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1 Introduction.

In this paper we study triangular arrays of Markov chains Xy, (0 < k < n) that
converge weakly to a diffusion process Y; (0 < s < T) for n — oo. Here h = T'/n
denotes the discretization step. We allow that T depends on n. In particular, we
consider the case that 7" — 0 for n — co. Our main result will give Edgeworth type
expansions for the transition densities. The order of the expansions is o(h™17%),§ > 0.
This is done for time horizons that may converge to 0. The research is motivated
by applications to high frequency data that are available on a very fine grid but are
approximated by a diffusion model on a more rough grid. The work of this paper
generalizes the results in Konakov and Mammen (2005) in two directions. The time
horizon is allowed to converge to 0 and also cases are treated with nonhomogenous
diffusion limits.

The theory of Edgeworth expansions is well developed for sums of independent
random variables. For more general models approaches have been used where the
expansion is reduced to models with sums of independent random variables. This is
also the basic idea of our approach. We will make use of the parametrix method. In
this approach the transition density is represented as a nested sum of functionals of
densities of sums of independent variables. Plugging Edgeworth expansions into this
representation will result in an expansion for the transition density.

Weak convergence of the distribution of scaled discrete time Markov processes to dif-
fusions has been extensively studied in the literature [see Skorohod (1965) and Stroock
and Varadhan (1979)]. Local limit theorems for Markov chains were given in Konakov
and Molchanov (1984) and Konakov and Mammen (2000,2001,2002). In Konakov and
Mammen (2000) it was shown that the transition density of a Markov chain converges
with rate O(n~'/2) to the transition density in the diffusion model. For the proof
there an analytical approach was chosen that made essential use of the parametrix
method. This method permits to obtain tractable representations of transition den-
sities of diffusions that are based on Gaussian densities, see Lemma 1 below. Similar
representations hold for discrete time Markov chains X} 5, see Lemma 3 below. For a
short exposition of the parametrix method, see Section 3 and Konakov and Mammen
(2000). The parametrix method for Markov chains developped in Konakov and Mam-
men (2000) is exposed in Section 4. Applications to Markov random walks are given in
Konakov and Mammen (2001). In Konakov and Mammen (2002) the approach is used
to give Edgeworth-type expansions for Fuler schemes for differential equations. Re-
lated treatments of Euler schemes can be found in [Bally and Talay (1996a,b), Protter
and Talay (1997), Jacod and Protter (1998), Jacod (2004), Jacod, Kurtz, Méléard and
Protter (2005) and Guyon (2006)]. Standard references for the parametrix method are
the books by Friedman (1964) and Ladyzenskaja, Solonnikov and Ural ceva (1968) on
parabolic PDEs [see also McKean and Singer (1967)].



The paper is organized as follows. In the next section we will present our model for
the Markov chain and state our main result that gives an Edgeworth-type expansion
for Markov chains. In Section 3 we will give a short introduction into the parametrix
method for diffusions. In Section 4 we will recall the parametrix approach developed
in Konakov and Mammen (2000) for Markov chains. Technical discussions, auxiliary
results and proofs are given in Sections 5-7.

2 Results.

Letn >2,T=T(n)<1 and h = T/n. Suppose that ¢ (¢,z,-), (t,z) € [0,1] x R?
is a given family of densities on R?, x,(t, ) is the v — th cumulant corresponding to
the density q(t,z,-) and m is a function from [0, 1] x R? into R%. We shall impose the
following conditions

(A1) [ouyq(t,z,y)dy=0,0<t<1, zeR.

A2) There exists positive constants o, and o* such that the covariance matrix o (t,z) =
p
fRd ?/qu (t, z, y) dy satisfies

0. < 0T (t,z)0 < o",
for all ||f]| =1 and ¢ € [0,1], z € R%.

(A3) There exists a positive integer S’ and a real nonnegative function v (y), y € R4
satisfying sup,cgpa 1 (y) < oo and [o, lyl|® ¥ (y) dy < co with S = (S + 2)d + 4
such that

|D¥q(t,z,y)| < (y), t€[0,1], 2,y eR? [v] =0,1,2,3,4
|DYq (t,z,y)| < (y), t€[0,1], z,y eR? || =0,1,2.

It follows from (A2), Lemma 5 and ([[G),([7) below (applied with h = 1) that the
following condition holds

(A3) Forall z,y € R, h > 0,0 < t,t + jh < 1,7 > jo, with jo does not depending
on x,t
Dy (t,2,9)| < O (j72)  Iv] = 0,1,2,3

for a constant C' < oo. Here qU)(t,x,5) denotes the j— fold convolution of ¢
for fixed = as a function of .

¢t 2, y) = /qu)(t, z,u)q(t+ (G — Dh, 2,y — u)du,

gV (t,z,y) = q(t, z,y).



It follows also from (A3) that for 1 < j < jg

/ Il 49 (¢, 2, y)dy < Clio ).

(B1) The functions m (t,z) and o (t,z) and their first and second derivatives w.r.t.
t and their derivatives up to the order six w.r.t. x are continuous and bounded
uniformly in ¢ and x. All these functions are Lipschitz continuous with respect
to x with a Lipschitz constant that does not depend on t. The function x, (¢, x),
|v| = 3,4, is Lipschitz continuous with respect to ¢ with a Lipschitz constant that
does not depend on x. A sufficient condition for this is the following inequality

/ (T4 120N gt 2, 2) —q (' 2, 2)|dz < C|t —t'|,0 < t,t' <1,
R4

with a constant that does not depend on z € R% Furthemore, Do (t,z) exists
for |[v| = 6 and is Holder continuous w.r.t. z with positive exponent and a
constant that does not depend on t.

(B2) There exist s < £ such that liminf ,,_..7(n)n* > 0 (remind that we consider
T(n)<1).

Consider a family of Markov processes in R? of the following form
(1) XkJrl,h = Xk,h +m (/{Zh, X]“h) h + \/Ekath, XO,h =x & Rd, /{7 = 0, = 1,

where (&h)lzln is an innovation sequence satisfying the Markov assumption: the con-
ditional distribution of &1y given Xy, = x, ..., Xon = 2o depends only on Xy, = xp
and has conditional density ¢ (kh, 2, -) . The conditional covariance matrix correspond-
ing to this density is o(kh, x;). The transition densities of (X;;),_, , are denoted by
pn (0, kh, 2, ). .

We will consider the process () as an approximation to the following stochastic
differential equation in R? :

dY, =m(s,Y,)ds+ A (s,Y,)dW,, Yo =z € R, s €0,T],

where (I/VS)S20 is the standard Wiener process and A is a symmetic positive definite
d x d matrix such that A (s,y) A (s,y)" = o (s,y). The conditional density of Y;, given
Yy = x is denoted by p (0, ¢, z, ). We shall consider the following differential operators
L and L :

1 & P f(s,t,x,y) of (s t,w,y)
Lf(s,t,x,y):iijzlaij(s,x) Dz, Zmz S, ) or, ,
d
~ 1 Pf(s,t,m,y) stxy)
(2) Lf(st,2,y)= 5 Z oij($;y)—F7 or.0z, +Z:mz 5 y

4



To formulate our main result we need also the following operators

d d

/ o 1 80ij(37x) 82f (S,t,[[’,y) 8m,~(s,x) af (s,t,x,y)
L'f(s,t,x,y) = 5 Z; 9 Dbz, + ; 9% o,
d d
T _ 1 8aij<87y) 82f <S,t,$,y) aml(‘Svy) of (S,t,l’,y)
(8)  Lf(stvz) = 2 Z; 0s Ox;0x; + ; 0s 0x; '

and the convolution type binary operation ® :

t
f@g(s,t,x,w:/du F (s 2) g (st 2, y) d=.
s R4

Konakov and Mammen (2000) obtained a nonuniform rate of convergence for the
difference py, (0,7, x,-) —p(0,T,z,-) as n — oo in the case T" =< 1. Konakov (2006)
proved an analogous result for the case T' = o(1). Edgeworth type expansions for
the case T" < 1 and homogenous diffusions were obtained in Konakov and Mammen
(2005). The goal of the present paper is to obtain the Edgeworth type expansions for
nonhomegenious case and for both cases 7' < 1 or T' = 0 (1) . The following theorem
contains our main result. It gives Edgeworth type expansions for p;. For the statement
of the theorem we introduce the following differential operators

Alfis bty = 35D prr oy,

s v!
JTQ[f](Svtaxvy) = Z WDZf(S,t,I‘,y).
lv|=4 ’

Furthermore, we introduce two terms corresponding to the classical Edgeworth expan-

sion
(@) A try) = (-9 O Do ay)
lv|=3 ’
6) Aty = (-9 M pr sy
lv|=4 ’
1 2 YV(S7 tu y) v 2 ~
|v|=3
where

t

_ 1
Xo(s:ty) = — [ xw(uy)du,

and where x,(t,x) is the v — th cumulant of the density of the innovations ¢(¢,z, -).
The gaussian transition densities p(s,t,x,y) are defined in (). Note, that in the
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homogenous case x,(u,y) = x,(y) and X,(s,t,y) = x.(y), where x,(y) is the v — th
cumulant of the density ¢(y, -).

Theorem 1. Assume (A1)-(A3), (B1),(B2). Then there exists a constant § > 0
such that the following expansion holds:

Td/2 <

—h'Pm (0, T, 2,y) — hmy(0, T, x,y)[] = O(AM?),
where S’ is defined in Assumption (A3) and where
Wl(O,T,l‘,y) = p® fl[p])(07T>$7y)v
m(0,T,z,y) = (p® F[p])(0,T,2,y) +p & Filp© F1[pl](0, T’ z, y)

1 1 -
+5p@ (L7 — L*)p(0,T,z,y) — 5P ® (L' = L)p(0, T, 2, ).

Here p(s,t,x,y) is a transition density of the diffusion Y (t) and the operator L, is

sup
z,yc R4

) |ph 0 T T y) (O,T,I',y)

defined analogously to L but with the coefficients “frozen” at the point x. The norm I
15 the usual Fuclidean norm.

Discussion and remarks

1. It can be easily shown that

2
-
‘h1/27'l'1 (07 T7 T, y)‘ S Cln71/2Tid/2 exp _CQ y\/T )
W (0, T, z,y)| < Cin~ T 2exp | -C, yﬁ ] )
and that by definition of h

1 -1 g1 -1

O(RHT=4/2 |1 + H?/ - < Cyp~lmie=d/2 | '?/ -z

(h7°) <C 77

with some positive constants C; and Cj.

2. If the innovation density ¢(t, z, -) does not depend on z then L, = L, L = L’ and
p(s,t,z,y) = p(s,t,x,y) where p is defined in (B]) with o(s,t,y) = o(s,t) = f o(u)du
and m(s,t,y) =m(s,t) = f m(u)du. This gives

m (0,7, x,y) = /ds/ OsvaXV (s, T, v,y)dv

v|=3

= — Z/ XV d D”/'ﬁ(O,s,x,v)'ﬁ(s,T,v,y)dv

v[=3

=~ 3 IR TIDLHO. T, y) = (0T, ),
=3




PR Fp)(s, T, z,y) = /du/ S, U, 2, W) ZXV u, T, w,y)dw

lv|=3

T
v [ Ay X, (s
:_ZDy/ V(' )p<Ssz Z y' Z S’T727y>’
=3 ’ ' v|=3
Flpe Apls T,z ZXV ZMDv’~<STZ )
: ' y ! 1//! z pis, 4,2,y
|V| 3 ‘l/’|:3
XV<8) YI//<S7T> v
:(T_S) Z V! V/! D+ (STZy)
[v|=3,|v"|=3
P FpI0,T,2,y) +p® Fp® AP0, T, 2,y) = ZX" Y50, T, 2, y)
lv|=4
T JR—
~ v T
+/ ds/p(0,37x7z)(T_5) Z X ('8) X! (s )DV+I/ 5. T.2.)
V!
’ [v|=3,|v"|=3
—1 3 20D pio. )
Y
lv|=4
11 T T
DY o, Xv(8) </ xyf(u)du) dsDY* (s, T, z,y).
|V‘:37|V":3 S

For v =1/ we have

[ oo ([ wtwad)as=3 [ [ o - Tx om0,

For v # 1/ we consider

/TXV( )(/TXV( )du )ds+/OTXVI(8) </STXV(u)du) ds
= [ [ bl + xo s

[ (s
25/0 /0 (X ()X (1) + X (8) X0 ()] dsdu

T? T?
= 7%1/(07 T)Yz/(()? T) + 7%1/(07 T)YI/(07 T)

From the last equations we obtain

P ® Fo[pl(0,T,2,y) +p @ Filp @ Fi[p](0, T, x,y)

xy Vi T X (0.1) o |
—ry W00 0. T,y) + = Dy B0 T, y)
lv|=4 lv|=3
=m2(0, T, x,y).




Thus for this case we get the first two terms of the classical Edgeworth expansion
hY27,(0,T, x,y) + h7a(0,T,x,y) for the sums of independent non identically dis-
tributed random vectors.

3. If x,(t,z) =0 for |v| =3 and for ¢t € [0,T] x R? then it holds that F; = 0.
The Theorem 1 holds with
71-1(077ﬁ7l‘7y) = 07
m(0, T z,y) = (p® Fa[p))(0,T,2,y)

1 1 ~
+5p@ (L? — L*)p(0,T,z,y) — 5P ® (L' = L)p(0, T, 2, ).

If in addition x,(¢,z) =0 for |v| =4 then the first four moments of the innovations
coincide with the first four moments of a normal distribution with zero mean and
covariance matrix o (¢, ). In this case we have F, = 0 and

7T1<0,T,.§U,y> = 07

1 1 ~
7TQ<O7T7 .ﬁl],y) = 5]7 ® (Lz - L2)p(07 T,I‘, y) - ép ® (L/ - Ll)p<07T7 .ﬁl],y)

and the first two terms of the Edgeworth expansion do not depend on the innovation
density. In particular the Edgeworth expansion for the homogeneous Euler scheme
holds with the same 7, and 75 as in the last two equations. For the homogenous case

7T1<0,T,.§U,y> = 07
1
7TQ<O7T7 .ﬁl],y) = ép ® (Lz - L2)p<07 T,I‘, y)

This result for 7' = [0, 1] under a weaker condition on the diffusion matrix was obtained
by Bally and Talay (1996).

3 Parametrix method for diffusions.

For any s € [0,T], x,y € R? we consider an additional family of ”frozen” diffusion

processes
dYy=m(t,y)dt + A(t,y)dW;, Yo =2, s <t <T.

Let pY (s,t,z,-) be the conditional density of 37,5, given }75 = x. In the sequel for any z
we shall denote p (s, t,x,z) = p* (s,t,x, z) , where the variable z acts here twise: as the
arument of the density and as defining quantity of the process Y;.

