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1. Introduction and main results

Let n ≥ 2 and h > 0 be such that T = nh ≤ 1. Suppose that q (t, x, ·) , (t, x) ∈
[0, 1]×R

d is a given family of densities on R
d and m is a function from [0, 1]×R

d into

R
d. We shall impose the following conditions

A1
∫

Rd yq (t, x, y)dy = 0, 0 ≤ t ≤ 1, x ∈ R
d.

A2 There exists positive constants σ∗ and σ∗ such that the covariance matrix σ (t, x) =∫
Rd yy

Tq (t, x, y) dy satisfies

σ∗ ≤ θTσ (t, x) θ ≤ σ∗,

for all ‖θ‖ = 1 and t ∈ [0, 1] x ∈ R
d.

A3 There exists a positive integer S ′ and a real nonnegative function ψ (y) , y ∈ R
d

satisfying supy∈Rd ψ (y) <∞ and
∫

Rd ‖y‖S ψ (y)dy <∞, with S = 2dS ′ +4, such

that ∣∣Dν
yq (t, x, y)

∣∣ ≤ ψ (y) , t ∈ [0, 1], x, y ∈ R
d |ν| = 0, 1, 2, 3, 4

and

|Dν
xq (t, x, y)| ≤ ψ (y) , t ∈ [0, 1], x, y ∈ R

d |ν| = 0, 1, 2.

Furthemore, for all x ∈ R
d it holds

∫

Rd

|q (t, x, y) − q (t′, x, y)| dy → 0,

as |t− t′| → 0.

B1 The functions m (t, x) and σ (t, x) and their first and second derivatives w.r.t. t

and x are continuous and bounded uniformly in t and x. All these functions are

Lipschitz continuous with respect to x with a Lipschitz constant that does not

depend on t. Furthemore, Dνσ (t, x) exists for |ν| = 6 and is Holder continuous

w.r.t. x with positive exponent and a constant that does not depend on t.

Consider a family of Markov processes in R
d of the following form

(1) Xk+1,h = Xk,h +m (kh,Xk,h) h+
√
hξk+1,h, X0,h = x ∈ R

d, k = 0, ..., n− 1,

where (ξi,h)i=1,...,n is an innovation sequence satisfying the Markov assumption: the con-

ditional distribution of ξk+1,h given Xk,h = xk, ..., X0,h = x0 depends only on Xk,h = xk

and has conditional density q (kh, xk, ·) . The conditional covariance matrix correspond-

ing to this density is σ(kh, xk). The transition densities of (Xi,h)i=1,...,n are denoted by

ph (0, kh, x, ·) .
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We shall consider the process (1) as an approximation to the following stochastic

differential equation in R
d :

dYs = m (s, Ys) ds+ Λ (s, Ys) dWs, Y0 = x ∈ R
d, s ∈ [0, T ],

where (Ws)s≥0 is the standard Wiener process and Λ is a symmetic positive definite

d×d matrix such that Λ (s, y) Λ (s, y)T = σ (s, y) . The conditional density of Yt, given

Y0 = x is denoted by p (0, t, x, ·) .

Konakov and Mammen (2000) obtained a nonuniform rate of convergence for the

difference ph (0, T, x, ·) − p (0, T, x, ·) as n→ ∞ in the case T ≍ 1. It is the goal of the

present note to get an analogous result in the case T = o (1) . The following theorem

is our main result.

Theorem 1 Let h > 0, n ≥ 2, T = nh. Assume (A1-A3) and (B1). Then, as n→ ∞
and T → 0,

sup
x,y

Q√
T (y − x) |ph (0, T, x, y) − p (0, T, x, y)| = O

(
n−1/2

)
,

where the constant in O (·) does not depend on h and

Qδ (u) = δd

(
1 +

∥∥∥
u

δ

∥∥∥
2S′−2

)
.

2. Parametrix method for diffusions

For any s ∈ (0, T ), x, y ∈ R
d we consider an additional family of ”frozen” diffusion

processes

dỸt = m (t, y)dt+ Λ (t, y) dWt, Ỹs = x, s ≤ t ≤ T.

Let p̃y (s, t, x, ·) be the conditional density of Ỹt, given Ỹs = x. In the sequel for any z

we shall denote p̃ (s, t, x, z) = p̃z (s, t, x, z) , where the variable z acts here twice: as

the arument of the density and as defining quantity of the process Ỹt.

