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Abstract

In this paper, we propose some algorithms for the simulation of the distribution of certain
diffusions conditioned on terminal point. We prove that the conditional distribution is absolutely
continuous with respect to the distribution of another diffusion which is easy for simulation, and
the formula for the density is given explicitly.

1 Introduction

The aim of this paper is to propose algorithms for the simulation of the distribution of a diffusion
dzy = b(t, z)dt + o(t,x¢)dwy, xo=u, 0<t<T,

conditioned on x7 = v, where b and o are given functions with appropriate dimensions, and w is a
standard Brownian motion.

From the point of view of application, this allows to do posterior sampling when the diffusion
is observed at instants {ty,---,t,} C [0,7T].

Let us recall that in the usual conditioning (see, e.g., [[]), the distribution of the diffusion =
conditioned on 7 = v is the same as that of another diffusion y satisfying

dy; = b(t,ye)dt + o(t,ye)dwy, yo=u, 0<t<T,

where
l;(t, x) =b(t,x) + [o0™|(t,x)V(logp(t,z; T, v)),

and p(s,u;t, z) is the density of x}"“. However, this is not suitable for simulations because in
general, one does not know the transition density p.

We will prove that, in certain cases, the conditional distribution of the diffusion is absolutely
continuous with respect to the distribution of another diffusion which is easy for simulation, and
we give the explicit formula for the density. This leads to an efficient simulation algorithm.

Two different cases will be considered:

1. The matrix o(t,x) depends only on ¢, and b has the form b(¢,z) = by(t) + A(t)x + o (t)bi (¢, ).



2. The matrix o(¢,x) is uniformly invertible.

This simulation algorithm can be applied to a problem of parameter estimation for a discretely
observed diffusion as in [§].

This paper is organized as follows: In Sect. 2, we recall a Girsanov theorem for unbounded drift
which is essential for our simulation algorithm. In Sect. 3, we consider Case 1, and in Sect. 4, we
consider Case 2.

2 A Girsanov theorem for unbounded drifts

This section is devoted to give a slightly generalized Girsanov theorem which will be used in the
next section. We call a measurable function F'(t, z) from R x R? to R™ locally Lipchitz with respect
to x, if for any R > 0, there exists a constant Cr > 0, such that, for any (¢,z,y) € R, x R? x R?
with |z| < R, |y| < R,

(F(t,2) — F(t,y)] < Crlz — g,

And on the metric space C([0,T]; R™), we define the filtration {F;}; to be the natural filtration of
the coordinate process.

Theorem 1 Let b(t,x), h(t, ), o(t,x) be measurable functions from R xR? to R?, R™, and R4*™
which are locally Lipschitz with respect to x; consider the following stochastic differential equations:

dzy = b(t, z¢)dt + o (t, x¢)dwy, (1)
dy: = (b(t, yt) + o(t, ye)h(t, ye))dt + o (t, ye)dwe, yo = o, (2)

on the finite interval [0,T]. We assume the existence of strong solution for each equation. We
assume in addition that h is bounded on compact sets. Then the Girsanov formula holds: for any
non-negative Borel function f(z,w) defined on C([0,T];R%) x C([0,T];R™), one has

Ey[f(y,wh)] _ Exl:f(x’w)ef(;r h*(t,xt)dwt—% ()T\h(t,art)|2dt]’ (3)
Ey[f (v, w)] = B, [f(y,wh)e™ o 1" Eob=3 [y InCtanlar, )
where w? = w + fg h(s,ys)ds, and h* stands for the transpose of h.

PRrROOF: We assume first that the positive supermartingale

t 1 t
M= esp{ [ atw, - 3 [ s as
0 0

is a martingale under P, which will be proved later. In this case wy = w; — fot h(s,zs)ds is a
Brownian motion under My P,, leading to a solution (z,w) of ([)):

dzy = b(t, z¢)dt + o (t, x¢)h(t, z)dt + o(t, z¢)day.

As b(t,x),h(t,z),o(t,z) are locally Lipschitz with respect to x, pathwise uniqueness holds for
() and (B). The standard Girsanov theorem implies that (f) holds.