The transition densities p can be computed explicitly

p(s,t,r,y) = (2m) 7 (deto (s, t,y) "

(6) X €Xp <_% (y —Tr—m (37 t7 y)>T 0-71 (S7 tv y) (y —Tr—m (S7 tv y))) )
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where . .
oGt = [otwgydn mist) = [muy)d

Note that the differential operators L and L corresponds to the infinitesimal operators
of Y or of the frozen process Y, ,, respectively, i.e.

Lf(s,t,x,y) = lmh H{E[f(s,t,Y (s +h),y) [ V(s) =a] - f(s.t,2,9)},

h—0
if(‘S’t"T?y) = ]lllz)%h’ 1{E[ <S7t7 1’}S,Ly(s + h’)7y)] - f(S,t,.T,y)}-
We put
H = (L—L)p.
Then
d ~
1 0*p (s, t,z,y)
H = = : (s, y)) ———2 2
(S,t,l’,y) 9 Z 0] S, SL’ U] (S y)) axlaxj

d ~
8p 87 t? x7 y
Z —m; (s, y)) %

In the following lemmas k - fold convolution of H is denoted by H®*). The following
results are taken from Konakov and Mammen (2000).

Lemma 1. Let 0 < s <t <T. It holds

pls,tx,y) =Y P H (s, 1, 2,y).

r=0

Lemma 2. Let 0 < s <t <T. There are constants C and Cy such that
|H(s,t,z,y)] < Clp’laﬁc;)( — )

~ (r) < r+1
‘p®H (Sataxay)} = Cl F(1+ )¢Cp( )
where p* =t — s, ¢op(u) = p~ldc(u/p) and

exp(=C'||u?]])

2t = Texp(—C 7] )

4 Parametrix method for Markov chains.

For any 0 < jh < T, x,y € R? we consider an additional family of ”frozen” Markov
chains defined for jh <ih <T as

(7) XZHh—X,thm(zh y)h+f§,+1h, jh—xeRd j<i<n,

9



where Ej+17h, - En,h is an innovation sequence such that the conditional density of Em,h
given X, = x;,..., Xon = xo equals to ¢ (ih,y, ). Let us introduce the infinitesimal
operators corresponding to Markov chains ([l) and ([) respectively,

Luf Gih,kh,z,y) = h™* (/ph(jh G+ 1) hyx,2) f((+1)h,kh,z,y)dz
—f((j+1)h,kh, z,y)),

Luf (Gh,kh,z,y) = h™' / (jh, (j+ 1) by, 2) f (5 + 1) b, kh, 2, y) dz
—f((G+1)h kh,z,y)),

where pj (jh, j'h, z,-) denotes the conditional density of Xj/,h given ijh = x. As before
for any z denote py, (jh,j'h,z,2) = p; (jh,j'h,x, z), where the variable z acts here
twise: as the arument of the density and as defining quantity of the process )?m For
technical convenience the terms f ((j + 1) h, kh, 2z, y) on the right hand side of L, f and
zhf appear instead of f (jh, kh, z,y).

In analogy with the definition of H we put, for k& > 7,

Hh (jha kh,[[’,y) = <Lh - Zh) ﬁh (]ha k?h,l’,y) :

We also shall use the convolution type binary operation ®j, :
g ®n f (Gh,kh,z,y) Zh/ (jh,ih,x, z) f (ih, kh, z,y) dz,

where 0 < 7 < k < n. Write g ®p, H,SO) = g and g ®j H,Sr) = <g R H,(Lr_l)) ®n Hy,

for r =1, ...,n. For the higher order convolutions we use the convention Zi: ;=0 for

[ < j. One can show the following analog of the ”parametrix ”

Konakov and Mammen (2000)].

expansion for pj, [see

Lemma 3. Let 0 < jh < kh < T. It holds
k—j
pu(ih,khow.y) = 3 B @ HY (jh, kb, 2, y),

r=0

where
pu(jh, jh, x,y) = pu(kh, kh, z,y) = 0(y — x)
and ¢ is the Dirac delta symbol.

5 Bounds on p;,—p based on Edgeworth expansions.

In this subsection we will develop some tools that are helpful for the comparison of
the expansion of p (see Lemma 1) and the expansion of py, ( see Lemma 3). These

10



expansions are simple expressions in p or py, respectively. Recall that p is a Gaussian
density, see ([), and that pj, is the density of a sum of independent variables. The
densities p and p;, can be compared by application of the classical Edgeworth expan-
sions. This is done in Lemma 5. This is the essential step for the comparison of the
expansions of p and pp. For the proof of Lemma 5 we need one additional lemma
which is a technical tool for the further considerations. To formulate this lemma we
need some additional notations. Suppose X € R¢ be a random vector having a density
q(x),x €ER? EX = 0,Cov(X, X) = X, where X be a positively definite d x d matrix .
Denote A = ||a;;|| = £7Y2 and let x,(Z) be a cumulant of the order v = (v, ..., 1) of
a random vector Z € RY, ¢(x) denotes a function in R? such that D%¢(x) exist and
continuous for || = 4, and A™! = ||a¥|| = ¥V/2.

Lemma 4. The following relation holds for s = 3 and for s =4

S~ WAXDIE) | 3 30D
V!

where 2z = Ax.

PrRoOOF OF LEMMA 4. For |v| = 3,v = (v, ...,14), each cumulant y,(AX) is a
linear combination of x,(X) with || = 3 and with coefficients depending only on a;;.
It follows from the following relation

Yo (AX) = p, (AX) = /(anxl + oo+ aggrg)”t X X (a1 F . agxg) " q(X)dX.

Analogously, from the usual differentiation rule of a composite function and from the
relation ¢(z2) = ¢(Azx) , x = A7'z, it follows that DY¢(z) = DY¢(Ax) is a linear
combination of D¥¢(Ax) with coefficients depending only on a®. As a result of such
substitutions we obtain that

L(AX)DY !
pRECCRIELILIRE of | o ey

v[=3 J1|u|3

| S0 B @D (AX)

A /1
s pn !

2111 ZZ ' alj g @it Xy, (X)

{izdy | =1 e M

ZZ/,/

v=1 e F1°

=S zz

C{itgAky | La=t ju=1 P

agl ((ljd)'uiiaillD:/;/+el/(b<AX)

H1 Hd
alj . "adj ailaqu;HrelJreq <X>

11



ajl (ajd)'u‘:iail/akqlDglJrel/Jreq/(b(AX)

ZZ

V=1 P

where 3 v 5y ( Dqizjzky) denotes the sum over all different pairs (triples) of 4, j €
{1,2,....,d} (of i,j,k € {1,2,...,d}) and e; € R? denotes the vector whose i—th coordi-
nate is equal to 1 and other coordinates are zero. Collecting the similar terms in the last
equation we obtain that for v = 3ey, v/ = 3¢; the coefficient before y, (X)DY ¢(AX)
is equal to 3 (aixa + ... + agal®)® = 0y, for v = e, + 26,/ = ¢, + 2e, , ¢ # r, the
coefficient before x,(X)DY ¢(AX) is equal to 3(aga't + ... + aga'?)(ar,a™ + ... +
agra™)? = %5(1157%, in particular , for [ = n the last expression is equal to zero.
For v=-ce;te +e,V =ey+esr+ey qFr,qgF nr #n, the coefficient
before x,(X)DY $(AX) is equal to (a1,a?" + ... + aga??) x (ap.a™* + ... + ag.a”'?)x
(a1na™t + ... + agna™?) = 0qq'Orr' Oy . This proves lemma for |v| = 3. The proof for
|v| = 4 is quite similar. For this case we use the relation which enabes to express a
cumulant y, (AX) as p,(AX) plus a second order polinomial of the moments 1, (AX),
|/| = 2. A necessary correction term for p,(X) to get a x,(X) comes from the deriva-
tion of DY¢(z). This completes the proof of the lemma.

In Lemma 6 bounds will be given for derivatives of pj,. The proof of this lemma
also makes essential use of Edgeworth expansions. The following lemma is a higher
order extension of the results in Section 3.3 in Konakov and Mammen (2000). Denote

(8) i k(y —thzhy —hz (ih,y).

Lemma 5. The following bound holds with a constant C for v = (vy,...,)T with
0<|y| <6
|DZpn(jh, kh,z,y) — DZp(jh, kh, =, y)

—VhD'7,(jh, kh, z,y) — hD'%s(jh, kh, z,1)
< CRYPp 3¢V (y — x)

for all j < k,x and y. Here DY denotes the partial differential operator of order v
with respect to z = Vj;l/Q(y)(y —x — p;k(y)). The quantity p denotes again the term
p = [h(k — §)]V? and the functions 7, and Ty are defined in (H) and (H). We
write C¥(-) = p~?C*(-/p) where

R

k Z) = .
N R

PROOF OF LEMMA 5. We note first that pj,(jh, kh, x, e) is the density of the vector
T4 pin(y) + 2D G,
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where, as above in the definition of the “frozen” Markov chain Y, Em,h is a sequence
of independent variables with densities ¢(ih,y,-), px(y) = Ef;jl hm(ih,y). Let fp(+)
be the density of the normalized sum

k-1
hl/? [Vj,k<y)]_1/2 Z §it1,h-
i=j

Clearly, we have

Pr(ih, kh, @, ) = det Vi)™ fud Vie)] ™2 [ — 2 — ()]}

We now argue that an Edgeworth expansion holds for f;. This implies the following
expansion for py(jh, kh,x,-)

(9) ﬁh(]ha k‘h,l‘, )
= det [Vir(y)] "2 [i(k =) PP (=0 A DAVis )] T [ — @ — ()]}

k= 72RO+ {Vikw)) 2 = 2 — pya) )

with standard notations, see Bhattacharya and Rao (1976), p. 53. In particular, P.
denotes a product of a standard normal density with a polynomial that has coefficients
depending only on cumulants of order < r 4 2. Expansion () follows from Theorem
19.3 in Bhattacharya and Rao (1976). This can be seen as in the proof of Lemma 3.7
in Konakov and Mammen (2000a).

It follows from (P) and Condition (A3) that

|ﬁh(]h7 k?h,l’,y) _ﬁ(jha k?h,l’,y) _h1/2/ﬂ\-1(jha kh,[[’,y) - h%\Q(jha k?h,l’,y)’

(10) < CR*Pp 3¢5 My — ),
where
p(jh, kh,x,y) = det [V, (y)]~/? (2m) 7/

x5y = = ua)) Vislo)] ™ (v = 2 = sl }

bk, .9) = =~ det V) 3 X b (v )7 4 — 2 — et}
lv|=3 '
i k) = 07 e V()] | 30 28 b (v, ]2 — 0 )}
lv|=4 '
I Xt b )2 =2 = s}

lv|=3



— k— — -~
where X,,;4(9) = 75 S0, Xuki(y): Xoini(y) = v—th cumulant of p[Vix(y)] ™" & =

p! x {v—th cumulant of [VjJﬁ(y)]*l/2 Em,h}, and DY¢(z) denotes the v—th derivative
of ¢ with respect to z = [‘/]»,/Lc(g/)]fl/2 (y—x—p;k(y)) . It follows from the (conditional)
independence of gﬂ,h,i =J,.k—1,that X, ;:(y) = ”M h‘“’V2 x x»(AX), where
A= K2V, = 2% = Con(X, X), X = Z ' €iv1n. By Lemma 4 for
s=3,4

_I/' v s ]. v AX
> * ’]’k(y)Dz<f>(z) =/ k=7, Z : (y! : n/2,On(h'22)

vl

lv|=s
= (=1)%p* X“ ) D26 Aly — & — 130(9)))

v|=

(1) - Y @Dmm(wrm (v~ my(w))
lv|=s

where we put ¢, (2) = ¢(h~22),%,(X) = ﬁ Zi:jl Xv(th,y). It follows from ([[1]) and
the condition B1 that up to the error term in the right hand side of ([[d) the functions
71 and 7y coincide with the functions 7 and 7, given at the beginning of Section 4.
For v = 0 the statement of the lemma immediately follows from ([[0). For v > 0 one
proceeds similarly. See the remark at the end of the proof of Lemma 3.7 in Konakov

and Mammen (2000).

The following lemma was proved in Konakov and Molchanov (1984) (Lemma 4 on
page 68).

Lemma 6. Let L(d) be the set of symmetric matrices, and let Dy+ - C L(d),0 <
AT < AT < o0, be the open subset distinguished by the inequalities A € Dy+ \- <
AN T <A<ZATT; A= A(A) is a solution of the equation A? = A with A = AT and
a;;(A) the corresponding matriz elements.  Then for any k,l < d,i,j < d and
A C Dy+ »- we have that

8a,~j(A) ’ < 1
O 2v/ A

From Lemma 5 we get the following corollary. The statement of the next lemma
is an extension of Lemma 3.7 in Mammen and Konakov (2000) where the result has
been shown for 0 < |b| < 2,a = 0.

Lemma 7. The following bounds hold:
’DaD:Bph(jha kha z, y)} < Cp_la‘_lblgps_‘a‘(y - l’)

for all j < k, for all x and y and for all a,b with 0 < |a| + |b] < 6. Here,
= [(k — j)h]}/? . The exponent S has been defined in Assumption A3.

PrROOF OF LEMMA 7. If A = ||a;|| and B = ||by|| and elements a;;(B) are

%<C

smooth functions of by then an inequality ‘ aA‘ < (C will mean that | <

14



forall 1 < 1,7 < d,1 < k,l < d. To obtain the assertion of the lemma we have
to estimate the derivatives DgDbz where z = Vj;glﬂ(y)(y — 2 — p;5(y)). Note that

z= z(Vkal/Q, Wik, T,Y), where Vj;l/Q = Vj;l/Q(y) and g = pk(y). It follows from the
conditions (B1) and () that

It follows from Lemma 6 that
1/2
(13) 8Vj”é < C.
oVik | —

From inequalities (3.16) in Konakov and Mammen (2000) and from the representation
of an inverse matrix in terms of cofactors divided by determinant we obtain that

—1/2
8V77k

1/2
vy,

(14) < Cp2.

From ([[3)-([4) and from the differentiation rule of a composite function we get

v, (y)

(15) 5

<C.

Inequalities (3.16) in Konakov and Mammen (2000), ([3) and the differentiation
rule of a composite function imply

0z
—1/2
ov,,.!

9z
Oy

C
< —.

T

C
<

(16) =5

' 0z
Ot i

= (Y — = — pn(y)),

Inequalities (3.16) in Konakov and Mammen (2000) also imply
C
<

T

0z

(17) 9

The assertion of Lemma 7 for a =e¢;,0 = ¢;,1 < 14,7 < d, follows from Lemma 5 and
from ([Ld), (7). For other values of a and b one has to repeat this arguments.