The transition densities p̃ can be computed explicitly

p̃ (s, t, x, y) = (2π)−d/2 (det σ (s, t, y))−1/2

× exp

(
−1

2
(y − x−m (s, t, y))T σ−1 (s, t, y) (y − x−m (s, t, y))

)
,

where

σ (s, t, y) =

∫ t

s

σ (u, y)du, m (s, t, y) =

∫ t

s

m (u, y)du.
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We need the following kernel

H (s, t, x, y) =
1

2

d∑

i,j=1

(σij (s, x) − σij (s, y))
∂2p̃ (s, t, x, y)

∂xi∂xj

+
d∑

i=1

(mi (s, x) −mi (s, y))
∂p̃ (s, t, x, y)

∂xi

.

Introduce the convolution type binary operation ⊗ :

f ⊗ g (s, t, x, y) =

∫ t

s

du

∫

Rd

f (s, u, x, z) g (u, t, z, y) dz.

k-fold convolution of H is denoted by H(k). The following results are taken from Kon-

akov and Mammen (2000).

Lemma 2 Let 0 ≤ s < t ≤ T. It holds

p (s, t, x, y) =

∞∑

r=0

p̃⊗H(r) (s, t, x, y) .

Lemma 3 Let 0 ≤ s < t ≤ T. There exist constants C and C1 such that

|H (s, t, x, y)| ≤ C1ρ
−1φC,ρ (y − x)

and ∣∣p̃⊗H(r) (s, t, x, y)
∣∣ ≤ Cr+1

1

ρr

Γ
(
1 + r

2

)φC,ρ (y − x) ,

where ρ2 = t− s, φC,ρ (u) = ρ−dφC (u/ρ) and

φC (u) =
exp

(
−C ‖u‖2)

∫
exp

(
−C ‖v‖2) dv

.

3. Parametrix method for Markov chains

For any 0 ≤ jh ≤ T, x, y ∈ R
d we consider an additional family of ”frozen” Markov

chains defined for jh ≤ ih ≤ T as

(2) X̃i+1,h = X̃i,h +m (ih, y)h+
√
hξ̃i+1,h, X̃j,h = x ∈ R

d, j ≤ i ≤ n,

where ξ̃j+1,h, ..., ξ̃n,h is an innovation sequence such that the conditional density of ξ̃i+1,h

given X̃i,h = xi, ..., X̃0,h = x0 equals to q (ih, y, ·) . Let us introduce the infinitesimal

operators corresponding to Markov chains (1) and (2) respectively,

Lhf (jh, kh, x, y)

= h−1

(∫
ph (jh, (j + 1) h, x, z) f ((j + 1) h, kh, z, y) dz − f ((j + 1)h, kh, z, y)

)
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and

L̃hf (jh, kh, x, y)

= h−1

(∫
p̃y

h (jh, (j + 1)h, x, z) f ((j + 1) h, kh, z, y) dz − f ((j + 1) h, kh, z, y)

)
,

where p̃y
h (jh, j′h, x, ·) denotes the conditional density of X̃j′,h given X̃j,h = x. As before

for any z denote p̃h (jh, j′h, x, z) = p̃z
h (jh, j′h, x, z) , where the variable z acts here

twise: as the arument of the density and as defining quantity of the process X̃i,h. For

technical convenience the terms f ((j + 1)h, kh, z, y) on the right hand side of Lhf

and L̃hf appear instead of f (jh, kh, z, y) .

In analogy with the definition of H we put, for k > j,

Hh (jh, kh, x, y) =
(
Lh − L̃h

)
p̃h (jh, kh, x, y) .

We also shall use the convolution type binary operation ⊗h :

g ⊗h f (jh, kh, x, y) =

k−1∑

i=j

h

∫

Rd

g (jh, ih, x, z) f (ih, kh, z, y) dz,

where 0 ≤ j < k ≤ n. Write g ⊗h H
(0)
h = g and g ⊗h H

(r)
h =

(
g ⊗h H

(r−1)
h

)
⊗h Hh

for r = 1, ..., n. For the higher order convolutions we use the convention
∑l

i=j = 0 for

l < j. One can show the following analog of the ”parametrix” expansion for ph [see

Konakov and Mammen (2000)].