We prove now that M; is a martingale. For any R > 0, consider the stopping time
Tr=inf{t > 0: |z > R} NT.

Taking into consideration that A is locally bounded, we have, according to the Girsanov theorem
for bounded drift:

PyI:FTR = MTR_le:]:TR.
Hence
Ey[Mr) > Ey[lrpr M| = Ey[lrp=rM;,) = Pyltr = T]

which converges to 1 as R — oo. It implies that E,[Mr] =1, and M is a martingale.
Finally, (]) follows in the same way. |

3 Case when o is independent of z

We assume here that x; has the specific form
dzy = (oth(t, ) + Ay + by)dt + opdwy, 9 = u, (5)
where o, and A; are time dependent deterministic matrices and h(¢,x), by are vector valued with
appropriate dimension.
For example the 2-dimensional process (z,y) which satisfies the following SDE:
dCEt = ytdt (6)
dyr = b(t, z¢, ye)dt + odwy (7)

and which is the noisy version of &y = b(t, x4, 4¢), see, e.g. [
We shall prove the following result:

Theorem 2 Assume that As, by and oy are bounded measurable functions of t with values in Rdxd,
R? and RYX™ | respectively. Assume also that h(t,z) is locally Lipschitz with respect to x uniformly
with respect to t with values in R™, and locally bounded; and the SDE([]) has a strong solution.
Moreover, we assume that o admits a measurable left inverse almost everywhere', denoted by o™ ;
and that h, A,b and o+ are left continuous with respect to t. Then,

(i) the covariance matriz Ry of the Gaussian process & corresponding to (@) with h = 0 is given

by:
min(s,t)
Ry = P, / P loyoi P *du Py,
0

where

and P;* = (P7h*;

u

IThis requires essentially that o*c is almost everywhere > 0



(ii) the distribution of the process

pe = & — Rer Ry (67 — v) (8)

is the same as the distribution of & conditioned on &1 = v (M stands for the left pseudo-inverse?

of M ). For any nonnegative measurable function f,
E[f(m)’mo =u,rT = fU] =CF f( )efo (tpt (Ut dpt—o; (Atthrbt)dt 7‘]0 [|k(t,pe)||?dt ) (9)

where C' is a constant depending on u,v and T .

PRrROOF: (i) The formula for Ry is classic and comes from & = P, fo Y(bydu + oydw,) + P&,
see e.g. [f.

(i) Let us first recall that if (Y, Z) is a Gaussian vector, the distribution of ¥ conditioned on
Z = zy coincides with the distribution of another Gaussian vector Y — RyzR},(Z — z), where
R}Z is the left pseudo-inverse of Rzz; its covariance is Ryy — RYZR}ZRZy. Taking Y as the
vector (&;,,-++,&, ), and Z = &p, we observe that, defining the process p by (§), (pt,,- -, pt,) has
the same distribution as that of (&,,---,&,) conditioned on {7 = v. And the covariance of p; is
Cst = Ry — RSTR;TRTt'

Denote by pt the process (§); in particular for any nonnegative measurable function ¢(-),
= [ Elp(p”)]pr(dv) where pp is the distribution of &p. For any nonnegative measurable
functlons f and g,

Blf@glar)] = Elf(©g(eriels »ted il sy
= E[f(g)g(gT)effh*(t,&)(a dgi—o (Av&+b)dt) =% [ |1t EollPdr), (10)
Given a sequence of partitions (Ay,),>1 of [0,T:
A, ={tg <t <---<tp =T}

with |A,| = maxo<ij<,-1(t}4 — ;') — 0, and a continuous stochastic process X, we define:

kn—1
Sn(X) = Y Bt X )of (Xez,, — Xip)-
=0

Then
BIS.() = Su@1 A 1] = [ BISu(") = S(p)] A lpr(d),

which implies that S, (p”) converges in probability P ® pup. Hence, we can define fOT h*(t,pY)o; dpY
as the limit (in probability P ® ur) of the sequence S, (p¥). Obviously, this limit is independent of
the sequence of partitions (A, ), which satisfies |A,| — 0.