6 Bounds on operator kernels used in the parametrix

expansions.

In this section we will present bounds for operator kernels appearing in the expansions
based on the parametrix method. In Lemma 8 we compare the infinitesimal operators

15



Ly, and L, with the differential operators L and L. We give an approximation for the
error if, in the definition of Hj, = (Lj, — Eh)ﬁh, the terms Ly and L, are replaced by L
or L, respectively. We show that this term can be approximated by Kj + M}, where
K, = (L — f/)ﬁh and where M, is defined in Remark 1 after Lemma 8 . Bounds on
Hy,, K, and M, are given in Lemma 9. These bounds will be used in the proof of our
theorem to show that in the expansion of p, the terms p, ®;, H ,Sr) can be replaced by
P @ (Kp 4+ M) M/ is defined in Lemma 9.

Lemma 8. The following bound holds with a constant C

‘Hh<jh7 kh,l’,y) - Kllm<.7h'7 kh,.’lﬂ',y) - Mflz<jh7 kh,l’,y) - Rh(Jh'7 kh,ﬂf,y)‘
3/2 —1,8
< CR*Pp ' (y — o)

with C;f as in Lemma &5 for all j <k, x andy . For j <k —1 we define

K} (jh, kb, 2,y) = (L — L)A(z), M}, (jh, kh, 2, y)
= My1(jh, kh, 2, y) + Mys(ih, kh, 2, y) + M, 5(jh, kh, z,y)

MGk, g) = 072 57 P2 Gy (),

[v|=3
DiA(z)

vl

Mh,Q(.jh'7 kh,.’lﬂ',y) = h Z (XV(.]h'7 .T) - XV<jh7y))7

v|=4

. h ~
M;L,3(.]h'7 kh,ﬂf, y) = §<Li - LQ))\<.§L’)’

ISH

Ry, (jh, kh,z,y) = h*? (M (R, @) pry—e, (G, ) — M (G0, Y) pro—e, (G, y)]

jv]=4 r=1

5Y 5 zmk hyo) mkoh,y)){uk [ atin0)0)

x [ /O 1(1 —w)* D"z + uﬁ(&))du} do
+ / q(jh, x,0)h" (6) [ /0 1(1 —u)*uD" TNz + uﬁ(@))du} de}

+h? Y M > VN (jh, @) -y () = m¥ (G, y) - (1, y)].

|lv|=4 =2

Here L, is defined analogously to L but with the coefficients "frozen” at the point x,
e, denotes a p - dimensional vector with r — th element equal to 1 and with all other
elements equal to 0. Furthermore, for |v| = 4, V| = 2 we define

N(V, I//) _ 2X[V’!=1]+X[(Vfl/l)!:1}f2

where x(-) means an indicator function. We put m(z)” = my(z)" - ... - my(z)” and
m(z)” =0, v! =0 and p,(x) = 0 if at least one of the coordinates of v is negative.
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We define also the following functions

Az) = pu((+ Dh, kh,z,y),
h(d) = m(jh,y)h+ 6hY2.

Here again p denotes the term p = [h(k — j)]"*. Forj =k —1 and | = 1,...,3 we
define

K],z(jha kh,[[’,y) = Mh,l(jha k?h,l’,y) = Mh,Q(jha k?h,l’,y) = M;L,S(jh’ kh’xay) - 0

PROOF OF LEMMA 8. As in the proof of Lemma 3.9 in Konakov and Mammen (2000)
we have

Hy(jh, kh,w,y) = Hy(jh, kh,@,y) — Hj (jh, kh, 2, y),

where
(18) H}(jh,kh,z,y) = h_1/q(jh,:c,9)[)\(a:+h(9))—)\(:c)]dﬁ
(19) H2(h, ko y) = bt / a(ih, 2, 0)\z + 5(0)) — A(z)]d6,

h(0) = m(jh,x)h+ 602,
h(®) = m(jh,y)h+ 6hY2.

For [A(z+h(0))—A(z)] and [Mz+h(6)) — A(z)] in (I§), ([9) we use now the Tailor
expansion up to the order 5 with the remaining term in integral form. To pass from
moments to cumulants we use the well known relations (see e.g. relation (6.11) on
page 46 in Bhattacharya and Rao (1986)). After long but simple calculations we come
to the conclusion of the lemma.

Remark 1. We show now that the function Kj (jh, kh,z,y) + M; 3(jh, kh,z,y)
in Lemma 8 is equal to Kj(jh,kh,x,y)+ 2(L2 — 2LL + L2)A(z) + My 3(jh, kh, 2, y)
where

" . 2 mH 'h’ ~ "
My, 5(jh, kh, z,y) = —h mzzz %(L — L)D*\(x)
(20) =3 /0 (1—6)2ds / q(jih,y, e)h(j!)“ (L — L)D"X(x + 6h(0))d6.

lu|=3

Thus in Lemma 8 we can replace K}, (jh, kh, z,y)+M; (jh, kh,x,y) by Kn(jh,kh,z,y)+
My (jh, kh,x,y) where Kj(jh,kh,z,y) = (L — L)pn(jh,kh,z,y), My(jh,kh,x,y) =
B(L2—2LL+L*)N(x)+M}, M} = My 1(jh, kh, z,y)+ M, 2(jh, kh, @, y)+Mj (i, kh, 2, y)
and

max{|M; (jh,kh,z,y)|, | My(jh,kh,z,y)|} < Cp~'((y — 2),
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p? = kh — jh. To show this we note that
Pu(jh, kh, @, y) = /q(jh,y,9)k(w+7l(9))d9

where ?L(Q) = m(jh,y)h + h'/20. From the Tailor expansion we get

Bu(ih, kh,,y) = A(z) + hEAz) + b2 3 Wmm)
|u|=2 '
3y / (1 628 / (i, v, 9)%D“A(:€ + 8h(0))d6

=3

and, hence,

K (jh, kh, 2, y) = Ku(jh, kh,z,y) + (L — L)\(x) — pa(ih, kh, z,y)]

(21) = Ky(jh, kh, x,y) + h(L* — LL)\(x) + M} (jh, kh, z,y).
Note that
h(L* — LL)A(x) + M}, 4(jh, kh,2,y) = h(L* — LL)A(z) + g(Li — L)A(2)
- g(Lz —2LL + L) A()

and from the definitions of the operators L, L and L, and Lipschitz conditions on the
coefficients m(t, x) and o(t, ) we obtain that

(22) ’g(Li —2LL + L)A(z)| < Chp 3¢, (y — ).

Analogously, we have

@) | R0 Do) < o - o)
|u|=2 '
Y N () ;
(24) 3 (1= 6)%d5 | q(ih,y,0) (L — T)DA(x + 67(6))do
;;3/0 / !

< Ch*Pp~*G(y — o).
Now (BI))-(B4) imply the assertion of this remark.

Lemma 9. The following bounds holds:

> 0 ®n (K + My + R) (0, T, ,y) = > Br @n (Kn + M) (0,7, 2,y)
r=0 r=0

(25) < Cle)hn (Y - ),
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where lim,__o C(eg) = +00.

PROOF OF LEMMA 9. Forr =1 we will show that for any € > 0 with p* = kh

(26) |Dh @n (K + My, 4 Ry) (0, kh, 2, y) — Drp @ (K5, + My)(0, kh, 2, y)|
_ R
= Br @n B (0, kh, 2, y)| < CRY27(kh) ™27 B(5, )¢ (y — ).

Clearly, for an estimate of p, ®, R,(0,T,z,y) it suffices to estimate

k—2
L = h3/2 Zh/ﬁh(ov k’h,[L‘,Z)(f(]h, Z) - f(]ha y))DZ’ﬁh((j + 1)h7 k‘h,Z,y)dZ

=0
for v with |v| =4, and

k—2

]2 = hQZh/ﬁh(Oajhaxv Z)(f(jha Z) _f(]h,y))/Q(]h, 270)’5”_%(0)

J=0

1 ~
X / (1 —u)*DY (2 + uh(0))dudfdz
0

for v with |v| = 5, 1 < k < d. Here f(t,x) is a function whose first and second
derivatives with respect to x are continuous and bounded, uniformly in ¢ and z. After
integration by parts we obtain for 1 <1[,s <d

k—2

o= WPk / DEG(0. jhs ., 2)(f(h, 2) = (i y) DL Bl( + D, kb, 2, y)d
j=0
k—2
+h3/2 Z h/DjSﬁh(O,jh, x,2) D f(jh, 2) D% pn((§ + 1)h, kh, z,y)dz
j=0
k—2
+h3/2Zh/ﬁh(o,jh,x,z)D§k+esf(jh, 2) DY ((5 + 1)h, kh, z,y)dz.
j=0
Hence,
k—2 1 1
27) |L| < OR3Py h——e———(, (y—x) < CR¥* 5 (kh)Y?*B(=,6) 5 (y—1).
(27) L] < ; JTh(kh—jh)Cp(y ) < (kh) (5:6)C0z(y )

In the same way, we obtain after integration by parts with 1 <1,s <d
k—2 1

I = =h*Y h / (1 —u)*du / df (m(jh,y)h'* + )"
j=0 70

[ D0, 2) 1) — i)
xq(jh, z,0) D" Pr((j + 1)k, kh, = + uh(0), y)dz
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+h22h/ (1—u 4du/d«9(m(jh, y)h'/? 4 9y

< [ D0, ,2) D7 1 G 2 0)
x DY pp((4 + 1)h, kh, z+uh(6’) y)dz
—hQZh/ (1—u 4du/d0(m(jh, y)h'? 4 9y

Xph(o,jh,l‘,Z)(f(jh, Z) - f(]ha y))
xDSq(jh, z,0) DY pr((j + 1)h, kh, z + uh(0),y)dz.

It follows from this equation that
(28) | 15| < CR*?7*(kh)~ 1/2+’SB( e)Gy (y — ).
Claim (R7) follows now from (R7) and (§). For r > 2 we use the identity

(29) Dn @n (K + My, + Rp) (0, T, 2, y) — P @n (Kp + M) (0, T, z,5)
= [pn @1 (K, + My, + Rp) "™ — B, @ (K + My) " V] @4 (K + M) (0, T, 2,y)
+5n @ (Kp, + My, + Rp) "V @, R, (0, T, 7,y)
=I+1I.

For r = 2 we obtain from (£7) and from the simple estimate (K}, + M) (jh, kh, z,y)| <
Cpy ¢S (y — =) with p3 = kh — jh, that

Il = |[[pn®n (Kh+Mh+Rh) — Pr @n (K + My)] @ (Kp + My)(0, kh, x,y)|
< OR3P EB Zhgh “12e (kb — jh) 1/2/ (z— )¢5 (y — 2)dz
213/2—¢ 1 1 €S 2
< C*h 3(575)3(§>€+ 5)(%) ¢, (y—x),p° = kh.

For » > 3 we obtain by induction

11l = th On (Kh+Mh+Rh) — Pn @ (Kh"‘Mh)(r 1)}
®h(Kh+Mh)(0 kh,z,y)|

1 1 —1
< CTR €B< £)B(2, +5)-Bl5e+ -

2 2 2

(30) < r<s>h3/2s[Cf(I/Q?r(z{;mw2/2c5< v). 0 = kb,

To estimate I we use the following estimates

) (k)2 (y — )

1) | Dy Dypn(ihs kh, w,y)| < Cpm =Py — 2), Dypn(jh, kh, w2+ v) < CC(v),
}Dg K+ My, + Rp)(jh, kh,z + v, x)} < Cp_lgg(v).
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The inequalities (BI]) and (BJ) are obained by using the same arguments as is the proof
of Lemma 7. Using these inequalities and mimicking the proof of Theorem 2.3 in
Konakov and Mammen (2002) we obtain the following bounds for r > 0

|DLD2Bs @n (Kn + My, + Ry) (0, kR, 2, y)]
11 1 r 1

505 B(1.5).B(5, Q)gs ol (y — 2)

(kh)—la\—lb\wgf—\a\(y — ).

< Cr(kh) la]— \b|+rB(

[cra/2)
T
Inequality (B3) allows us to estimate IT = [p, @y, (K + M} + Ry,) " V] @y, Ry, (0, kh, 7, y).
For this aim it suffices to estimate

h3/2 Z h/[’ﬁh ®h (Kh + Mh + Rh)(’"_l)](o,jh, Z, Z)

forr>2 |v| =4, and

(33)

Zh/ph®h Kh+Mh+Rh)r 1](0,]h,l’,2)(f(jh,2)—f<jh,y))

(35) X /q(jh, 2, 0)h e («9)/0 (1= w)*D"pr((j + 1)k, kh, z + uh(0), y)dudfdz

for r > 2, |v| = 5,1 <1 < d. Here f(t,z) is a function whose first and second
derivatives with respect to z are continuous and bounded, uniformly in ¢ and z. The
upper bound for (B4) follows from (BJ) by integration by parts, exactly in the same
way as it was done to obtain the upper bound for I; (see (£7)). This gives an estimate

Z h/[ﬁh @n (K + My, + Ry,)"Y](0, jh, 7, 2)

XD pr((j + Dh, kh, 2,y)(f(Gh, 2) = f(Gh,y))dz|

CTQAR) e
2
The upper bound for (BF) also follows from (B3) by integration by parts in the same
way as it was done to obtain an upper bound for I5 (see (B§)). This gives for (BJ) the
same estimate as in (Bf) and, hence,
[CT(/2))"
L%
The assertion of the lemma follows now from (27), (B9), (Bd) and (B7).

h3/2

(37) [I1] < CT(e) 1/ (kh)=2/2¢5 (y — ).

Lemma 10. Let A(s,t,x,y), B(s,t,z,y),C(s,t,z,y) some functions with the
absolute value less than C(t — s)™"2¢ s—(y — x) for a constant C. Then

r=0 r=0
=Y " [A @y 0] @ [C @y ©]7 (ih, jh, z,y),
r=1
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where ® =3¢ B,

Proor OoF LEMMA 10. Under the conditions of the lemma all series are absolutely
convergent. The assertion of the lemma follows from linearity of the operation ®; and
after permutation of the summands in the absolutely convergent series.