Lemma 4 Let 0 ≤ jh < kh ≤ T. It holds

ph (jh, kh, x, y) =

k−j∑

r=0

p̃h ⊗h H
(r)
h (jh, kh, x, y) ,

where

ph (jh, jh, x, y) = p̃h (kh, kh, x, y) = δ (y − x)

and δ is the Dirac delta symbol.

4. Auxiliary statements

In this section we collect several bounds to be used later in the proofs. Throughout

the proofs C,C1, C2, ... denote generic constants possibly different in different places.

We give some tools that are useful for comparison of the expansions of p and ph

(see Lemmas 2) and 4 respectively). Since p and ph are written in terms of p̃y and p̃y
h

it is essential first to bound the difference p̃y
h − p̃y. For this we use some bounds from
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Konakov and Mammen (2000) which are proved for T = 1, but remain true also for

T → 0. The following lemmas are slight modifications of Lemmas 3.8, 3.9, 3.11, 3.12,

3.13 from Konakov and Mammen (2000) and therefore the proofs will be not detailes

here.

To simplify the notation let ρ =
√

(k − j)h. Denote ζρ (z) = ρ−pζ (z/ρ) , where

ζ (z) =

(
1 + ‖z‖S−4

)−1

∫ (
1 + ‖z′‖S−4

)−1

dz′
.

Lemma 5 Assume Conditions (A1-A3) and (B1). Then for 0 ≤ j < k ≤ n and all

x, y ∈ R
d it holds

|p̃h (jh, kh, x, y) − p̃ (jh, kh, x, y)| ≤ Ch1/2ρ−1ζρ (y − x) .

For j = 0, ..., k − 2, let

Kh (jh, kh, x, y) =
(
L− L̃

)
p̃h (jh, kh, x, y)

and

Mh (jh, kh, x, y) = 3h1/2
∑

|ν|=3

∑

|µ|=1

∫

Rd

dθ

∫ 1

0

dδDµ
y q (jh, y, θ) (x− y)µ

×θ
ν

ν!
Dν

xp̃h

(
(j + 1)h, kh, x+ δθh1/2, y

)
(1 − δ)2 .

If j = k − 1 define

Kh ((k − 1) h, kh, x, y) = 0 and Mh ((k − 1) h, kh, x, y) = 0.

Lemma 6 Assume Conditions (A1-A3) and (B1). Then for 0 ≤ j < k ≤ n and all

x, y ∈ R
d it holds

|Hh (jh, kh, x, y) −Kh (jh, kh, x, y) −Mh (jh, kh, x, y)| ≤ Ch1/2ρ−1ζρ (y − x) ,

where ζp is defined above.

Denote ξρ (z) = ρ−pξ (z/ρ) , where

ξ (z) =

(
1 + ‖z‖2S′−2

)−1

∫ (
1 + ‖z′‖2S′−2

)−1

dz′
.
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Lemma 7 Assume Conditions (A1-A3) and (B1). Then for r = 1, 2, ..., 0 ≤ j < k ≤
n and all x, y ∈ R

d it holds

∣∣∣p̃h ⊗h H
(r)
h (jh, kh, x, y)

∣∣∣ ≤ Cr+1ρr

Γ
(
1 + r

2

)ξρ (x− y) .

Lemma 8 Assume Conditions (A1-A3) and (B1). Then for 0 ≤ j < k ≤ n and all

x, y ∈ R
d it holds

ph (jh, kh, x, y) =

k−j∑

r=0

(
p̃h ⊗h (Mh +Kh)

(r)
)

(jh, kh, x, y) +R1 (jh, kh, x, y) ,

where

|R1 (jh, kh, x, y)| ≤ Ch1/2ρξρ (y − x) .

Lemma 9 Assume Conditions (A1-A3) and (B1). Then for 0 ≤ j < k ≤ n and all

x, y ∈ R
d it holds

ph (jh, kh, x, y) =

k−j∑

r=0

(
p̃⊗h (Mh +Kh)

(r)
)

(jh, kh, x, y) +R2 (jh, kh, x, y) ,

where

|R2 (jh, kh, x, y)| ≤ Ch1/2ρ−1ξρ (y − x) .

