Kg({Sk−1)}] +
1√
N

Kg(S0) − 1√
N

Kg({SN}).

Now, setting Fk = σ{Zj ; j ≤ k}, the terms ξk = g(Zk) − Kg({Sk−1)} are square

integrable martingale differences with respect to (Fj)j≥0, i.e. E(ξk|Fk−1) = 0, and
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because g2 and (Kg)2 both belong to L1(µ), it follows from (i), as shown above, that

1

N

N
∑

k=1

E
[

ξ2k |Fk−1

]

=
1

N

N
∑

k=1

[

Kg2({Sk−1}) − (Kg)
2

({Sk−1})
]

converges almost surely to µ(g2) − µ((Kg)2). Note that since Kg = ΞKf , one has

(Kg,Lf) = 0 and expression (18) can be written as

σ2 = ‖(I −L)f‖2
L2(µ) + 2(ΞKf,Af) = ‖(I −K)g‖2

L2(µ) + 2(Kg,Af)

= ‖(I −K)g‖2
L2(µ) + 2(Kg,A(I −L)f) = ‖(I −K)g‖2

L2(µ) + 2(Kg,A(I −K)g)

= µ(g2 − 2gKg + (Kg)2) + 2µ(gKg) − 2µ((Kg)2) = µ(g2) − µ((Kg)2).

Finally, because of the stationarity of (ξk)k≥1, it follows that for any ε > 0,

1

N

N
∑

k=1

E
[

ξ2kI(|ξk | > ε
√
N)
]

= E
[

ξ21I(|ξ1| > ε
√
N)
]

→ 0,

as N → ∞. The conditions of Theorem 7.4 in [14] are all met, so one may safely

conclude that defining the process BN (t) =
√
N
(

WbNtc − µ(f)
)

, t ∈ [0, 1], then BN

converges in D[0, 1] to σB, where B is a Brownian motion.

To prove part (iii), note first that since the density h of Y is square integrable, then

N = {0}, supn≥1 |ζn| = ρ < 1, ζn = (en, h), and ‖h‖2
2 =

∑

n∈Z

|ζn|2. Therefore, for any

g ∈ H ,
∑

n∈Z

|(g, en)| |ζn| ≤ ‖g‖2‖h‖2 <∞. It follows that for any k ≥ 2,

Kkf = Kk−1ψ =
∑

n∈Z

(ψ, en)ζk−1
n en,

the latter series converging absolutely. Thus

sup
z0∈Z

∣

∣Kkf(s) − µ(f)
∣

∣ = sup
s∈[0,1)

∣

∣Kk−1ψ(s) − λ(ψ)
∣

∣ ≤
∑

n∈Z\{0}

|(ψ, en)||ζn|ρk−2

≤ ‖h‖2‖f‖L2(µ)ρ
k−2.

This completes the proof of the theorem.
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Remark A.1. Note that if ζn = 1 for some n > 0, then k 7→ ζk is n-periodic, so

{ζk;n ∈ Z \ N} is finite. Therefore supk∈Z\N |ζk| = ρ < 1 and condition (17) is

satisfied. Also, if PY has a non degenerate absolutely continuous part, then N = {0}

and supn≥1 |ζn| = ρ < 1, so condition (17) holds true.

The next result is a straightforward extension of the previous theorem. Before

stating it, denote by ν the joint law of (Z1, S0), where S0 ∼ Unif([0, 1)).

Theorem A.2. Suppose that f ∈ L2(ν) and set WN =
1

N

N
∑

k=1

f(Zk, {Sk−1}). Then:

(i) If the initial distribution of Z0 = (X0, S0) is µ, then WN converges almost

surely and in mean square to W given by (16) where

Kf(s) =

∫

Z

f(x, {s+ y}, s)P (dx, dy).