7 Proof of the main result.

We now come to the proof of Theorem 1. The main tools for the proof have been
given in Sections 4 and 5. From Lemmas 1 and 2 we get that

p(0, T,z y) =Y peH(0,T,2,y) + o(K*T) e y(y — ).

r=0
With Lemma 3 this gives
(38> p<07T7 x7y> - ph(07 T,.T, y) = Tl + ...+ T7 + O<h2T)¢C,\/T<y - 'T)u
where
Zp@H (0,7, z,y) Z 90,7, z,y),
r=0 r=0
Zp®hH (0 T T y) ®h <H+M;L/—|—\/EN1)(T)<O,T,{E7y)7
r=0 =0
Zp@h H+M;{+\/_N1) (0,7, z,y)
r=0
- Zﬁ ®h (H + Mh + \/EN1>(T)<O7T7 x7y>7
r=0
Zp @n (H + My, + VN0, T, 2,y) = > 5@y (K + M) (0, T, 2,y),
r=0 r=0
Ts = 5@ (K + M) 0, T,2,y) = > pn ®n (Kn+ M) (0, T, 2, y),
r=0 r=0
To =Y pn@n (Ky+ M) (0, T,2,y) th ®n (K, + My, + RBy) (0, T, 2,y),
r=0 r=0
Ty =" pn ®n (Ky + My + Ry) V(0. T, 2,y) = Y ®n Hy (0,7, 2,y).
r=0 r=0

Here we put Ny (s, t,z,y) = (L — L)% (s, t,z,y).

We now discuss the asymptotic behavior of the terms 77, ..., T%.
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Asymptotic treatment of the term T;. Using Remark 1 in Konakov (2006) we get that

T, = g[p ®n (L? — 2LL + L*)p @, ®))(0, T, z,y)
(39) Folp@n (I — D)@, 810, T, 7,) + Re(0,T, ),
where for any 0 < e < 1/2
(40) |[Rr(0, T, z,y)| < Ce)(hn™ % + hVT )¢ yrly — @),

(s, t,x,y) = Yoy H (s, t,z,y). Here, the summand H (s, ¢,z,y) was introduced
to simplify notations. We define g ®, H(s,t,z,y) = g(s,t,z,y) for a function g.
Note, that in the homogenous case it holds that o;;(s,z) = 0;;(z), m(s,x) = m;(z)
and that the second summand in (BY) is equal to 0.

Asymptotic treatment of the term Ty. We will show that with a positive constant
0>0

(41) | =3 p@n HD(0,T,z,y) + > p@n (H + My + VAN) (0, T, 2, y)

r=0 r=0

+ 3 P @n (H 4 My)0,T,2,y) + Y p @ (H+ My )70, T, 2, y)
r=0 r=0

< Chn™°Cply — o).

It suffices to discuss the case r > 2 because for » = 1,2 the left hand side of ([]) is
equal to zero. For r > 2, ({]) immediately follows from the following bounds

(42) P @n (H + M+ VRN)(0,T,z,y)

—p @p (H + My 1 + Mo + \/_Nl)(r)(o T, x,y)
~[p @ <H+M;:3><”> pon H)(0,T,z,y)]
CT’
< (O(e h3/2 2_~ C

2

(43) p®h(H+Mh1+Mh2+\/_N1) 0, T, z,y)
—p @ (H 4+ Myy + VAN) (0, T, z, )
—[ﬁ®h(H+Mh2)<> p@n HV)(0,T,2,y)|

CT‘
C( ) h3/2 2e
L34
for all sufficiently small € > 0 with a function C' that fulfils lim. ., C(e) = +o00. We
will prove first the bound (43). Denote the expression under the sign of the absolute
value in (£2) by T',. Note that Ty = I'; = 0. For r > 2 we make use of the following

C\F(U — ),
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recurrence formula
(44) T, =Ty @ H+ [p@p (H+ My + VAN
—p @y (H + My1 + My + VAN) "D | @, (M) + VAN)

(B @n (H -+ My + Mig + VRN = 5y (H + M) 0| @3 M)
=I1+11+1I1.

We start with the estimation of /. First we will estimate

(45) ‘]5 Qn (H + M + \/ﬁNl)(r*I) — p@n (H+ Myq + Mo+ \/ENI)(rfl)

For r = 2 we have p ®;, Mj 5(0,kh,z,y). It follows from (B0) that it is enough to
estimate

(46)  J, = h? Zh/ (0,h, 2, 0)(f(ih,v) — f(ih,y)) D on (G 4+ Dh, kh, v, y)dv

for |v| = 4 and

(47) h3/22h/ (0, ih, v)(f(ih,v)—f(ih,y))/q(ih,v,@)@”/o (1—6)?

x DVt (i 4+ 1)h, kh,v + 5%(9), y)dédfdv

for |v| = 3. Here f(t,x) is a function for which DY f(t, z) is bounded uniformly in (¢, z)
for |v| =0,1,2,3. An estimate for.J; follows from (27). This gives

(48) ] < OR (k) 2B (5, )Gy — )

The estimate for J, can be obtained analogously to the estimate of I (see (BY)).
Integrating by parts we get

k=2 1
Jy = hW;h/o (1 —5)2d5/d9~«9”/D5’+6q[p(0,ih,x,v)
x(f(ih,v) — f(ih,y))q(ih,v,0)] D pn((i + 1)h, kh,v + 6h(6), y)dv.
The derivative
Dyt [p(0, ih, ,v)(f (ih,v) — f(ih, y))q(ih, v, 0)]

is a sum of 9 summands. Integrating by parts once more for summands which contain
DEp(0,ih, z,v) with |u| < 2, we obtain

49) Rl < RSy — o) [ o) 6" (hS o) + 1yas
k—2
1 1
2 "G TRl =)
j=0

< CRP%B(e,e)(kh)* 'y — o)
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for any € € (0,1/4). It follows from (A§) and (9) that for » =2 (3) does not exceed
Ch3/*72 B((e, e)(kh)“%i;%(y — x). For r > 3 we use the recurrence relation

(50) p®p (H+ M, + \/ﬁNl)(rfl) —p @ (H+ My, + Mo+ \/ﬁNl)(rﬂ)
=[5 ®n (H + M+ VEN) ™ = 5@, (H + My + Myz + VAN )|

Qn(H + M, + \/ENl) + P ®n (H+ My + Mo+ \/ENl)(PQ)] ®@n My 5
=I'"+1I
From (p0) we obtain for r = 3

k—2
1| < CR*P%B(e, )52y —w) Y h(ih) ™ (kh — ih) ™/
=0

_9e 1 e _
< Ch3/2 ? B(€,€)B(§,E)(k’h) 1/2C3k_;)’(y_$)
For the estimate of 11’ we use the following estimates

(51) DeDY(H + My, 1 + Myo + VAN, (jh, kh, z,v)

< Cplbe (v — ),
(52) ‘DQ(H + My + Mys + VAN (Gh, kh, 2,2 + v)) < Cp'¢,(v — ).

To prove (B1) it is enough to get the corresponding estimates for summands in M, 1, M}, 5

and VAN,

(53) W'Dy D} [DYpn(( + Vb, kh, z,0)(f(h, ) — f(jh, v))]
< Cp~ I, (v — ) for [v] =3,
(54) hDgD} [DYpn((F + 1h, kh, z,0)(f(jh, z) = f(jh,v))]
< Cp PG (0 — 3) for |v] =4,
(55) W'2DeDy DYt apy((f 4 1)h, kb, z,0)p*(f(jh, ) — f(jh,v))]

< Cp FIMIG, (v — @) for [v] =3,

for a function f(t,z) with |a| 4 |b] derivatives w.r.t. z that are uniformly bounded
w.r.t. t. These estimates are direct consequences of Lemma 7. To prove (b2) it is
enough to show the corresponding estimates for summands in M}, 1, M}, » and VAN,

(56)  hY2DY [Dypu((G + Dhy kh,2,y) lymaro (f(Ghy2) = f(ih, 2 4 0))]
< Cp i (v —a) for |v] =3,
(57)  hDL[DEpn((j + Vi, kb, y) |ymoro (F(i,2) = (5T, 2+ v))]
< Cp'¢(v—x) for |v] =4,
(58)  hEDg [Dy et (( 4+ Dhy kb, 2, 0) lymao 22 (F (G, 2) = [(ihy 7 +0))]
< Cp'¢(v—2x) for |v] =3.
These estimates also follow from the estimates obtained in the proof of Lemma 7. If
AVl 2 ), i) 2, y) = Vi P () (y — = py(y)) then
0:| _C |oz| _C
dy|~ p’

(59) <
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and for z(Vj;:ﬂ(x +v), pip(x +0), 2,0 +0) = Vj;cl/z(x +v)(v — pjk(zr +v)) we have

—1/2
v,
ox

%
ox

0z
—1/2
v,

(60) < C([oll + 1.

ox

' 0z
O

' Ot i

Now with the inequalities (B1)),(F2) we can proceed like in the proof of Theorem 2.3 in
Konakov and Mammen (2002). This gives the following estimate for r > 3

(61) ’DﬁDZ[ﬁ@h (H + My + Mys + VAN ") (jh, kh, 2, v)

r—1 9 lal—
) G (0 ),

< C”B(l,%) % .. x B

Now we denote py, =p®p, (H + Mp1+ Mpa + \/ENI)(”) and py = p. For an estimate
of P12 ®p My 5 it suffices to make the same calculations using integration by parts as
it was done above for J; and J;. This gives

(62) [r| < }ﬁl,rﬁ@hM;;/,g((],kh,x,y)}

1 11
< CTRPTEB(L B+ 5, 5)
xBTS 5 %)B(T - 2 o) (kh) (0 — )
and by induction for r > 3
(63) 7 < WP Bl B+ 5, 5)
r—3 1

X x Ble + =5, 5) Ble, &) (kh)™ 7 ¢ (v — ).

Comparing (62) and (63) we obtain that for r > 3

(64) [P (H + My +VAN)"D — p@y (H + My + Mz + VAN
1 11
<" 3/272€B \B -
r—3 1 ezt
X X Ble+ T2 ) Bl ) (kD) o — )

From (B4) we get the following estimate for 1T

1 11 -2 1 r—
(65) |11 < C"H* > B(e,€) Bz, 5) B+, 5)x...xB(s+r S ST p(v—a).

To estimate I11 note that the same inequalities (B1)), (B2),(B1]) hold for H + Mj s,
namely,

(66) | DSDY(H + Myl ) (jh, kh, x,0)] < Cp ' 1P (0 — )
(67) |DS(H + My 5)(jh, kh, 2,z +v)| < Cp~ (v — )
(68) | DeDYIp @n (H + My, 3) "] (jh, kh, z, v)|

< CTB(l,%) % .. % B



To prove (Bg)- (BY) it is enough to get the corresponding estimates for summands in
Mj 5 (see (B0)). These estimates can be proved by the same arguments as used in the
proof of (B1), (BF) and (B1)). To estimate I11 we have now to estimate py, @, Mj 4 and
P2 ®n My 5 where

Por =P ®n (H + M//z,,?,)(r)-

Using integration by parts and inequality (B§), we obtain for py, 1 ®; M 3 the same
estimate as for py, ®y, M,’;g. It holds for i = 1,2

‘52,7’ O Mi/zl,3<07 kh’7 z, y)‘

"1 3/2—2¢ 1 r+11 r I
< CTh3/A2 B(1,5) X .. x B(——=,5)B(5,¢) (kh) 2y — ).

2 7272
Hence it holds for » > 2
(69) [TIT| < [Prs—1 @n My (0, kh, 2, y)| + Do @1 My (0, kh, z, )]
9 1 r 1 r—1 ey =3
Scrh3/2 ? B(lvi) X XB<§7§)B( 9 78)(kh) M C\/ﬁ<y_'r)
From ((4), (63) and (B9) we get for r > 2
1 -2 1 r—
IT,.(0, kh, z,y)| < C"h3*> % B(e,e)Bl(e, 5) X x Ble + r S 5)(kh)5+ 7 C (v — ).
In particular
e Cr

—92¢ et T3
(70) I0,(0,T,2,y)| < h¥*2 T2 (v — )

['(2e) L(e + 51)

for any ¢ € (0,1/4) and r > 2. Now we shall estimate the left hand side of ([£3).
Denote the expression under the sign of the absolute value in ([F]) by f .. Note that
Fo=F1=0. For r > 2 we make use of the following recurrence formula

Fr = Fea® H+ 5@ (H+ My + My + VAN
D@ (H + Myy +VhN) " V| @, (My1 + My, + VhN,)

B @ (H + Maa+ VRN = G (H + M) ] @ My
= I+1I1+111.

We start again from the estimation of
Art =P @y (H + My + My + VEN) ™D = 5@y, (H + Myy + VRN) .

For r = 2 we have A; = (p ®j, M}, 2)(0, kh,z,y). It is enough to estimate

k—2
J3 = hz h/'ﬁ(O, ih, z,v)(f(ih,v) — f(ih,y))Dipn((i + 1)h, kh,v,y)dv
i=0
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for |v| = 4. Analogously to (B7) we obtain that

—& - 3 1
[Js] < Ch'™(kh) ™ /*1 B(5, €)Cpz(y — )

and, hence,
(71) |As| < Ch'=5(kh)™ 1mSB(— )¢y — o).
For r > 3 we use the recurrence relation
(72) Ay = Aro®p (HA+ My + Myo+ \/EN1)
+ [ﬁ@h (H 4 My, + \/ENI)(H)] ®n Mp 2
= I'+1I.

From ([71]) and ([[3) we obtain for r = 3

N

-2

1
(73) Il < Ch'” “B(3, )¢y — ) Y h(ih) ™ (kh — ih) ™'/
=0
<Ch1‘531 B1 1 kh)eCs
= (575) (§>5+§)( )¢y — ).
To estimate II’ we use the inequality for r > 3
(74) DD @y (H + Myy + VAN "2 (jh, kh, z,v)
1 r—11
<C"B(1,-)x ..x B r—2—al—[b] .
_C(,Q)X ><(2 2)/) Cp(v — )

This inequality is a direct consequence of (BI). We have
(75) [IT'| < Ch'=*B(1,e)(kh) ¢S (y — ).

Comparing ([[3) and ([73) we obtain that [As] < C*h'=*B(3,)B(5,e+3)(kh)*C5p(y —
x). By induction we easily get that for r > 2

(76) |Av_1(0, kh, 7, 9)] < CrhlfB(%,g) S B(%,s v ) (k) Sy — ).
For a bound of A,_1 ® (M1 + Mpa + \/ENI) it is enough to estimate
(77) Jy = hl/QZh/ -1(0,3h, 2, 0)(f(ih,v) — f(ih,y))
Dvph((z + 1)h, kh,v,y)dv for |v| =3,
(78) hzh [ Az o) b i)
Dvph((z + 1)h, kh,v,y)dv for |v| =4,
(79) Js = hl/QZh/ —1(0,ih, z,v)(f(ih,v) — f(ih,y))(kh — ih)

Drterteap(ih kh, v, y)dv for |v| = 3.
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It follows from ([/f) that

1 1 -2
il < CTHP 2B €) x o x B(5e + 4
r—3

2
)(kh)* "% Gy — o).

Clearly, the same estimate holds for J5 and Jg. Thus we obtain

1 1 -2 —1
(80) 11| < "W B(3, ). B(5, e+——) Ble, 4+

)

r—1

xB(e, e+

r—3

) (kh)* 2 (O (y—).