5. Proof of the main result

From Lemmas 2 and 3 we get as n→ ∞ and T = nh→ 0

(3) p (0, T, x, y) =

n∑

r=0

(
p̃⊗H(r)

)
(0, T, x, y) + T−d/2 exp

(
−C ‖y − x‖2

T

)
o
(
T ne−n

)
.

Furthemore, Lemma 9 implies that

(4) ph (0, T, x, y) =
n∑

r=0

(
p̃⊗h (Mh +Kh)

(r)
)

(0, T, x, y) + ξ√T (y − x)O
(
n−1/2

)
.

Because of (3) and (4) for the statement of the theorem it remains to show that
∣∣∣∣∣

n∑

r=0

(
p̃⊗H(r)

)
(0, T, x, y) −

n∑

r=0

(
p̃⊗h (Mh +Kh)

(r)
)

(0, T, x, y)

∣∣∣∣∣

= ξ√T (y − x)O
(
n−1/2

)
.(5)

For the proof of (5) note that
∣∣∣∣∣

n∑

r=0

(
p̃⊗H(r)

)
(0, T, x, y) −

n∑

r=0

(
p̃⊗h (Mh +Kh)

(r)
)

(0, T, x, y)

∣∣∣∣∣
≤ S1 + S2 + S3,(6)
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where

S1 =

∣∣∣∣∣

n∑

r=0

(
p̃⊗H(r)

)
(0, T, x, y) −

n∑

r=0

(
p̃⊗h H

(r)
)
(0, T, x, y)

∣∣∣∣∣ ,

S2 =

∣∣∣∣∣

n∑

r=0

(
p̃⊗h H

(r)
)
(0, T, x, y) −

n∑

r=0

(
p̃⊗h (Mh +H)(r)

)
(0, T, x, y)

∣∣∣∣∣ ,

S3 =

∣∣∣∣∣

n∑

r=0

(
p̃⊗h (Mh +H)(r)

)
(0, T, x, y) −

n∑

r=0

(
p̃⊗h (Mh +Kh)

(r)
)

(0, T, x, y)

∣∣∣∣∣ .

For S1, S2, S3 we will show the following estimates

(7) Sk = Q√
T (y − x)O

(
h1/2

)
, k = 1, 2, 3.

We shall prove (7) for k = 1. The term S1 corresponds to the passage from the contin-

uous time to the lattice time. The fact that T → 0 implies that integrands involved

in the convolutions ⊗ and ⊗h become asymptotically degenerate and therefore more

accurate estimates are required than those in Konakov and Mammen (2000). We will

develop here the details for these bounds.

We start from the recurrence relations for r = 1, 2, 3, ...

(
p̃⊗H(r)

)
(0, jh, x, y)−

(
p̃⊗h H

(r)
)
(0, jh, x, y)

=
[(
p̃⊗H(r−1)

)
⊗H −

(
p̃⊗H(r−1)

)
⊗h H

]
(0, jh, x, y)

(8) +
[(
p̃⊗H(r−1)

)
−
(
p̃⊗h H

(r−1)
)]

⊗h H (0, jh, x, y) .

By summing up the identities in (8) from r = 1 to ∞ and by using the linearity of the

operations ⊗ and ⊗h we get

(p− pd) (0, jh, x, y) = (p⊗H − p⊗h H) (0, jh, x, y)

(9) +(p− pd) ⊗h H (0, jh, x, y)

where we put

(10) pd(ih, i′h, x, y) =

∞∑

r=0

(p̃⊗h H
(r))(ih, i′h, x, y).

By iterative application of (9) we obtain

(p− pd) (0, jh, x, y) = (p⊗H − p⊗h H) (0, jh, x, y)

8



(11) + (p⊗H − p⊗h H) ⊗h Φ (0, jh, x, y) ,

where Φ(ih, i′h, z, z′) = H(ih, i′h, z, z′)+H⊗hH(ih, i′h, z, z′)+... =
∑∞

r=1H
(r)(ih, i′h, z, z′).

By the Taylor expansion we have

(p⊗H − p⊗h H) (0, jh, x, z)

=

j−1∑

i=0

∫ (i+1)h

ih

du

∫

Rd

[λ (u) − λ (ih)] dv

=

j−1∑

i=0

∫ (i+1)h

ih

(u− ih)du

∫

Rd

λ′(ih)dv

(12) +
1

2

j−1∑

i=0

∫ (i+1)h

ih

(u− ih)2

∫ 1

0

(1 − δ)

∫

Rd

λ′′(s) |s=si
dvdδdu,

where λ (u) = p(0, u, x, v)H(u, jh, v, z), si = si(u, i, δ, h) = ih + δ(u− ih).