Finally, defining the continuous function ©y(x) = N Az, = > 0, we have

f&)g ({T)e )= [ (&) (Aretbr)dt—3 [ [Ih(t, Et)IIth)]
/ E© )eSn (@) =g h*EpY)o (Apy+be)dt—% [ Ih(tpY)]2dt g(v)]pr(dv).
)"'M* and the symmetric matrix is inverted by diagonalisation with 1/0 = 0



Taking the limit first in n and then in N, and returning to ([[(]), we deduce:
E[f(gj)g(ng)] = E[f(pv)efoT h*(t,p}) (o dpy —of (Aep}+be dt)__ fo llA(t,p} )Hth] (U),UT(dU)
R4

V. |
As the Brownian bridge, we have:

which implies () and C is the value of the density of pur with respect to the distribution of zr at

Proposition 3 Let us assume that M; = ft P Yoot P *du is positive definite for any t € [0,T).
Then the distribution of the process p is the same as that of q which is the solution to the following
linear SDE

dg; = Ayqedt + bedt + opo; P My (P H(E&) — @) — PrH(Elér] — v))dt + oydwy, (11)
with qo = u.
PROOF: The matrix Q; = P,M, is solution to Q; = (A¢ — atafPt_*Mt_lPt_l)Qt, implying that the
covariance of ¢; can be rewritten as follows: for s < t,
S
Q. [ @lewoi@rw i = Q[ MR P G
0

= Qs M 1 ) Qt
gmmf—%)mﬁ

Py(Mo — My)(Id — My (Mo — My)) Py
- Cst-

On the other hand, from (f), the expectation p; of the process p; satisfies

d _ *
P~ Apr — by = —o10{ P, *PrRyp(Elér] — v).

Elementary algebra shows PiRyt = —Q; (R Ry — PPy 1), hence
d

Pt Aipr— b = 00, PQ; (R Ryp — PPy )(Elér] —v)
= 010, P QN (El&] — iy — P.Pp (Elér] —v))
which is the equation satisfied by E[g;]. The conclusion follows by noting that both p and ¢ are

Gaussian processes. |

Remark. M; is positive definite for any ¢ € [0,T") if and only if the pair of functions (A,0) is
controllable on [t, T for any t € [0,T). See, e.g. [f] for some discussions.

Example. Consider the 2-dimensional stochastic differential equation defined by (@), where
o # 0. Let us assume that b is locally Lipschitz with respect to (x,y), and this equation admits a
strong solution (the strong solution exists if there exists a Lyapunov function, see, e.g. [i]). Then
we have:

BLf (2,)|(x0,w0) = . (27, yr) = v] = OF [ f(p,q)e” " Jo Mwmadiac sz I Wt g5
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where (p, q) is the following bridge starting from (pg, qo) = u:
pe N\ _ (= t (tT-2t) —tT(T 1) zp — U1 (13)
@)\ ) T\ er—t) TGt-21) )\ sp—wy )
t
with zt = ul + tug + O'/ weds,  Z = ug + owy;
0

or (p,q) can be chosen as:

dp; = qdt,

Dt — U1 2q; + vo
dg; = [ —6 -2 dt dw;. 14
qt < (T 1) T—t> + odwy (14)




4 o invertible, general b

4.1 Bounded drift
Let us consider the following SDEs:

dzy = b(t, z¢)dt + o (t, x¢)dwy,  x0 = u, (15)
dy, = b(t, y¢)dt — Zi—:fdt +o(t,y)dwe,  yo = u. (16)

Remark. If b = 0, and 0 = Id, then z is a Brownian motion. It is well known (see, e.g. [f])
that the law of the Brownian motion x conditioned on x7 = v is the same as that of the Brownian
bridge y satisfying the following SDE:

Yt — v
T—1t

dyy = — dt + dwy, yo = u.
The form of SDE(|LG) is inspired by the above SDE in order to fit the simplest case: the Brownian
bridge case.

The objective of this section is to prove that the distribution of z (solution of ([L§)) conditioned
on zr = v is absolutely continuous with respect to y (solution of ([[f])) with an explicit density. We
shall assume some regularity conditions on b and o here.

Assumption 4.1 The functions b(t,z) and o(t,z) are C"? with values in R and R?*? respec-
tively; and the functions b, o, together with their derivatives, are bounded. Moreover, o is invertible
with a bounded inverse.