Now we estimate I11. We denote
B,_1=p®pn (H+ M1+ VAN — F @, (H + M, )Y,
Using the recurrence equation By = 0 and
B,_1 = B, @, (H + Myy + VhNy) + P&y, (H + My1)"? @, VRN

we obtain that
r—2

(81)  IIT=" p3 @4 VAN, @y, (H + My + VAN 72 @, My, 20,7, 2, y),
1=0

where p3; = p®y, (H+Mh,1)(l). To estimate 11 it’s enough to estimate a typical term
in the last sum. Thus we need a bound for

n—2 k—1 Jj—1
(82) R3/2 Zh/ {Zh /Zh/ﬁs,z(o,ih,x,w)(jh —th)
k=0 §=0 i=0
x DyFetenp(ih, jh,w, 2)(g(ih, w) — g(ih, 2))dw]
X(H + My + VhN) U2 ik, kh, z, v)dz} (f(kh,v) — f(kh,y))
X DYpr((k+ 1)h, T, v, y)dv.

v

For an estimate of (BJ) we apply two times integration by parts in the internal integral [ ...dw
and then we make two times an integration by partsin [ ...dv. We use also the following
estimates for 0 <[ <r —3

(83> ‘D?quﬁ3,l<07 Zhu €, w)‘

T

1 [41 1., e
< C'B(1,5) % o X B(—=, 5)(ih) 5 gl — )
(84) ’Dng(H + My, + VEND) "D (h, kh, 2, )
e 11 1 r—1-3 N L]
<C72B(Z,2) x X Bg, ———)(kh —ih) == (mm(v = 2).

22
We put here B(%, 0) = 1. This gives the following estimate for 0 <[ <r —3,r > 2

(85) )ﬁ?,,z @n VAN, ®p, (H 4+ My + VEN) 7D @, M 5(0,T, z, )
F(E) r—3
< Crh3/2—36 3e+15 _ ).
= T(3¢ + 51) Curly =)
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For [ = r — 2 we have to estimate
P2 @n VAN, @) My 2(0, T, z,y).

This is a finite sum of terms corresponding to the different summands in N j, and M, 5.
A typical term can be bounded by

n—2 k—1
(86) h’3/2zh/ {Zh/ﬁ&?“2(07jh7x7w)(kh_jh)Dg+en+emﬁ<jh7 kh7w7v)
k=0 7=0

X(g(jha w) - g(jha v))dw} (f(kh’ U) - f(k:ha y))DZﬁh((k + 1)h’ T7 v, y)d’l}

We apply again integration by parts and after direct calculations we obtain the following
estimate for r > 2

(87) D3r—2 @p \/ENlh ®p Mp2(0,T, z,y)

['(e + %2) 2
M)

1
r'(3)
The inequalities (), (E3) follow from ([70), (B3) and (B7).

Asymptotic treatment of the term Ts. We will show that

< Crh3/2—35

D p@n (H+A)0,T,2,y) - > pe, H(0,T,z,y)

r=0 r=0
< Chn_égﬁ(y - $),

where A = M}/ — M), = —2(L? - 9LL + L*)A(z). Denote

(88) T -

C. = p&n(H~+M'+VhN)D0,T,z,y)
—p @ (H + My, + VAN) (0, T, 2, y)
_[ﬁ ®h (H + A)(T’) _ﬁ®h H(T)](07T7$7y)

Analogously to (f4) we have the recurrence relation

(89)  Cr = Cor@uH+ [F@n (H+ My + VAN
~pen (H + My -+ VEN) ] @, (M + VAN,

n [p ®n (H + My +VEN) ™D — p @, (H+ AV @, A
= I+ I1IT+1I1.

Denote
Dyoy=p @ (H + My + VRN) " = pey (H + A0,

Clearly
D,y = Dy_y @, (H + My, + VENy) + pp @5, (H + A2 @, (M), — A+ VAN).
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Iterating we obtain

(90) III =D, ;®,A
r—2

= Pag @y (M, — A+ VANy) @y, (H + My + VRN) 72 @, A0, T, 2, y),
=0

where py; = p®p, (H+ A)D. The sum (PU) can be estimated exactly in the same way
as the sum (RB1). This gives

CT r—4
(9].) |I.[I| S C(€)h3/2_28@TS€+ 2 C\/T(’U — {L'),T = 2,3

2

To estimate I/ denote
Er1=p @y, (H+M' +VhN)"™D — 5@, (H + My, + VANV,

For r =2 we have E; = p®;, A and analogously to (f)
1
1—¢ e—1/2 S
(92) |Ey| < Ch'=5(kh)=~Y B(ia‘g)c\/ﬁQJ — ).

Analogously to (B(j) for r > 3 we use the recurrence relation

(93) By = E,_y®u (H+ M +VhN,) + [p @ (H + My, + VhN)" 2] @, A
— '+ I,

Both terms in (B3) are analogous to the corresponding terms in (F2) and may be
estimated analogously. This gives the following estimates for r > 3

L (k) Sy — ),

1 1
|E, 1| < C"hl’EB(i,s) X .o X B(§

(94) 11| = |E._y @, (M} +VhN)(0,T,z,9)
—92¢ CT < r—4
< C(E)hg/z 2 @T?’ T C\/T(U — [L‘)

2

,E+

The desired estimate (B§) follows from (B9), (P1)) and (4).
Asymptotic treatment of the term Ty. We will show that

(95) T, = Y peyHD(0,T,2,y)

r=1

=Y PO [H +hN]D(0, T, 2, y) + Ry (x,y),

r=1

with No(s,t,z,y) = (L — L)Ta(s, t, 2, y), | R (2, y)| < Chn"sg\sﬁ(y — ) for § > 0 small
enough and with a constant C' depending on J. For the proof of (P3) it suffices to show
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that for § small enough

(96) S 5@ (H + My, + VAN, + hNy)(0, T, 2, )

r=1

- Zﬁ ®h (Kh + Mh)(r) (07 T7 xZ, y)
r=1
< — | Ty — ),
2|

(97) > @n (H+ M, +VhN) (0, T, z,y)

r=1

= 9 ®n (H + My + VAN, +hNo) (0,7, 2, y)

r=1

- [Zﬁ @n H(0,T,2,y) = Y p®n [H + hN) (0, T, 2, y)

l

r=1 r=1
E Chn=°CS—(y — x).
= k VT
k=1 F(§>

Denote D3 = 0 and

D3n(0,jh,x,y) = > p@y (K + My) (0, jh, z,y)

— Zﬁ ®n (H + My, + VhN; + hNQ)(r)(Oujh7x7y)'

r=1

Then (P@) can be rewritten as
|1 D3.0(0, T, 2, y)| < Chn™°CS(y — ).

We now make iterative use of

(98) Dy = Dy 1 @p (H + My + VAN, + hNy) + g1,

form =1,2,..., where

gn(0,jh,xy) = — | p@n (K + M) | @y (H — Ky, + VAN, + hN,)(0, jh, z,y)
r=0

= Shum @ (L — L)dy(0, jh, x,y)

with
90(0,jh,z,y) = —p @y (H— Kp + VAN, +hNo)(0, jh, 2, ),
dy = Pn—p— Vi — b,
Snan(0,ih, 2, y) = > @y (K + M) (0,ih, z,y).
r=0
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Iterative application of (0§) gives

n—1

D3n(0,T,2,y) = > gr @ (H + My + VAN, + hNo) "7 D(0, T, 2, y).
r=0

To prove (Pg) we will show that

(99) 9r @n (H + My, + VhN; + hN,)"=m=D(0, T, z, y)

n—r

< @hn"s@f(y — ).

For this purpose we decompose the left handside of ([[00) into four terms

ay = Y h / 900, ih, x, u)(H + My, + VhNy + hNo) """V (ih, T, u, y)du,

0<i<n/2

aro = Z h? Z //Sh,r(O,kh,x,v)(L—z)dh(kh,ih,v,u)

nj2<i<n  0<k<i/2

X(H + My, + VAN, + hNo) ™Y (ih, T, u, y)dvdu,
as = » b ) //(LT — L7800, kh, 2, v)dy,(kh, ih, v, u)

n/2<i<n  j/2<k<i—n®'

X(H + My, +VhNy + hNo) "D (ih, T, u, y)dvdu,
aa = > K Y / / (LT — L") 8,0, kh, z, v)dy(kh, ih, v, u)

n/2<is<n j—pd <k<i—1

X(H + My, + VhNy + hNo) "D (ih, T, u, y)dvdu.

Here LT and LT denote the adjoint operators of L and E, and ¢’ satisfies inequalities
23 < & < (1 — 5), where 5 is defined in (B2). For the proof of ([[00) it suffices to
show for [ =1,2,3,4

1
(100) lay,| < hn"sC”*”B(l,é)x...xB(i -

" —6 8
< [rm) =2
for some 6 > 0.

Proof of (00) for | = 2. Note that k < i/2,i > n/2 imply ih —kh > L. The
claim follows from the inequalities
(101) max{| Kn(ih, jh, z,y)|, |Mn(ih, jh, ., y)| , VAN (ih, jh, 2, y)

|hN2(ih, jh, @, )|, |H ik, jh, @, y)|}
< Cp ¢,y — o) with p? = jh—ihfor 0<i < j <n,
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(102) [Sh,m (0, kh, z,0)| < OCE 2 (v — ),

(103) )(L — D)dy(kh, ih, v, u)| < CHY2(ih — kh) ¢S5 (u — v)
= O™V (28— ),
(104) )<H+ My, + VEN, + hN) ™™D (ih, T, u, y)
11 —r—21
< OB, ) X ...xB(% Sy — u)

crr - _
< |Fmg] 0 - et =
forn —r—3=-1,0,1,....,n — 3 with p*> = T — ih. We put B(%,O) = 1). Inequality
(o) follows from the definitions of the functions Kj, ..., H. Inequalities ([03) and
([L04) can be proved by the same method as used in the proof of Theorem 2.3 in
Konakov and Mammen (2002) (pp. 282 - 284). Inequality ([03) follows from the
inequality th — kh > %, Lemma 5 and the arguments used in the proof of Lemma 7.

Proof of ({0Q) for | = 3. Note that n/2 < i,k >1i/2 imply kh > L. We use the
following inequalities

(105) |dp(kh, ih,v,u)| < Ch¥2(ih — kh)™3/2¢5-5_ (u—wv),

|
Vih—kh
(L7 = I7)S3,(0, kb, ,0)| < CTCS2 (0 = ),

(106) |h > (LT — L7)Sy (0, kh, 2, v)dy(kh, ih, v, u)dv

i/2<k<i—nd’
1
3/2—1 _
< Ch3?T ) ; 5/h(ih—k:h)3/2cm(u )
1/2<k<1—n
3/2p—1 ihnh du 3/2—3/2. (1—68')/2
< Ch3PT- /ih/2 mcm(u—x)gCh/T’/n(’)/Cm(u—x)

< C’hn"suc\/fh(u —x),
where §" = 0'/2 — 3 > 0. Claim ([L00) for = 3 now follows from ([[04) and ([L04).

Proof of {[0Q) for | = 4. For i —n® < k <i—1,n/2 < i we have ih > T/2,
kh >T/3, (i — k) < n? for sufficiently large n. The integral

/ (LT = LT)Sp (0, kh, 2, v)pn(kh, ih, v, u)dv

is a finite sum of integrals. We show how to estimate a typical term of this sum. The
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other terms can be estimated analogously. We consider for fixed j,1

/ %S (0, kh, x,v)

(107) 81)]01)1

(oji(kh,v) — oji(kh,u))h~Y?

i—1
Okh,u, b2 (w—v —h Y m(lh,u))]dv
=k

/ 0%Sy,.-(0, kh, x,v)

8vj8vl |v:u*— hw

X [Ujl(kha ut — \/ﬁw) - Ujl(khv u)]q(i_k)(khv u, w)dw7

where u* =u—h Zl 5 +m(lh,u). Now using a Tailor expansion we obtain that the right

hand side of ([L07) is equal to

0285,(0, kh, x, u*) 02Sh(0, kh, x, u* — 6vVhw)
’ DY do
/ 8vj le \/_ |Zl / 81@ a'Ul

) \/_Z w+\/_Zz km<lh Wl Dy oji(kh,u)

lv[=1

R e ﬂz;‘;ﬁ mih,w)"

vl

lv[=2

1 i—1
X / Dyoj(kh,u — 6vIw — 6k Y m(lh, u))dé] ¢ (kh, u, w)dw.
0 =

Note that

i—1

Vi [ OB L) Sy ) )

0v;0v
Al 1=k

028,,(0, kh, x,u*) -
—p e Ih
avjavl ; mp( ) U),

Ov;0v;
1 1

x{/ DZajl(kh,u)d5+/ [D”a]l( — 5vVhw
0 0

—6h> " m(lh,u)) — Dioj(kh, u)] d5} " (kh, u, w)dw

o) [EROILL VRS myfth, ) oty + VRS my(ih )

%Sy (0, kh, , u*)
=h T 2 DYo(kh kh, d
Ju,00 Vo ,u)/w w q ( u, w)dw
928 (0, kh, x, u*) <= L
+h2 év7»8v;x7 w) Zmp(lh, u) qu(lh, u) + R,
j =k I=k
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where by (A3') we have for jo < (i — k) <n¥, w' = (i — k)~ ?w

02Sp(0, kh, x,u*)
8vj8vl

(109> < Ch<m<u_x><h8n55’ +1)T3/2n1/2+35//2/”w/”3w<w/)dw/

< Chn_1/2+%/2+36l/2§\/2~_h(u . l’) < Chn—1/2(1—35’—%)cm(u o l’),

IR < Ch*?

'/(né’/Q ||w/|| +O(Tl/Qn_l/QHI))sw(w’)dw'

We obtain analogously

i—1 1 23 *
P Sp (0, kh, z,u* — 6v/hw)
h hE mg(lh D¢ (kh ’ dd
/wp(wq +vh 3 o(lh,u)) Doy ( ,u)/o D0, 00,00

" (kh,u, w)dw
8ajl(k:h u) 0*Sy (0, kh, x, u*)

/wpwqq )(kh,u, w)dw + R,

Ouy, 0v,0v;0v;
where
|R| < Chn VP3390 — 1), 1 — 38 — 35> 0
and, for 1 — —2x>0
3 _
(110) h3/2/ /8Shr0khxu 5\/_w)d5
0v,0v;0v;
/ 020 u(kh,u — 63v/hw — 6h 31— my(lh, u))d5
0 8Uraus

i—1 i—1
x (w, + VY - mp(lh,w))(ws + V> mg(lh, u))g ™ (kh, u, w)dw
=k =k

S Chn—1/2(1—36/—21«f)§m(u _ [L‘)

For 1 <i—Fk < jp the same estimates remain true because the following bound holds

(111) / ol 49 (¢, 2, w)dew < C ).