Note that
∫

Rd

λ′(ih)dv =

∫

Rd

∂

∂s
p(0, s, x, v) |s=ih H(ih, jh, v, z)dv

+

∫

Rd

p(0, ih, x, v)
∂

∂s
H(s, jh, v, z) |s=ih dv =

∫

Rd

Ltp(0, ih, x, v)

×(L− L̃)p̃(ih, jh, v, z)dv −
∫

Rd

p(0, ih, x, v)[(L− L̃)L̃p̃(ih, jh, v, z)

−H1(ih, jh, v, z)]dv =

∫

Rd

p(0, ih, x, v)H1(ih, jh, v, z)dv

(13) +

∫

Rd

p(0, ih, x, v)(L2 − 2LL̃+ L̃2)p̃(ih, jh, v, z)dv,

where H1(s, t, v, z) is defined below in (21). We get from (13)

j−1∑

i=0

∫ (i+1)h

ih

(u− ih)du

∫

Rd

λ′(ih)dv =
h

2
(p⊗h H1)(0, jh, x, z)

(14) +
h

2
(p⊗h A0)(0, jh, x, z),

where A0(s, jh, v, z) = (L2 − 2LL̃+ L̃2)p̃(s, jh, v, z). The direct calculation shows that

A0(s, jh, v, z) =
1

4

d∑

p,q,r,l=1

(σpq(s, v) − σpq(s, z))(σrl(s, v) − σrl(s, z))

9



×∂
4p̃(s, jh, v, z)

∂vp∂vq∂vr∂vl

+
d∑

p,q,r=1

(σpq(s, v) − σpq(s, z))(mr(s, v) −mr(s, z))

(15) ×∂
3p̃(s, jh, v, z)

∂vp∂vq∂vr
+

1

2

d∑

p,q,r,l=1

σpq(s, v)
∂σrl(s, v)

∂vp

∂3p̃(s, jh, v, z)

∂vq∂vr∂vl
+ (≤ 2),

where we denote by (≤ 2) the sum of terms containing the derivatives of p̃(s, jh, v, z)

of the order less or equal than 2. Note that for a constant C <∞ and any 0 < ε < 1
2

∣∣∣∣
h

2
(p⊗h H1)(0, jh, x, z)

∣∣∣∣ ≤ ChφC,
√

jh (z − x) ,

(16)

∣∣∣∣
h

2
(p⊗h A0)(0, jh, x, z)

∣∣∣∣ ≤ C(ε)h1/2j−(1/2−ε)φC,
√

jh (z − x) .

First inequality (16) follows from (B1) and the well know estimates for the diffusion

density p and for the kernel H1 . The second inequality (16) follows from (B1), (15)

and the following estimate

h

2

j−1∑

i=0

h

∣∣∣∣
∫

Rd

p(0, ih, x, v)
∂3p̃(ih, jh, v, z)

∂vq∂vr∂vl
dv

∣∣∣∣ =
h

2

j−1∑

i=0

h

∣∣∣∣
∫

Rd

∂p(0, ih, x, v)

∂vq

∂2p̃(ih, jh, v, z)

∂vr∂vl
dv

∣∣∣∣ ≤ Ch1−ε

j−1∑

i=0

h
1√
ih

1

(jh− ih)1−ε
φC,

√
jh (z − x) ≤ Ch1/2

(17) ×j−(1/2−ε)B(
1

2
, ε)φC,

√
jh (z − x) .

Now we shall estimate the second summand in the right hand side of (12). Clearly

λ′′(s) =
∂2

∂s2
p(0, s, x, v)H(s, jh, v, z) + 2

∂

∂s
p(0, s, x, v)

(18) × ∂

∂s
H(s, jh, v, z) + p(0, s, x, v)

∂2

∂s2
H(s, jh, v, z).