Let 25" be the solution of ([[§) starting at s € [0,7]. Under Assumption 4.1, z is a strong
Markov process with positive transition density. For (s,u) € [0,7], we denote p(s,u;t,z) to be
the density of z;”". Then there exist constants m, A\, M,A > 0, such that the density function
p(s,u;t, z) satisfies Aronson’s estimation [B] : for ¢ > s,

d _Az—u? d _ Alz—u)?

m(t—s) 2e > <p(sujt,z) < M(t—s) 2e s

We first study SDE ([L6).

Lemma 4 Let Assumption 4.1 hold. Then the SDE(1&) admits a unique solution on [0,T). More-
over, limy_7y; = v,a.s. and |y; — v|*> < C(T —t)loglog[(T — t)~! + €], a.s., where C is a positive
random variable.

PROOF: The fact that the SDE([lf) admits a unique solution on [0,T) is classic. Applying Itd’s

formula to %=, we deduce easily the following:

Yy—U _ U—0
T—t T

+ /0 (T — s)7'b(s,ys)ds + /0 (T — 5) " Lo(s, ys)dws.

For each i, {(fOt(T — s)*la(s,ys)dw5> Lt >0} = {Z?Zl fg(T — ) Loy;(s, ys)dwl, t > 0} is a

continuous local martingale, and its quadratic variation process 7 = fg Z?ZI(T — s)*2ai2j(s, Ys)ds



satisfies ; — oo as t — T, and 7y < 7% for a constant ¢ > 0. Applying Dambis-Dubins-Schwarz’s
theorem, for each i, there exists a standard one-dimensional Brownian motion B?, such that

</Ot(T - 8)‘1a(s,ys)dws)i = Bi(r),t > 0.

Taking into consideration of the law of the iterated logarithm for the Brownian motion B?, the
conclusion follows easily. |
Now we can state the main theorem of this section.

Theorem 5 Let Assumption 4.1 hold. Then
x)|zr = ) (17)
y) exp { T 2077 Ay ()b (ye)dt + G (A (ye))iie + 35 AT (), 537 H

2T — t)

where A(t,y) = (o(t,y)*)Lo(t,y)~L, §: = ye—v, and (-,-) is the quadratic variation of semimartin-
gales.

Remark. From Lemma 4, the integral in ([[7) is well defined.

PROOF: Let f(x) be an Fi-measurable nonnegative function, ¢ < 7', then

Blfw) = B[fwep - [tz gy 1 [y () 0 g g

On the other hand, It6’s formula gives:

o= (t, z¢)(xs — v)]? (z; — ) A(t,z)day  ||o™ (t, ) (2 — )2 d-dt
d T—1t =2 Tt (T — 1) 7
(2 = 0)* ([AA(t,20)) (2 —v) | iy HAT(t20), (a7 — v Nl — 7))
+ T-—1t T—t

Combining the above equation with ([[§), we deduce that,

U—lxt Ty — v 2 txs_v*sxs (s
Elf(y) = CCE [f(x)exp{_ut <2(T><_t) ) +/0( )TA_(S Jbs(es)

i1 / (25 = )" ([dAs(@)) (s —v) | Xy AT (@), (2} — o) (ad 7)) }] ,
0 S

2 T—s T —

where C' > 0 is a constant, and C; = (T —t)~ g

Or equivalently,

Blf el = OB [ (o) exp {122 (O], (19)

2(T —t)
where
t t ~>k ~ .d AZ] B 7”§Ng
%:exp{_/o ySAs;yi)z( )y, _5/0 (d;l_(s)) P <T£ys)yy>}. 20)



Note that {¢,t € [0,T]} is a well defined continuous process, thanks to Lemma [i.
Putting f = 1 in ([L9), we deduce then:

Bl _ B[S ew {15t o
Elp E[exp{-“"“@t;(;_(j;*vﬂpH

Assuming that f(z) takes the form f(z) = g(z4, -, 21y), 0 < t1 <t < -+ <ty < T,
g € Cy(RNY), and letting t — T, from the Lemmas [ and § in the Appendix, we get:

E[f(y)er]
Elpr]

This completes the proof of the theorem. ]

— E[f(@)lar = 0.