The same estimates hold for p(kh, ih, v, u) with ¢~ (kh,u,w) instead of ¢ (kh, u, w),
where ¢(kh,u,w) is a gaussian density with the mean 0 and with the covariance
matrix equal to o(kh,u). The first two moments of ¢*~® and ¢("~*) coinside so after
substraction we obtain uniformly for i —n® <k <i—1

(112) oo > // — LTS, (0, kh, 2, v)

n/2<i<n i—nd <k<i—1

(ph<kh7 Zh’7 v, U) o ﬁ(khﬁ Zhu U, u)>dv
X(H + My, + VAN + hNo) ™Y (ih, T, u, y)du

< {%} hT3/2 —3/2(1—3—56"/3) Cm(u_l,)
r(%=5=)
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To estimate the other terms in dj(kh,ih,v,u) we need bounds for the following ex-

pressions
ey (LT = L7)Sp (0, kh, 2, v)Vh(ih — kh)
i—nd <k<i—1
xDyp(kh,ih,v,u)dv for |v| =3,
o> (L" = L") 8,0, kh, z, v)h(ih — kh)
i—nd' <k<i—1
x DYp(kh,ih,v,u)dv for |v| =4,
ho > (LT = L7)Sp (0, kh, z, v)h(ih — kh)?
i—nd <k<i—1
x DYp(kh,ih,v,u)dv for |v| = 6.
We have
(113) heo > (LT = LT)Sp (0, kh, 2, v)Vh(ih — kh)

i—nd <k<i—1

Drp(kh,ih,v,u)dv|

= > D *ea(LT — LTS, (0, kh, x,v)Vh(ih — kh)
i—nd' <k<i—1

Dy=»=¢p(kh, ih,v,u)dv|

y h
<CT R Y ——Cym(u — )
i—n¥ <k<i—1 ih — kh

< Chn’(lf”’%'ﬁ)(m(u — ).

Clearly, the same estimate ([I3) holds for |v| =4 and |v| = 6. Now ([[00) for [ =4
follows from this remark and ([13) and (TI3).

Proof of ([L04) for | = 1. Note that for this case T —ih > T/2.

(114) aa= Yy h Y // — L")Sp,(0, kh, x,v)

0<i<n/2 0<k<i—1

xdp(kh,ih,v,u \Ilhr(zh T, u,y)dvdu

= > / ) Shr (0, kb, z,0)

0<k<n/2—1

X > b du(kh,ih,v, w) 8, (ih, T, u,y)du
k4+1<i<k4n®

+ ) h/dh(kh,ih,v,u)\l!h7r(ih,T,u,y)du dv,

k4nd <i<n/2
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where we denote
Uy, (ih, Ty u,y) = (H + My, + VN, + hNy) DGk, T u, y).

We consider

i—1
S b PP kb Pl — v — B m(lh,w)]) Wy (ih, Ty u, y)du
k4+1<i<k4n® I=k
= Z / (i=k k:hvw+\/72w+\/72mlhu Y DY qR) (kh, v, w)

k+1<i<k+nd lv|=1

+hz (w + Vh Y m(lh,w))” D¥q P (kh, v, w)

V!
lv|=2

LSS (w + Vh 32, m(lh, w))”

vl

[v|=3

1
x/ (1 —6)2D¥q - (khv+5h1/2w+5hzmzhu )dé}
0

X Q Up,(ih, T,v,y) + VY (w+Vh Zm(lh, w)) D2V, (ih, T, v, y)

V=1 =
Ih

oy (w VR E e mth )" g, i 7y

V!
V=2

13h82 Y (w + VR m(lh,u)”

|
~ V!

1 i—1
X / (1= 0)2DYWy,(ih, T,v + 6h'*w + 61y " m(lh,u), y)da} dw
0 =k

This integral is a sum of 4 x 4 = 16 integrals. We estimate only two of them. Other
integrals can be estimated by similar methods. First, we estimate

Z h q(i*k)(kjh’v’w)\yhﬂ"(ih, T,v,y)dw = Z h\ph,r(iha T,U,’y)dw-

k+1<i<k+nd k+1<i<k+nd

Note that we get the same term when we replace ¢U=% (kh,v,w) by ¢ (kh,v,w).
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After the replacement this term disappears. Second, we estimate

i—1
Z h / " P (kh, v, w)Vh Z (w+ \/ﬁz m(lh,w))" Dy, . (ih, T, v, y)dw
—k

k4+1<i<k+nd® lv|=1 =

d i—1
YN Dy T ey [0 wl, - VYm0
=k

J=1 p41<i<k+nd’

+O(hn? |Jwl| + **n*®")]dw

d i—1
=Y > DP(ih, T v,y) Y my(lh,v)

J=1 k41<i<k+nd I=Fk

d
+O (WY D Db T, v,y)]

J=1 k4+1<i<k+nd’

d
OB Y Y h|DE (k. T v, y)] / ¢ (kh, v, w) | dw

J=1 k4+1<i<k+nd’

d i1
=12 N Dy (ih Tovy) Y my(lh,v) + R,
J=1 k1<i<k+n® =k
where s
|R| < WTl/th—:&/zHa'C e (y — v).
2

The first term in the right hand side of this equation will be the same if we replace
P (kh,v,w) by ¢ (kh,v,w). After the replacement this term disappears. For
a proof of this equation we consider the function u(w) that is defined as an implicit
function and we used the following change of variables

i—1
W =u— v — th(lh,u)

l=k

to obtain
\/ﬁim(lh,u(w)) = \/ﬁim(zh, v) + O (h(i — k) Jw|| + h*2(i — k)?)

because of (i — k) < n?. By similar methods we get

(115) > b [ [VhFE(khyih, v u) + B (kh, ih, v, w)] 8, (ih, T, u,y)du
k4+1<i<k4n®
e —3/2426' +5¢/2
< Whn Cor—m(y —v).
2
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It remains to estimate

> b dy(khyih v, u) Uy, (ih, T, u, y)du.

k4nd <i<n/2

From ([[04) and ([[0F) we obtain

(116) Z h | dn(kh,ih,v,u)Uy . (ih, T, u,y)du
k+nd <i<n/2
- onr ] T/2 du
< |—— T1/2h3/2/ -
B F(H_TH) khans'n (U — kh)3/2 C\/Tfkh(y v)
Cn—r T ,
< — T_l/th_é/Qg\/iITkh(y—U)
LD 5)]
cr ] —1/2(8'— )
S == Cr=mn(y —v).
D=5

Now we substitute the estimate ([I) into ([I4). This gives the following estimate for
any 0 < e < s

n/2—1

(117) > h/(LT—/LVT)S,W(O, kh,z,v)
k=1
> b | dy(khyih v, )0y (ih, T u,y)du
k+nd’ <i<n/2
o n/2
< [— ] h POy (kD) — )
F(*==) =
¢ —1/2(8' )
< CE) | mram | Cyrly — o).
I'(*=5=)

For k = 0 we get with S}, (0,0, z,v) = §(x — v) where 6(e) is the Dirac function that

> / / S (0,0, 2, 0)(L — L)dy(0,ih, v, u) Wy, (ih, T, u, y)du

1<i<i/2
F(n—r—l)

n—r

< C(e) [ ; } =279 ly — ).

This completes the proof ([00Q) for I = 1. The estimate (P7) may be proved by the
same arguments as were used to prove (Bg).

Asymptotic treatment of the term Ts. We will show that,

(118) Ts = —vVh ) 7 @y (H + Myy + VhN) (0, T, 2, y)

r=0

—hz Ty @p H(T)(O, T,x,y) + Ru(x,y),

r=0
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where |Rp(z,y)| < Chn*'yc%z(y — x) for some v > 0. Note that with S,(s,t,z,y) =
S (K + M) (s, t,x,y) the term Ty can be rewritten as

I5 = (ﬁ_ ﬁh)(ov T7 xz, y) + (ﬁ_ ﬁh) On Sh(07 Ta xz, y)
We start by showing that for s < < I*T” uniformly for z,y € R

(119) h Z (pn — p)(0, 7h, x,w)Sp(jh, T, u, y)du

1<j<ns

< O<hn71/2(17;4746))c\8/%2(y . SL’)

for § small enough. For the proof of ([I9) we will show that uniformly for 1 < j < n?
and for z,y € R?

(120> /ﬁh((]? jha z, U)Sh(]h, T7 u, y)du = Sh(jha T7 z, y)
FO[RY2T V2 Y/ | 2ty n5/2h1/2]<\5}%2<y — ),
(121) [ 70, b .08 0 T, ) = (71, T, ,)

+O[h1/2T*1/2n*1/2+5 4+ Ry n5/2h1/2]g“5%2(y — ).

Claim ([19) immediately follows from ([20)-(I2])). For the proof we will make use of
the fact that for all 1 < j < n° and for all z,y € R? and |v| =1

(122) DSy (i, T, y)| < O(T = jh) ¢Sy — ).

Claim ([[22) can be shown with the same arguments as the proof of (5.7) in Konakov
and Mammen (2002). Note that the function ® in that paper has a similar structure
as Sp. For 1 < j < n’ the bound (I23) immediately implies for a constant C"

(123) | D;Su(jh, T2, y)] < T2y — ).

We have p,(0,jh, z,u) = h~%2¢9[0,u, hfl/z( — 2 — h Y21 -y m(ih,u))]. Denote the
determinant of the Jacobian matrix of u—h 7, “m(ih,u) by A,. Because of condition
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(A3) and ([[23) it holds that for 1 < j <n°

/ 54(0, jh. 2, w)S(7h. T, u, y)du
7j—1

= /hd/Qq(j)[O, w, bV (u —x —h Z m(ih,w))|Su(jh, T, u,y)du
i=0

j—1
= /q(j)(O,x + A2 + th(z’h, u(w)), w) }A;l‘
i=0
j—1
Sp(jh, T, x + hY*w + hz m(ih, u(w)), y)dw

=0
— [90.2.w) + 0G0 ] + VoG w1+ OGRS, T, .)
+O(WT S22 (y — o) (1 + W27 ||uwl| %) (]| + 1))
_ Sh(jh,T,x,y) + O[h1/2T71/2n71/2+5 + h1/2T*1 + h1/2n5/2]c\5}%2(y N :1:)

with u = u(w) in /-, m(ih,u) defined by the Inverse Function Theorem with the
substitution w = h™%(u — x — hzg;é m(ih,w)). This proves ([20). The proof of
(21)) is the same with obvious modifications. From ([19) we get that for § < 2%

4
(where s is defined in (B2))
Is5 = (ﬁ_ ﬁh)(ou T7 z, y) +h Z (ﬁ_ ﬁh)<07]h7 T, U)Sh<jT7 U, y>du + Rh<x7 y)
nd<j<n

with |Rp(z,y)| < O(hn_l/Z(l_“_A“s))Cj%Q(y — ). We now make use of the expansion of
Pn — D given in Lemma 5. We have with p = (jh)Y/2? > h1/2n%/2

(124) hy h?’/zp‘?’/éf(u — 2)Su(jh, T, u, y)du
j=n?
< ChQszS/nfé// Z p72+25’ / ‘C‘;(U‘ _ x>5h<jh7 T, u, y)} du,
j=n?

where §' < 26(1 — 6)71,2 0" = § + 206’ — 26". Now we get that

(125) h Y p / 165 (w = 2)Sh(jh, T, u, y) | du < CB(8,1/2)T" V2522 (y — )
j=n?

for a constant C. This shows that for ¢’ > 0 small enough

T5 == —[\/E’ﬁl + h%Q](Oa Ta z, y)

—h Z VA7, + h7o)(0, jh, 2, 1) Sy(jh, T, u, y)du + R} (x,y),

nd<j<n
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with | R} (z,y)] < O(hn*(‘s//*”/?))(’\b;%z(y —z) with a constant in O(-) depending on §'.

It follows from ([19), ([24) and ([27) that

[e.9]

(126) Ts = = (VA + hits] @ (K + M) (0, T, 2, y) + Ry (x,y),

r=0
where |R}(x,y)| < O(hn_(‘s”_”/z))gf’;;(y — ). Now we apply Lemma 10 with A =
Vhiy, B=H+ M1+ VhNy,C = (K — H — VANy) + (M, — Mj,;1) to

(127) —Z\/ﬁﬁ ®n (K + M)"(0,T,2,y)
r=0

+ > VA @ (H + My + VAN (0, T, 2,y)

r=0

andw1thA:h%2,B:H,C: (Kh—H)+Mh to

(128) = iy @ (Kn+ My) (0, T2, y) + Y Wity @, HO(0, T, 2, ).
r=0 r=0

The estimate ([I§) follows from ([23), (I27), (I2§), Lemma 10, Lemma 5 , ([[d) and
().

Asymptotic treatment of the term Ts. By Lemma 9

| T5| < C(e)hn /242C5(y — 2).

Asymptotic treatment of the term T;. We use the recurrence relation for r = 2, 3, ...
Pn @ (Kp + My, + Rp)(0, T, 2, y) — by @5 Hy, (0, T, 2, y)
= [Pn @n (K + My + Rp,) ") = P @5 Hy" V] @3, Hy(0,T, 2, y)
+[pn @n (Kp, + My + RBy,) "D @y, (K + My, + Ry, — Hy,)|(0,T, x,y)
and we apply Lemma 8 for r = 1. We get in the same way as in the proof of Lemma 9
| T7| < CR*PTV2(5(y — o) = Chn™ V2 (y — x).

Plugging in the asymptotic expansions of Ti,...,T; . We now plug the asymptotic

expansions of Tj,...,T; into (B). Using Lemma 10, Theorem 2.1 in Konakov and
Mammen (2002) we get

(129> ph<O,T,.§L’,y) —p(O,T,x,y)
= Vh [71 + 0 @ R1] @1 80,7, 2,y)
+h { [%2 + T Qn P Ry +pd ®pn o +pd Qn %3] Qn (I)(OaTa xa?/)

+pt@n (R @, ©)? (0, T, 2,y)
1 1 ~
+5p @ (L? — L*)p*(0,T, z,y) — 5P ®n (L' = Lp*(0,T, z, y)}

+O(W°C 7y — ),
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where
§R1(S,t,l’,y) = Nl(S,t,.ﬁU,y) + Ml(S,t,SU,y) - Ml(S,t,LE,y),

Ro(s,t, 2, y) = No(s, t,2,y) + i(s, t,2,y) — (s, t, 2,y),
Xv\S, L) — XuvlS, Y v~
Ry(s,t,2,y) = ) b )V! 5 9) s ,,y),

lv|=4
M (s, t,z,y) = XV(V )D”p(s t,x,y), M1 (s,t,x,y) X5 D”~s t,x,y),
v|=3 ' v|=3
(s,t,z,y) Z Xols DV7T1<S t,x,y), H1 (s,t,z,y) Xu(s ;’%l(s,t,x,y),
v|=3 v|=3

For the homogenous case and T' = [0,1] ([29) coinsides with formula (53) on page
623 in Konakov and Mammen (2005).