Using forward and backward Kolmogorov equations we get from (18) after long but

simple calculations

1

2

j−1∑

i=0

∫ (i+1)h

ih

(u− ih)2

∫ 1

0

(1 − δ)

∫

Rd

λ′′(s) |s=si
dvdδdu

(19) =
1

2

j−1∑

i=0

∫ (i+1)h

ih

(u− ih)2

∫ 1

0

(1−δ)
4∑

k=1

∫

Rd

p(0, s, x, v)Ak(s, jh, v, z) |s=si
dvdδdu,

10



where

A1(s, jh, v, z) = (L3 − 3L2L̃+ 3LL̃2 − L̃3)p̃(s, jh, v, z),

A2 = (L1H + 2LH1)(s, jh, v, z),

A3(s, jh, v, z) = [(L− L̃)L̃1 + 2(L1 − L̃1)L̃]p̃(s, jh, v, z),

(20) A4(s, jh, v, z) = H2(s, jh, v, z).

and

Hl(s, t, v, z) = (Ll − L̃l)p̃(s, t, v, z)

=
1

2

d∑

i,j=1

(
∂lσij(s, v)

∂sl
− ∂lσij(s, z)

∂sl

)
∂2p̃(s, t, v, z)

∂vi∂vj

(21) +

d∑

i=1

(
∂lmi(s, v)

∂sl
− ∂lmi(s, z)

∂sl

)
∂p̃(s, t, v, z)

∂vi
, l = 1, 2.

Using integration by parts and the definition (20) of A2, A3 and A4 it is easy to get

that for any 0 < ε < 1/2 and for k = 2, 3, 4

1

2

∣∣∣∣∣

j−1∑

i=0

∫ (i+1)h

ih

(u− ih)2

∫ 1

0

(1 − δ)

∫

Rd

p(0, s, x, v)Ak(s, jh, v, z) |s=si
dvdδdu

∣∣∣∣∣

(22) ≤ C(ε)h3/2−εφC,
√

jh (z − x) .

For k = 1 we shall prove the following estimate for any 0 < ε < 1
2

1

2

∣∣∣∣∣

j−1∑

i=0

∫ (i+1)h

ih

(u− ih)2

∫ 1

0

(1 − δ)

∫

Rd

p(0, s, x, v)A1(s, jh, v, z) |s=si
dvdδdu

∣∣∣∣∣

(23) ≤ C(ε)hj−(1/2−ε)φC,
√

jh (z − x) .

Note that the function A1(s, jh, v, z) can be written as the following sum

A1(s, jh, v, z) =
1

8

d∑

i,j,p,q,l,r=1

(σij(s, v) − σij(s, z))(σpq(s, v) − σpq(s, z))(σlr(s, v)

−σlr(s, z))
∂6p̃(s, jh, v, z)

∂vi∂vj∂vp∂vq∂vl∂vr
+

3

4

d∑

i,j,p,q,l=1

(σij(s, v) − σij(s, z))(σpq(s, v)

11



−σpq(s, z))(ml(s, v) −ml(s, z))
∂5p̃(s, jh, v, z)

∂vi∂vj∂vp∂vq∂vl

+
3

4

d∑

i,j,p,q,l,r=1

σij(s, v)
∂σpq(s, v)

∂vi

(24) (σlr(s, v) − σlr(s, z)) ×
∂5p̃(s, jh, v, z)

∂vj∂vp∂vq∂vl∂vr

+ (≤ 4),

where we denote by (≤ 4) the sum of terms containing the derivatives of p̃(s, jh, v, z)

of the order less or equal than 4. By (B1) and (24) it is clear that the estimate for the

left hand side of (22) for k = 1 will be the same (up to a constant) as for the following

sum for fixed p, q, r, l

1

2

∣∣∣∣∣

j−1∑

i=0

∫ (i+1)h

ih

(u− ih)2

∫ 1

0

(1 − δ)

∫

Rd

p(0, s, x, v)
∂4p̃(s, jh, v, z)

∂vp∂vq∂vl∂vr
|s=si

dvdδdu

∣∣∣∣∣

After integration by parts w.r.t. vp and with the substitution hw = (u − ih) in each

integral we obtain

1

2

∣∣∣∣∣

j−1∑

i=0

∫ (i+1)h

ih

(u− ih)2

∫ 1

0

(1 − δ)

∫

Rd

p(0, s, x, v)
∂4p̃(s, jh, v, z)