If Af(s) =
∫

Z
f(x, s, {s− y})P (dx, dy), s ∈ [0, 1) and if in addition,

∑

n∈Z\N

|(Kf, en)| |(Af, en)|
|1 − ζn|

<∞, (22)

then NE
[

(WN −W)
2
]

converges, as N → ∞, to

‖f‖2
L2(ν) − ‖Lf‖2

2 + 2
∑

n∈Z\N

(Kf, en)(Af, en)

1 − ζn
. (23)

(ii) If N = {0}, if the initial distribution of Z0 is µ and

∑

n∈Z\{0}

|(Kf, en)|2
|1 − ζn|2

<∞, (24)

then the sequence of processes BN , defined by BN(t) =
√
N
(

WbNtc − µ(f)
)

,

t ∈ [0, 1], converges in D([0, 1]) to σB, where B is a Brownian motion and σ2 is

given by (23).
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(iii) If PY admits a square integrable density h, then the Markov chain is geomet-

rically ergodic, that is, there exists ρ ∈ (0, 1) such that for any f ∈ L2(µ),

|Knf(Z1, S0) − µ(f)| ≤ ‖h‖2ρ
n−2‖f‖L2(µ), n ≥ 2.

Remark A.2. For example, suppose that Xk is bounded and set f(x, y, s) = x(y−s).

Then it is easy to check that for any n ∈ N ,

(Kf, en) =

∫

Z×[0,1)

x({y + s} − s)P (dx, dy)en(s)ds

=

∫

Z×[0,1)

xu(en(y) − 1)en(u)P (dx, dy)du = 0,

since P (en(Y ) = 1) = 1. It follows from Theorem A.2 that

WN =
1

N

N
∑

k=1

Xk({Sk} − {Sk−1})

converges to 0 almost surely and in mean square.

Furthermore, if card(N ) > 1 then condition (22) holds and sup
N≥1

NE(W 2
N ) < ∞,

while if PY is absolutely continuous, then condition (24) holds true and
√
NTN con-

verges in law to a centered Gaussian random variable with variance σ2 given by (23).

Acknowledgments: The authors thank the referees for helpful remarks and sugges-

tions that lead to an improved version of the article.
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Table 1: Differences in L
2, between the particle filters and the optimal filter (OF) for one

target performing a simple symmetric random walk in images of size 100 × 100 with 10% of

errors.

n 1 2 3 4 5 100

N0 = 1000 SRS 0.27 0.78 0.79 0.81 1.0 1.1

RSS 0.12 0.37 0.64 0.65 0.68 1.3

SyS 0.07 0.28 0.31 0.85 0.54 1.1

BiS 0.04 0.058 0.087 0.15 0.17 0.93

BeS 0.07 0.16 0.21 0.65 0.69 1.3

N0 = 10000 SRS 0.031 0.11 0.26 0.40 0.36 1.2

RSS 0.039 0.12 0.40 0.50 0.91 1.2

SyS 0.025 0.13 0.22 0.38 0.40 1.3

BiS 0.028 0.049 0.082 0.15 0.17 0.96

BeS 0.028 0.07 0.11 0.23 0.25 1.1

N0 = 30000 SRS 0.018 0.10 0.23 0.22 0.50 1.4

RSS 0.17 0.10 0.23 0.21 0.56 1.4

SyS 0.018 0.098 0.17 0.20 0.25 1.0

BiS 0.027 0.048 0.8 0.15 0.17 0.95

BeS 0.018 0.056 0.10 0.17 0.22 0.97

N0 = 50000 SRS 0.013 0.094 0.26 0.22 0.37 1.2

RSS 0.021 0.068 0.18 0.26 0.39 1.3

SyS 0.012 0.095 0.26 0.24 0.45 1.2

BiS 0.02 0.04 0.08 0.15 0.17 0.70

BeS 0.017 0.052 0.086 0.16 0.20 1.2
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Table 2: Mean absolute error for one target performing a simple symmetric random walk in

images of size 100 × 100 with 10% of errors.

n [2, 100] [10, 100] [30, 100]

OF 4.1 2.9 0.8

N0 = 1000 SRS 57.4 60.3 56.2

RSS 51.8 53.6 43.8

SyS 42.7 43.7 36.9

BiS 54.0 56.5 45.5

BeS 13.8 12.1 6.9

N0 = 10000 SRS 76.0 81.0 64.1

RSS 1.9 0.8 0.5

SyS 2.4 0.7 0.5

BiS 6.4 6.7 0.5

BeS 77.5 82.5 85.4

N0 = 30000 SRS 8.7 3.0 0.5

RSS 2.4 0.6 0.4

SyS 3.9 1.5 0.4

BiS 4.0 2.1 0.5

BeS 8.1 6.2 0.4

N0 = 50000 SRS 3.9 3.4 0.9

RSS 10.2 5.2 0.7

SyS 5.0 2.5 0.6

BiS 4.8 2.1 0.8

BeS 3.6 1.5 0.3