Asymptotic replacement of p? by p. It follows from (11), (26) and (27) in Konakov
(2006) that

(130) (0" = p)(ih, jh, @, 2)| < Ce)h'~*(jh — ih)* 1/2¢\/(j_—i)h(2 —z)

for any 0 < ¢ < 1/2. Using ([3() and making an integration by parts we can replace
p? by p in ([29). For example the operator L? — L? is the operator of the third order.
Making an integration by parts we have for |v| = 3

(131) Zh/D p(0,ih, x, 2)(p* — p)(ih, T, z,y)d=

1—¢ 1 1
< C(e)h ; h R T m)l e Ovry — )

SC( )h1/2 25T25 1/23(5 e+ )gb\/—( )

By (B2) we have 0 < s < 1 —4e. This implies

h
=P ®h (Lz - L2)<pd - p)<07T7 l’,y)

5 < C(€>hT1/2n7(1/27257;4/2)¢ﬁ(y . SL’)

< C(e)h'™ by — o)
for some 0 < § < 1/2. The other terms in ([29) containing p? can be estimated
analogously. Thus we get the following representation
(132) pu(0, T, 2, y) = p(0, T, 2,y)
= Vh[F +p @ Ri] @4 80, T, z,y)
+h [Ty + 71 @5 @ @p Ry +p Qp Re + p @, R3] @, (0, T, 2, y)
+p @n (Rr @1 @) (0,72, y)
1 1 ~

+5p @n (L= L)p(0, T, 2, y) = 5p @n (L' = L)p(0, T, y)}

O(h'™°¢ 7y — ).
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For the further analysis we need a generalization of a binary operation ® introduced
in Konakov and Mammen (2005). Recall a corresponding definition. Suppose that

€ [0, — h] and t € {h,2h,...,T}. Then the binary type operation ®j}, is defined as
follows

f Q) g(s t,xy) = Z /fsyhxz (jh,t, z,y)dz.

s<jh<t—h

Note that for s € {0, h,2h, ..., T} these two operations coincide, that is ®} = ®j,.

Asymptotic replacement of (p®pR;) @y (0,7, z,y) by pe(R;®), P)(0,T,x,y) =
(p®@R;) @, ©(0,T,2,y),i=1,2,3, [pR) (R1 @) P)]@p (B @1 @) (0,7, 2,y) by p®
(@, @)@}, (R @, )0, T, 2, y), p&n (LI —L*)p(0, T, z,y) by p@(LI—L*)p(0,T,z,y)
and p®, (L' —L)p(0,T,z,y) by px (L' —L)p0,T,z,vy).

These replacements follow from the definitions of &;,7 = 1,2, 3, and can be proved
by the same method as in Konakov (2006), pp. 9-12, where we estimate the replace-
ment error of p®;, H by p® H. Linearity of the operation ®;, implies that it is enough
to consider the functions p®, ¥ where (u, t, z,v) is a function of one of the followin
forms:

X,,(?L, Z) - Xl/(uv U)
vl

Xl/(uv Z) - X,,(?L, U)
vl

Drp(u,t, z,v),|v| = 3,4, D7 (u,t, z,v),|v] =3

(L — L)1 (u, t, z,v), (L — L)% (u, t, 2, v).

We consider the case S(u, t, z,v) = (L — L)7 (u,t, 2, v). The other cases can be treated
similarly. It is enough to consider a typical term of (L — L) (u,t, z,v), namely, we
shall estimate

ih jh N
[ au 0.0 ( / xy(w,v)dw) DY(L = D)i(u, jh, 2, v)d=
0 u

—Zh/ (0,ih, x, z) (/Zjh Xy(w,v)dw) DY (L — L)p(ih, jh, z,v)dz

ih

J=L  a(i+1)h (i+1)h
Z/ du/[)\( ) — A(ih)] dz—Z/ (u — ih) du/)\’(ih)dz
i=0 /il

1 J=L  a(i+1)h
(133) +§Z / (u — ih)2du / / N'(8) |ses, dzdddu,
i 0

i=0 v ih

where A(u) = p(0,u, x, 2 <fj Xo(w, v dw) DYH (u, jh, z,v),s; = ih + 6(u — ih). As in
Konakov (2006), p.9, we obtain that

ji / O i) / N(ih)dz

i=0 VP
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jh
| xuls.ods [ p(0.,2) D2 b 2,0

j— jh
+g h/ Xy(s,v)ds/p(O,z'h,x,z)DZHl(ih,jh,z,v)dz

j—1

h
(134) ) Z hxu(ih,v) /p(O, ih,x,2) Dy H (ih, jh, z,v)dz,

1=0

where

Ao(s,jh, z,0) = (L* = 2LL + L*)j(s, jh, z,v),

d _

1 doy(s,z)  day(s,v)\ 0*p(s,t, z,v)
H + i B AGE ) Uy %y
((s,1,2,v) T2 Z: ( Jst Js! ) 07,02,

d ~
Omy(s,2)  O'my(s,v)\ 9p(s,t, z,v)
. — — — 2 1=0,1,2,Hy = H.
; < Js Jst 0z ’ e

The differential operator Ay was calculated in Konakov (2006), p.9. A is a forth
order differential operator. From the structure of this operator and from ([[34) it is
clear that it’is enough to estimate

(135)
h n—1 j—1 ih
£ vt
v §j20h/;h/ih ks v)de / (0,h, z, 2) DI™P(ih, jh, z,0)dz®(jh, T, v, y)dv

for |v| = 3,|u| = 3. To estimate ([[35) we consider three possible cases: a) jh >
T/2,ih < jh/2 = jh—ih >T/4 b) jh > T/2,ih > jh/2 = ih > T/4 c) jh <T/2
— T — jh > T/2. In the case a) we make an integration by parts transferring two
derivatives to p(0,ih, x, z). This gives

Ml?‘

J—1 jh
Zh/ Xv(s,v)ds /D;’“’Lel (0,ih, z, ) DY == p(ih, jh, z,v)dz
1=0 ih

o du
1—2¢
<Ch /0 W= (jh — )l ¢ yin(v — )

< C(e)h' (i) * ¢ (v — 2)

and .
9 du
1] < C(e)h!? /0 T T )i oyr(y — )

(136) < C(e)h3/4T1/2n_(1/4_25_”/2)gbﬁ(y _ l‘) < C(€)T1/2_6h3/4+6¢ﬁ(y . l‘),

where § = (1/4 —2e — 5/2) > 0 if % <1/2—4¢,0<e < 0,05 (see the condition
(B2)). In the case b) we make an integration by parts transferring four derivatives to
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p(0,ih, x, z). This gives the same estimate ([3G). At last, in the case ¢) we make an
integration by parts transferring three derivatives to ®(jh,T,v,y) and one derivative
to p(0,4h, z, z). This gives the same estimate ([[36). To pass from D#p(ih, jh, z,v) to
D!p(ih, jh, z,v) we used the following estimate

Clearly, the same estimate ([36) hold true for the other summands in the right hand

side of ([34)

n—1 7j—1 ih
h/ h/ Xy(s,v)ds/p(O,ih,x, 2)DYH,(ih, jh, z,v)dz®(jh,T,v,y)dv

< C<€)T1/276h3/4+5¢ﬁ(y _ SL’),

—Zh/x,, (th,v Zh/ (0,ih, z, 2) DY H (ih, jh, z,v)dz®(jh, T,v,y)dv

< C<€)T1/276h3/4+5¢ﬁ(y _ SL’)

Now we shall estimate the second summand in the right hand side of ([[34). Analogously
o (19) in Konakov (2006) we obtain

-1 (4R 1
(137) %Z / (u — ih)2du / (1- ) / N(s) |oes, dzdddu
-0 0
1 Jj— (i+1)h
:52/ (u — ih) /1— Z/ Xu(T,v)d

X /p(O,s,x,z)DZAk(s,jh, 2,0) |s=s; dzdddu

1

_]z_:/(i+1)h(u_¢h)2 /01(1 — ) (s,v)

i=0 Vil
X /p(O,s,x,z)DZAo(s,jh,z,v) ls=s; dzdodu

1

_jz_:/m”h(u_m)? /01(1 — 6)xw(s,)

i=0 Vil
X /p(O,s,x,z)DZHl(s,jh,z,v) ls=s; dzdodu

j—1

_ ]z:/(iﬂ)h(u — ih)? /01(1 _ 5>W

i=0 7ih

X /p(O,s,x,z)DZH(s,jh,z,v) |s=s, dzdddu,
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where the operators A;,7 = 1,2, 3,4, are defined as follows:
Ay(s, jh, z,v) = (L — 3L2L +3LL% — Z?’)'ﬁ(s,jh, Z,0),

As(s, jh, z,v) = (L1H + 2LHy)(s, jh, z,v),
A3<S,jh,2,v) = [(L o z)zl + 2(L1 - ’El)z]ﬁ(‘svjhu Z,’U),

(138) Ay(s, jh, z,v) = Hy(s, jh, z,v).

The operator A; is given in (24) in Konakov (2006). As in Konakov (2006) it is enough
to estimate for fixed p,q, 7,1

%jz_i/imnh(u — ih)? /01<1 - 5)§;/th Xo(T, v)dT

i=0 Yih

O*B(s,jh, 2,0)
DY ! = s=8; d ddd ’
/p(O,S,ZL‘,Z) z (azpazqaZlaZr ) | - ’

As in (25) in Konakov (2006) we obtain that ([39) does not exceed

(139) C(e)h3/2’€(jh)2€’l¢m(v — ).

It follows from the explicit form of these operators ([38) that the same estimate ([39)
holds for Ay, A3 and Ay. The other three terms in the right hand side of ([[37) do not
contain the factor [ SJ " Xv(7,v)dT and they should be estimated separately. Clearly,
it’s enough to estimate the term containing Ag. The remaining two summands are less
singular. From the explicit form of Ay (formula (15) in Konakov (2006)) we obtain
that it is enough to estimate for fixed ¢, [, r

J=L  a(i+1)h 1
(140) Z/ (u—ih)2/0 (1= 6)x(s, 0)

h

03p(s, jh, z,v) ,
0 DY LA h s—s. dzdodu.
/p( :,2) Z( 02,0210z, )(S’j 150 o dzdod

Analogously to (25) in Konakov (2006) we get that ([[47) does not exceed
(141) RGP (o — ).
Now from ([[33), (L34), (I37), (I39) and ([41]) we obtain that

[p Qn (L - Z)’ﬁl] Qn (I)(O,T,l‘,y) _p® [(L - E)’ﬁl ®;1 (I)](O,T,l‘,y)

(142) < CRY0g oy — o)
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for some ¢ > 0. The other replacements can be shown analogously. Thus we come to
the following representation

ph(oa T7 x, y) - p(07 Ta z, ?/)

= Vh[T &}, 20, T,2,y) +p® (R &, 9)(0,T,,y)]
+hm @), ¢ +pe (% @), )] ), (B ), 2)(0,T,,y)

h h ~
Now we furhter simplify our expansion of p;, —p. We now show the following expansion
ph(oa T7 xz, y) - p(07 Ta z, ?/)

= Vh(p @ Fi[pa)(0, T, z,vy) + h (p @ Fapal) (0, T, z,y)
+h (p & F1[P & fl[PAH) (O,T, x,y)

h h o
(144) +5p® (L2 = L*)p(0,T, z,y) — 2P @ (L' = L)p(0, T, z,y) + O(W™*¢ sy — ),

where for s € [0,t — h],t € {h,2h,...,T}

pa(s;t,z,y) = (0 @) ®)(s,t, 2, y)

=p(s,t,z,y) + Z /sghzv 1(jh,t,v,y)dv.

s<jh<t—h

Here &, = H+ H ®), H + H ®), H ®) H + ....We start from the calculation of p ®
L7y (s, t,z,y).

p® L (s, t,x,y) = /dT/ s, T, z,0)(t —T) ZMD”(LUp(Ttvy))d

V!
lv[=3

==y = /dv [/ S, T, T, V) (/Tt xy(u,y)du) 68 Dyp(r,t,v,y)dr

|\3

(145) =

w dv —ZV'/dv/l =T1+1II.

lv|=3 lv|=3

Integrating by parts w.r.t. time variable we obtain

-y = /dv[ (5,7, 2,0) (/:XV(U,y)du)Dp(”vy) (o402

l/|3
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/ Dyp(7,t,v,y) (ap(saix 2) /Tt Xo(u, y)du — p(s, 7,2, 0)x,(T, y)) dT]

= — Z / [ s, S +t :L‘,U) <ﬁ+t Xy(u,y)du> DZ’ﬁ(ST—H,t,’U,y)

||3 2

Jrz (/quy)du)D”pstxy +Z /SHdT(/quy)du)

MB' |\3

(146)

X/LT(STZL‘U)DVth’Uyd’UZ / TydT/ (s,7,x,v)Dlp(T,t,v,y)dv.

lv|=3 B
Analogously we get

t
=Y 0 [os 0 e <thu<u,y>du>Dm%”,t,v,y)dv

lv|= 3 2

S ([ i) f et

\\3

(147) — Z y'/ Xo(Ty dT/ (s,m,x,v)Dip(T,t,v,y)dv.

From ([45)- ([47) we have
(148)  p@ L7y (s, t, 2, y) = Ti(s, b, 2, y) + p @ LTy (s, 8, x,y) — p @ My(s, t, ).
and from ([4§) we obtain

(s, t,x,y) +p @ (s, t,z,y)

= T8, t,2,9) +p® Ly (s, t,2,y) — p @ Ly (s, t,2,y) +p® Mi(s,t,2,y)

(149) —p© My(s,t,2,9) = p® My(s,1,2,y).