Remark. For practical implementation, it is useful to note that the second and third terms of
the integral in ([[7) are the limit of ) 77 (A(tx, yr,) — A(tr—1, ytk_l))gtkﬁ.

4.2 Unbounded drift

Let us now consider the following SDE:
dzy = b(t, z)dt + o(t, z)dwe, w9 = u, (22)

where the drift b can be unbounded. We assume instead

Assumption 4.2 The function o(t,z) is C"? with values in R%*?; the function o together
with its derivatives are bounded; and o is invertible with a bounded inverse. The function b is
locally Lipschitz with respect to = and is locally bounded. Moreover, the SDE () admits a strong
solution.

Combining the Theorems [l and [, we are able to prove the following

Theorem 6 Let Assumption 4.2 hold, and y be the solution of

dy: = _yjtv : :dt + oty )dw,  yo = u. (23)
Then,
E[f(z)|xr = v] |
T gy 7 d(AY =i~
= CE|f(y)exp {_/0 Ji (dA(E, ye))ge ;r(%i j)(A (t,ve), 9:0z)

+/OT(b*A)(t,yt)dyt—%/0T|01b|2(75,yt)dtH,

where A(t,y) = o(t,y) *o(t,y)~L, J: = y: — v, and (-,-) is the quadratic variation of semimartin-
gales.



PRrROOF: Let Z be the solution of:
dit = O'(t, ft)dwt, 2_70 = U. (24)

Then, from Theorem [ll, for nonnegative measurable functions f and g,

Elf(2)g(ar)] = E[f(@)g(ar)elo @ AEede=3 fo ot aody
_ E[f(f)efoT(b*A)(t,it)dit—% fOT |o’71b‘2(t,i‘t)dt’i,T _ v]g(v)dv.
R4
It remains to apply Theorem fj. [

Remark. If the drift b is bounded, both formulas in Theorems | and ] are available. Unfortu-
nately, it is difficult to compare the efficiency of simulation when applying these two formulas.

10



5 Appendix

Lemma 7 Let 0 <ty <ty <--- <ty <T, and g € Co,(RN?). Then, putting

r = exp {_ HU(E%ETI(_%;)— v)|* } 7
ting PO B ey e = o] (29
ProoOF: For any t € (tn,T),
Elg(ze,, Tty -+ s Ty )W) _ f]Rd ®y(t, ) exp {_%;_(i;w} dz

E[ty] Jga ®1(t, 2) exp{_W}dy

where
y(t, 2) = /Nd g(z1, -+, 2n)p(0,u;t1, 21) - - p(tw, 2N; ty 2)dzy -+ - dzp,
R

which is continuous thanks to Aronson’s estimation. Evidently, ®1(¢,z) = p(0,u;t, 2).
Moreover, applying a simple change of variable z = v+ (T — t)%z' ,

d o(t,z) Nz —v)|]?
(T —t)"2 /qu)g(t,z)exp{—H (t,22T(—t) )l }dz

1
T — )2 N—1_7(2
_ /@g(t,w(T_t)%z,)exp{_uau,vﬂ 0l }dz,
R4

T —1 72
oo (LN o

o ®y(T,v) /

R4
Hence,
hm E[g(xh?xtga Tt 7xtN)wt] _ q)g(Ta /U),

t—T E[wt] (bl (T, 1))
from which we deduce (P§) by the Bayes formula, since

(I)g(T,U) = / g(zly e aZN)q(Zla o ,ZN,’U)le o dZNa
RNd
where ¢ is the density of (x¢,, -, z¢y, T7). |
Lemma 8
lim F — =0.
lim Efler — o]

We need the following two propositions to prove this lemma.

11



Proposition 9 (i) There exist two constants ¢; > 0,co > 0, such that
C1 S CtE[’l/Jt] S Cg,vt € [O,T),

where
d
2

Cy=(T—1t) 2.
(ii) There exists a constant cz > 0, such that
Elp] <es, YVt € [0,T).
PROOF: (i) We note that

lo(t, 2)" (= = v)|”

QEWJ:(T—Q‘?/@@{— ’ﬂT—i) }p@ﬂuh@d&

We get easily the conchllsion taking into consideration of Aronson’s estimation after a change of
variable z = v+ (T' —t)2 2.
(ii) It follows from ([[9) and (i). |

Proposition 10 For any € > 0, there exists an adapted bounded process o such that

ed+1
2

dCwy = dM; + ay(Copy) (T — t)~"dt, h =
where (My)o<t<T is a martingale.

