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Abstract

This paper presents a survey of the most common
probabilistic models for artefact conception. We use
a generic formalism called Bayesian Programming,
which we introduce briefly, for reviewing the main
probabilistic models found in the literature. Indeed,
we show that Bayesian Networks, Markov Localization,
Kalman filters, etc., can all be captured under this sin-
gle formalism. We believe it offers the novice reader a
good introduction to these models, while still providing
the experienced reader an enriching global view of the
field.

1 Introduction

We think that over the next decade, probabilistic
reasoning will provide a new paradigm for understand-
ing neural mechanisms and the strategies of animal
behaviour at a theoretical level, and will raise the per-
formance of engineering artefacts to a point where they
are no longer easily outperformed by the biological ex-
amples they are imitating.

Rational reasoning with incomplete and uncertain
information is quite a challenge for artificial systems.
The purpose of probabilistic inference is precisely to
tackle this problem with a well-established formal the-
ory. During the past years a lot of progress has been
made in this field both from the theoretical and ap-
plied point of view. The purpose of this paper is
to give an overview of these works and especially to
try a synthetic presentation using a generic formalism
named Bayesian Programming (BP).

∗ Julien Diard is currently with the Laboratoire de Physiolo-
gie de la Perception et de l’Action, Collège de France, Paris and
the Department of Mechanical Engineering of the National Uni-
versity of Singapore. He can be reached at Julien.Diard@free.fr.

Several authors have already been interested in the
relations between some of these models. Smyth, for
instance, expresses the Kalman Filters (KFs) and the
Hidden Markov Models (HMMs) in the Bayesian Net-
work (BN) framework [1, 2]. Murphy replaces KFs,
HMMs and a lot of their variants in the Dynamic
Bayesian Network (DBN) formalism [3, 4] . Finally,
Ghahramani focuses on the relations between BNs,
DBNs, HMMs, and some variants of KFs [5, 6, 7].

The current paper includes the above, and adds Re-
cursive Bayesian Estimation, Bayesian Filters (BFs),
Particle Filters (PFs), Markov Localization mod-
els, Monte Carlo Markov Localization (MCML), and
(Partially Observable) Markov Decision Processes
(POMDPs and MDPs). This paper builds upon
previous works, where more models are presented:
Bessière et al. treat Mixture Models, Maximum En-
tropy Approaches, Sensor Fusion, and Classification
in [8], while Diard treats Markov Chains and develops
Bayesian Maps in [9].

All these models will be presented by their rewriting
into the Bayesian Programming formalism, which will
allow to use a unique notation and structure through-
out the paper. This gives the novice reader an efficient
first introduction to a wide variety of models and their
relations. This also, hopefully, brings other readers the
“big picture”. By making the hypotheses made by each
model explicit, we also bring to perspective all their
variants, and shed light upon the possible variatons
that are yet to be explored.

We will present the different models following a
general-to-specific ordering. The “generality” measure
we have chosen takes into account the number of hy-
potheses made by each model: the less hypotheses
made by a model, the more general it is. However,
not all hypotheses are comparable: for example, spe-
cialising the semantics of variables or specialising the
dependency structure of the probabilistic models are
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Figure 1: Probabilistic modelling formalisms treated
in this paper and their general-to-specific partial or-
dering.

not easily compared. Therefore, we obtain a partial
ordering over the space of all possible models, which
can be seen Figure 1.

Of course, generality allows a bigger power of ex-
pression (more models will be instances of general
formalisms). Whereas specialization allows for effi-
cient solutions to inference and learning issues. For
instance, the Baum-Welch algorithm, and the closed
form solution of the state estimation problem in the
case of KFs, both come from and justify the hypothe-
ses made by HMMs and KFs, respectively.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the Bayesian Programming formal-
ism. Each subsequent section briefly presents one of
the formalisms of Figure 1, traversing the tree in an al-
most depth-first manner. For each of these formalisms,
we will rewrite them in the BP framework and nota-
tions, describe their most salient features, and pro-
vide references for the interested reader. Sections 2
to 5 present general purpose models, where the mod-
elling choices are made independently of any specific
knowledge about the phenomenon, while Sections 6
to 9 present problem oriented models, where problem
dependent knowledge are exploited; these are taken
from the domain of robotics.

2 Bayesian Programming

We now introduce BP, a Bayesian Programming
methodology. We briefly summarize it here, but still
invite the interested reader to refer to Lebeltel et al.
for all the details about this methodology and its use
in robotics [10] .

As this formalism is only based on the inference
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Figure 2: Structure of a bayesian program.

rules needed for probability calculus, it is very general.
Indeed, this formalism will be used in the rest of this
paper, to present all the other models we consider.

In the BP formalism, a bayesian program is a struc-
ture (see Figure 2) made of two components.