It follows from ([[49) and the definitions of the operations ® and ®j}that (x[s,jh]
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below denotes the indicator of the interval [s, jh])

(150) Vh[m &), ©(s,t,2,y) + (p ©@ R1) &, ©(s,t, ,)]
— Vi(F +p @ Ry) ®, B(s,tx,y) = Vh(p @ My) &, Ds, t,a,y)
VY [0 M) b 2B )

0<jh<t—h

=vh > h/:/:hdu/p(s,u,x,w

X My (u, jh,v, 2)dv] ®(jh,t, z,y)dz

Vi S [ [ s [0

0<jh<t—h L

X My (u, jh,v, 2)dv] ®(jh,t, z,y)dz

t
— XV<U,U)
—\/E/S du/p(s,u,:c,v) E i

lv|=3

XDZ[ Z hX[Svjh]/ﬁ(uajhavaZ)q)(]h’t’z’y)dz dv

0<jh<t—h

:ﬁ/:du/p(s,u,x,v)

X Z WDZPA<U,E%Q)CZU = Vh(p® Fi)lpal(s.t,z,y).

|v|=3

Using similar arguments as in the proof of ([50) one can show that

h (T @), (s, t,2,y) + (p ® Ry) ®), B(s,t,2,y)

(151) +p@n (R3 @y, )(s,t, 2, y)] = h(p ® Fo)[pal(s,t, , y) + hp 11} ®), O(s,t,z,y).

For the first two terms in the right hand side of ([43) we obtain from ([[50) and ([51])

Vh[F @, 0,T,z,y) + (p @ Ry) @, ®(0,T, z,y)]

(152) = Vh(p® F1)[pal(0, T, 2, y) + h(p® Fo) [pal (s, t, z,y) + hp @ 11, @}, B(s, t,7,y).
Using ([50) we also have
him @), ®+pe (R @), )] @), (R @), 2)(0,T,,y)
= h(p ® Fi[pal) @, (R @, ©)(0,T,2,y)

51



= hp ® Fi [pa @), (R &), ©)] (0,7, z,y).
Note that

hp @ 1) @), ®(s,t,x,y) = /du/ suvaXVuUD" [T @), ®](u,t,v,y)

lv[=3
= hp ® Falm ®), @|(s,t,2,y).
For the proof of ([44) it remains to show that

hp @ Fi[f @), © + pa @), (R @), ©)](0,T', 7, y)

(153) = h(p® Filp® Filpall) (0, T, z,y) + O(W'*°¢ 7y — ).
We will show that
(154) hp ® Fa(p — pa) @), (R @}, )10, T, 2, y) = O(hC 7 (y — ),

and

hp @ Filp @), (% @), )]0, T, z,y)

(155) —hp ®@ Filp @ (R @), ©)](0,T,z,y) = O(K'° 7(y — 2)).

Then ([53) will follow from ([54), ([53) and ([50). The estimate ([53) can be shown
analogously to ([43). An additional singularity arising from the derivatives in the

operator Fi[-] is neglected by the factor h in ([[55). To estimate ([[54) note that from
the definition of R; and &

(156) Ry @}, ®)(jh, T, 2,y)| < C(e)h™(T — jh)*'b 75

Then we use the following estimate which can be proved by the same method as in
Konakov (2006), pp.8-12, where an estimate for (p — p?)(0, jh, x,y) was obtained.

(157) |(p - pA)(uajha'Uv 2)| < Ch1/2¢m(2 - ’U).
From (I56) and ([57)
(158) [(p = pa) @), (R @, @) (u, T,v,y)] < C)R'*(T = u)¢ yr—y(y — v)

Now to estimate ([54) it’s enough to estimate a typical term of a corresponding sum,
namely, for |v| =3 we have to estimate

/du/ OuvaVUU>D”[ D /p pa)(u, jh, v, 2)

{j:u<jh<T—h}
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T/2 T
x (R4 ®;L<I>)(jh,T,z,y)dz]dv:h/ ...+h/ o=I1+11I.
0 T/2

To estimate II we make an integration by parts transferring three derivatives to
p(0,u, x U)X”(“v Using ([5§) we obtain the following estimate

(T — )

T/2
(159) < C(e)h**~*T%¢ sz (y — ).

To estimate I we consider two cases, namely, a) jh —u > T/4 and b) jh—u <T/4
— T — jh > T/4 . Analogously to (11) in Konakov (2006) the difference h(p — pa)
can be represented as

h(p — pa)(u, jh,v,2z) = h(p ® H — p @}, H)(u, jh,v, 2)

+h(p® H — p ®), H) @), ®1(u, jh, v, 2)
7% h
—h/ dT/ u, 7,0, 2 VH (T, jh, 2, 2)dz’

I=L i+ 1)R
3 [ dr [ ) = Mih )+ bp s H - psh H) @), @, jhv. )

(160) =I'+1I'+ 11T

where \(7,2') = p(u, 7,v,2")H (T, jh, 2, z), ®1(ih, jh, 2'z) = H(ih, jh, 2'z)+ H®),
H(ih, jh,2'z) 4 ..., j* = j*(u) = [}#] + 1 (with a convention [z] = x — 1 for integer
x). For I, case a), we have jh —7 > T/5 for n large enough. With a substitution

v+ v =2 we obtain

Jj*h
‘D;’h/ dT/p(u,T,v,z’)H(T,jh, 2 z2)d

J*h
— 'DZh/ dT/p(u,T,v, v+ )VH (T, jh, v+, 2)dv
J*h dr

<O [ 0l = 0) < ORT 0 (=)

(161) < Cnopma(z —v) = CT?h* (2 — v)

To get ([[6]]) we used an estimate from Friedman (1964) (Theorem 7, page 260)

|DYp(u, 7,0, 04 v")| < C(1 —u) " exp (%) .
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For [I'(u,jh,v,2) (R &), ®)(jh, T, z,y)dz, case b), it is enough to estimate for [v| =3

i*h - /
h/ o /[p(u’ 70,0+ ) (ow(r,0 + v) — ou(r, Dy LATI U2 gy
b Ov;Ovy,

(162) x (R @3, @)(jh, T, 2,y)dz.

Transferring five derivatives from p to (R, ®}, ®)(jh, T, z,y) and using the following
estimate for |u| =5

| DY p(T, jh,v + ', 2) + DED(T, jhyv + 0, 2)|

< C(jh—7) P =z —v =)
we obtain that ([[63) does not exceed

C(*h — )T~ 2§ ypy(y — v) < CRIPOT 0~ (20702 g o (y — v)

(163) = o(W T )¢ iy — v).

We used that for any 0 < 4§ <1 3 < 22 (see condition (B2)). To estimate
[ II'(u, jh,v, 2)(Ry ®), ®)(jh,T,z,y)dz we use a decomposition (12) in Konakov
(2006). The estimate for terms in II’ containing the first derivatives X (ih, z’) we use
identity (14) from Konakov (2006) and similar arguments to already used in estimation
of [I'(u,jh,v,z)(% ®) ®)(jh,T,z,y)dz. The estimate for terms in II' containing
second derivatives \"(ih, 2’) follows from (22) and (23) in Konakov (2006). At last
for I1I' the same estimates hold because of smoothing properties of the convolution

...®,,®1(u, jh, v, 2). This implies (I54) and, hence, the expansion ([44).
Asymptotic replacement of pa by p. We shall compare hp @ Fo[pal(0,T,x,y) and
hp @ Fa[p](0,T,z,y) . Note that for 23 <d < 2,|v| =4

h6
h/ dU/p(O,u,x,z)xu(u, 2)D!p(u, T, z,y)dz| < Ch**(T — h) ¢ sz (y — x)
0

2

n —4 7
(164) < Ch'* (T — n=h?)? < CptHO#IT? o7y — ),

and, analogously,

(165)
T
'h / du / D¥[p(0, 1w, 2, =)o (1, ol T, 2, y)de| < CRIHE2IT2%6 ).
T—hS
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The same estimates hold for pa(u, T, z,y). Hence, it is enough to consider u € [h°, T —
h?]. We consider

1)

T—hS
h / du / p(0, 1,2, 2) o (1, 2) D (p — pa)(u, T 2, y)d=
h

T/2 T—hd
(166) :h/ ...+h/ =T 411
o T/2
By ([57)
T—h'
= du / DY [p(0, 1w, 2, 2)x (1, 2))(p — pa) (1, T 2, y)d=
T/2

< CIPn6 ynly — a) = CHY> T yy(y — )

(167) = C'™ 9 ly — 2),7 > 0

For u € [h°,T/2]

T/2
1= |n / o / DY [p(0, 1,2, 2)x (1, 2)](p — pa)(u, T, 2, y)d=
h

(168) < CR**7°% r(y — ),
where condition ¢ < 2 implies 3/2 —§ > 1. It follows from ([[64)-([68) that
(169) hp ® fQ[pA](Oa T x, y) - hp ® fQ[p](Oa T, y) = O(hl—’—,ygbﬁ(y - {L‘))

To prove that
hp @ Filp @ Filp — pal] = O(W 6y — @)

we consider a typical summand for fixed v, |v| = 3,
(170)

T T
h/ du/p(O,u,:c,z)X,,(u, z)DY [/ dT/p(u,T, 2,0)xu (T, 0) DY (p — pa) (7, T, v, y)dv | dz.
0 U

As before it’s enough to consider u € [h°, T — h°]. The integral in ([[70) is a sum of

four integrals

T/2 (T+u)/2

L :h/ du/D?/ dT/...
hd u
T/2 T

[2:h/ du/...pg/ dT/...
o (T+u)/2
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T—ho (T+u)/2
I35 = / du/DZ/ dT/...
T—ho T
(171) I,=h / du/D;’/ dT/....
(T+wu)/2

Note that 7 —wu > T/4 in the integrand in I . Integrating by parts w.r.t. v we
obtain by ([[57)

(172) L] < CHY2=T%6 1oy — 1)),

Furthermore, u > T/2,7 —u > h?/2,T —u > h° in the integrand in I,. Integrating by
parts w.r.t. z we obtain

(173) L] < CR¥POT712 iy — ) < CT*PRYP72700 (y — w)),
where, by our choice of §, 3/2 — /2 —0 > 1. To estimate I3 we use the representation
(p _pA><T7T7U7y) = (p ® H _p®lh H><T7T7U7y>

+(p@ H —p®), H) @), ©1(7, T, v,y)

7*h
/ ds/ 7,8, 0, w)H (s, T, w,y)dw

+§[p @), (Hy + A, T, v,y)

n—1 ; 4

1 (i+1)h . 1

+§Z / (t — ih)? / -7y / (7, 8,0, W) Ar(8, T, 0, y) lsininr—in) dwdydt,
ih 0 —1

i=j*

(174) +(p®@ H —p®}, H) @}, ®1(,T,v,y)

where j* = j*(7) = [r/h] + 1 (with a convention [x] = x — 1 for integer z) , H; and
A,k =0,1,2,3,4, are defined in Konakov (2006) and

Oy (ih,i'h, z,2") = H(ih,i'h,z,2") + H &), H(ih,i'h,z,2") +

To estimate DY (p — pa)(7,T,v,y) we note that

J*h
h‘DZ/ ds/p(T,s,v,w)H(s,T,w,y)dw‘

-
=h ‘DZ/ ds /p(T, s,v,0+w)H(s, T, v +w', y)dw

7 ds 2-25
(175) <O [ bty — 1) < O 6 ey )

56



Furthermore,

h? h?
?DZ[Z?@% Hl](TvTa'Uay)‘ = ?DZ Z h/p(ijhavaw)Hl(jhaTaway)dw
T7<jh<T—h
h2
STl b DU G+

T<jh<T—h%/2

h? . ~
(€D X b D p(r b v+ w)p(R, Tov + ' y)du!

i,k=1T—ho/2<jh<T—h

(176) < CR* ¢ (y —v) + CR> 52 7(y — ).

Because of a structure of the operator Ay (see Konakov (2006)) it is enough to estimate
for fixed 7,1, k

h o Pp(jh, T,v+w',y)
Dy Y, h / Dip(7, jh,v, v+ w') S du’

T<jh<T—h

With the same decomposition as in ([[70) we obtain that ([77) does not exceed

(178) CRE™126, (y — ).

From ([[7G) and ([7§) we obtain that
2

h !
(179) 5 DY p @), (Hi + Ao)](, T, v,y)| < Ch'7¢ pr(y — v)

for some v > 0. It remains to estimate the last summand in ([74). It follows from the
structure of the operators A, k = 1,2, 3,4, (see Konakov (2006)) that it is enough to
estimate

n=1  .(G+1)h 1
10 5> [ e—mr [ a—n

4 ~
Mp(s, T,v+w',
Z/DZ lP(T, s, 0,0+ w') o v) | s=ih-4~(t—ih) dw'drydt
k=1

!/ / / /
Ow;Ow;Owy,dwy,

for fixed 1, 7, p, ¢. As in Konakov (2006), p. 12, we obtain that ([80) does not exceed

Ch2¢ ( —v)/le/l(l— )nz_:lh 1 1 dvydz
V=¥ 0 0 ! i=j* [(Zh—7)+’j/h2]3/2 [(n_vz)h_ZhP !

20h2¢\/T—_T(?/—“)/0122/01(1_7) 2.

{i:j*h<ih<T+h%/4}

o7



1 1
(181) +C’h2gb\/ﬁ(y—v)/ 22/ (1—7) Z L=1"4+ 11"
0 0

{i:T+hS /4<ih<T—h}

1 1
1
I"| < Ch2h=2¢ m—(y — v / z2/ 1— > h— dydz
‘ | ¢ T (y ) 0 0 ( 7) [(Zh—T)—l-’)/hZ] 8

{i:j*h<ih<7+h0/4}

1 1
2—e7 —58/2 . 2—¢ (1—7) 1
<Oty [0 (2 3 s

{i:j*h<ih<7+h0/4}
(182) < Cle)n* =Py —v).

Using inequality (h —yz)h —ih = (n —i)h — yzh > h(1 —~vz) > h(1 —7) we obtain
that

1 1
IH”lschh“%m(y—v)/o 22/0 dry > h

{i:7+hd JA<ih<T—h}

(18 < CRI526 (),
Now from ([74), ([79), (I79), (L80), (I8F) and (I8F) we obtain that
(184) 1Dy(p®H —p@, H)(1,T,v,y)] < Ch'¢ r=(y — v)

for some positive . The last summand in the right hand side of ([74) admits the same
estimate ([[84) because of the smoothing properties of the operation ®). Hence,

(185) 1Dy (p = pa)(m, T, v,y)] < CR¢ yp—(y —v).
Making a chaige of variables v = z + ¢ in ([[70) we get that the integral w.r.t. v is
equal to

T
(1s6) D [/ i [ o7 Olr 0D = pa) (T + 0 |

Taking into account ([87) and making an integration by parts in ([8() we obtain that
(I8G) does not exceed

rod Ch?
a0 o [ el —9) € =ty =)

P— JT—u
From ([[70) and ([[87) we obtain that
1| < Ch'™7¢ 7 (y — @).

The estimate for I; may be proved absolutely analogously to the estimate for I5. Thus,
we proved that

(188) hp @ Filp @ Filp — pal]l = O(W ¢ 7y — )
The estimate
W2 @ Filp — pal = O(W ¢ 7 (y — )
may be proved by using the same decomposition of p — pa. This completes the proof
of Theorem 1.
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