∂vp∂vq∂vl∂vr
|s=si

dvdδdu

∣∣∣∣∣

=
1

2

∣∣∣∣∣

j−1∑

i=0

∫ (i+1)h

ih

(u− ih)2

∫ 1

0

(1 − δ)

∫

Rd

∂p(0, s, x, v)

∂vp

∂3p̃(s, jh, v, z)

∂vq∂vl∂vr
|s=si

dvdδdu

∣∣∣∣∣

≤ Ch2φC,
√

jh (z − x)

∫ 1

0

w2

∫ 1

0

(1 − δ)

j−1∑

i=0

h
1√

ih + δhw

1

[(j − i)h− δhw]3/2
dδdw.

≤ Ch3/2−εφC,
√

jh (z − x)

∫ 1

0

w2

∫ 1

0

(1−δ)1/2−ε

j−1∑

i=0

h
1√

ih + δhw

1

[(j − δw)h− ih]1−ε
dδdw

≤ Ch3/2−εφC,
√

jh (z − x)

∫ 1

0

w2dw

∫ 1

0

(1−δ)1/2−εdδ

∫ (j−1)h

0

dt√
t[(j − 1)h− t]1−ε

(25)

≤ Chj−(1/2−ε)B(
1

2
, ε)φC,

√
jh (z − x) ,

where B(p, q) is a Beta function and φC,ρ (z − x) is defined in Lemma 3 . As we

mentioned above (23) follows now from (25). By (12), (14), (16), (22) and (23) we

obtain for any 0 < ε < 1
2

and j = 1, 2, ...n

(26) |(p⊗H − p⊗h H) (0, jh, x, z)| ≤ C(ε)h1/2j−(1/2−ε)φC,
√

jh (z − x)

We use now the following estimate for Φ(ih, i′h, z, z′) proved in Konakov and Mammen

(2002)

(27) |Φ(ih, i′h, z, z′)| ≤ C
1√

i′h− ih
φC,

√
i′h−ih (z′ − z)

12



From (11), (26) and (27) we obtain

(28)
∣∣(p− pd) (0, nh, x, y)

∣∣ ≤ C(ε)h1/2nε−1/2φC,
√

T (y − x) .

The last inequality proves (7) for k = 1.The terms S2 and S3 can be handled in the

same way as the terms T2 and T3 in Konakov and Mammen (2000). This completes

the proof of our main result.

Remark 1. In fact for S1 we proved stronger result than the estimate (7). We get

the following representation

(p− pd) (0, T, x, y) =
h

2
(p⊗h H1)(0, T, x, y) +

h

2
(p⊗h A0)(0, T, x, y)

+
h

2
(p⊗h H1 ⊗h Φ) (0, T, x, y) +

h

2
(p⊗h A0 ⊗h Φ)(0, T, x, y)

(29) +R(0, T, x, y),

where for any 0 < ε < 1/2

|R(0, T, x, y)| ≤ C(ε)(h3/2−ε + hn−(1/2−ε) + h
√
T )φC,

√
T (y − x)

= C(ε)φC,
√

T (y − x) o(h).

This representation is useful to obtain a small time Edgeworth type expansions for our

model (see Konakov and Mammen (2005))

Remark 2. If T = const. (without loss of generality we assume T = 1) than we

can easily avoid the difficulties connected with singularity by splitting the time interval

[0,1] and by using an integration by parts. For example

∫ 1

0

du

∫

Rd

p(0, u, x, v)
∂4p̃(u, 1, v, z)

∂vp∂vq∂vl∂vr
dv =

∫ 1/2

0

...+

∫ 1

1/2

...

=

∫ 1/2

0

du

∫

Rd

p(0, u, x, v)
∂4p̃(u, 1, v, z)

∂vp∂vq∂vl∂vr
dv

(30) +

∫ 1

1/2

du

∫

Rd

∂4p(0, u, x, v)

∂vp∂vq∂vl∂vr

p̃(u, 1, v, z)dv

and the derivatives in the right hand side of (30) are not singular. The representation

(29) remains true. All summands in the right hand side of (29) are estimated from

above in absolute value by ChφC,1 (y − x) and for the remainder term R(0, 1, x, y) the

following estimate holds

(31) |R(0, 1, x, y)| ≤ Ch2φC,1 (y − x) .

13
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