PROOF: Set &y = x4 — v, py = |lo~ (¢, )%, and Ay = o~ *(¢t, )0~ (t, 2;). We have

2 ~ % 2 ~ %
D xtAtdmt Di d Ty (dAt xt iJ ~i ]
d = 2 dt dt d(A
T—1t T—t Tt T YT T —tz £ Tt
Zfo(t,xy) *dwy pt2 d pt —i—pt 2
— 9tZ\® dt dt dt 1d
T-t @0 T T g gridu,

where 7; and r} are two adapted bounded processes. Hence we get:

2
Cypydt — Cﬂ/}t < i >+ =Cpd <Tpit>

ACe = g

+ Pt pi + p}
=AM, + Cr) (B e ) e
t"’ t¢trt ( T—+¢ + (T—t)2 )

x2
where 7/ is an adapted bounded process. For any € > 0, e ¢ 2 ||F, k = 1,2, 3,4, are all bounded
functions, then there exists a constant ¢. > 0 such that

€ p%"i_pt p?"i_p? Ce
e + ) < .
T—1 (T—t) T—1t

Hence,

AdCup; = dM; + (Cyape) (T — t) " e dt,

12



where 7} is still an adapted bounded process. |

Let us now return to the proof of Lemma f.
PROOF: First, from Fatou’s lemma and Proposition fl,

Eler] < lim ij{le[(pt] <cs.
t—

We choose ty € (0,T) which is close enough to T, and A large enough, and put
1 A
o=inf{ty <t <T,Cpy < <} =inf{tg <t < T,p? > 2(T —t)log ——}.
A (T —t)2

Under the distribution of z, ¢ < T a.s. However under the distribution of y, limg_,y0 = T,
a.s., taking into consideration of Lemma . We have, from (P1),

Elpiloct]  Elilo<] < iE[C'mtla<t]-

Elp] Elyd) 7 a
On the other hand, from Proposition [L( with a fixed € € (0,1/d),

dtht = th + Oét(Ct’l/Jt)l_E(T — t)_hdt,

ie.,
t

Cotby = Cyby + My — M, + / 0s(Cyths) (T — 5)7"ds.

o

Hence,

t
ElCiploct) S A +a | E[Cethsloes] (T — s)fhds, with @ = sup ||| co-
to t
Therefore, E[Ci11,<] is bounded by w; which is the solution of the following differential
equation,

du; = auj (T —t)7"dt, wy, =AY

and this equation has an explicit solution:

o) 1/e 1/e
Xa
w = {1 (T —t0)' " = (T = 1)) + Ae} <{eo(m—to)! "+ a7} ",
where ¢y > 0 is a constant. We get finally,
E[@tltga] - 1- E[(Pt10<t]
Elpi] Elp]

> 1 (eo(T — o) A
1

We note that {¢¢1li<s}+ is a uniformly integrable family due to Novikov’s lemma, since we have

tAo 2 tAo 4
Ys — V 1 Ys — VU
1t§0’@t S Cexp {/0 %vsdws — 5/0 ﬁ‘USPdS} 5

13



where for fixed A, C is a positive constant and v; is an adapted bounded process.
Taking the liminf; 7, we get,
Elorle=r] - 1

- 1— —(co(T —tg) 1 4+ A=) V/e,
limsup, 7 Elpe]  — 01( ol o) )

Since 1,—7 converges to one a.s. as A — 0o, we get

E[@T] 1 1—hy1
> 11— —(co(T —t /e,
limsup,_p Elpe] c (eof o))

It remains to let tg — T to get:

lim sup £ [pt] < Elpr].
t—

Hence,

lim Elg,] = E
lim Blgy] = Efer],

and we finish the proof by Scheffé’s lemma (see, e.g. []).

14
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