The first is a declarative component, where the user
defines a description. The purpose of a description
is to specify a method to compute a joint distribu-
tion over a set of relevant variables {X1, X2, . . . , Xn},
given a set of experimental data δ and preliminary
knowledge π. This joint distribution is denoted
P (X1 X2 . . . Xn | δ π). To specify this distribution,
the programmer first lists the pertinent variables (and
defines their domains), then, applying Bayes’ rule, de-
composes the joint distribution as a product of simpler
terms (possibly stating conditional independence hy-
potheses so as to simplify the model and/or the com-
putations), and finally, assigns forms to each term of
the selected product (these forms can be parametric
forms, or recursive questions to other bayesian pro-
grams). If there are free parameters in the parametric
forms, they have to be assessed. They can be given by
the programmer (a priori programming) or computed
on the basis of a learning mechanism defined by the
programmer and some experimental data δ.

The second component is of a procedural nature,
and consists of using the previously defined description
with a question, i.e. computing a probability distri-
bution of the form P (Searched | Known). Answering a
“question” consists in deciding a value for the variable
Searched according to P (Searched | Known), where
Searched and Known are conjunctions of variables ap-
pearing in disjoint subsets of the n variables. It is well
known that general Bayesian inference is a very dif-
ficult problem, which may be practically intractable.
But, as this paper is mainly concerned with modelling
issues, we will assume that the inference problems are
solved and implemented in an efficient manner by the
programmer or by an inference engine 1.

1The one we use to tackle these problems has been described
elsewhere [8].



3 Bayesian Networks

Bayesian Networks, first introduced by Pearl [11],
have emerged as a primary method for dealing with
probabilistic and uncertain information. They are the
result of the marriage between the theory of probabil-
ities and the theory of graphs. They are defined by
the Bayesian Program of Figure 3.
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Figure 3: The BN formalism rewritten in BP.

The pertinent variables are not constrained and
have no specific semantics.

The decomposition, on the contrary, is specific: it
is a product of distributions of one variable Xi, con-
ditioned by a conjunction of other variables, called its
“parents”, Pai, Pai ⊆ {X1, . . . , Xi−1}. This assumes
that variables are ordered, and ensures that apply-
ing Bayes’ rule correctly defines the joint distribution.
Also note that Xi denotes one and only one variable.
Therefore, the following model, which can fit into a
BP, does not into a BN:

P (A B C D) = P (A B)P (C | A)P (D | B).

In a BN, if A and B are to appear together on the
left hand side of a term, as in P (A B), they have to
be merged into a single variable 〈A,B〉, and cannot be
subsequently separated, as in P (C | A) and P (D | B).

An obvious bijection exists between joint proba-
bility distributions defined by such a decomposition
and directed acyclic graphs: nodes are associated to
variables, and oriented edges are associated to con-
ditional dependencies. Using graphs in probabilistic
models leads to an efficient way to define hypotheses
over a set of variables, an economic representation of
a joint probability distribution and, most importantly,
an easy and efficient way to do probabilistic inference.

The parametric forms are not constrained theoret-
ically, but in BN commercial softwares they are very
often restricted to probability tables (as in Netica), or
tables and constrained Gaussians (as in Hugin 2).

2http://www.norsys.com and http://www.hugin.com.

Very efficient inference techniques have been devel-
opped to answer questions of the form P (Xi | Known),
where Known is a subset of the other variables of the
BN. However, some difficulties appear for more gen-
eral questions (i.e. with more than one variable on the
left hand side).

Readings on BNs should start by the books by
Pearl [11], Lauritzen [12], Jordan [13] and Frey [14].

4 Dynamic Bayesian Networks

To deal with time and to model stochastic pro-
cesses, the framework of Bayesian Networks has been
extended to Dynamic Bayesian Networks [15]. Given a
graph representing the structural knowledge at time t,
supposing this structure to be time-invariant and time
to be discrete, the resulting DBN is the repetition of
the first structure from a start time to a final time.
Each part at time t in the final graph is named a time
slice. The DBNs are defined by the Bayesian Program
of Figure 4.
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Figure 4: The DBN formalism rewritten in BP.

In Figure 4, Ri
t is a conjunction of variables

taken in the set {X1
t , . . . , Xi−1

t }
⋃
{X1

t−1, . . . , X
N
t−1}.

This means that Xi
t depends only on its parents

at time t ({X1
t , . . . , Xi−1

t }), as in a regular BN,
and on some variables from the previous time slice
({X1

t−1, . . . , X
N
t−1}).∏N

i=1 P (Xi
t | Ri

t) defines a graph for time slice t, and
all time slices are identical when the time index t is
changing.

These hypotheses are very often made: the fact that
a time slice only depends on the previous one is com-
monly called the first order Markov assumption. The
fact that all time slices are identical is the stationar-
ity hypothesis. In this case, the model defined by a
time slice is called the local model, and is said to be
time-invariant, or even homogeneous.



As can easily be seen on Figure 4, a DBN as a whole,
“unrolled” over time, may be considered as a regular
BN. Consequently the usual inference techniques ap-
plicable to BN are still valid for such “unrolled” DBNs.

The best introduction, survey and starting point
on DBNs is Murphy’s Ph.D. thesis [4]. The interested
reader can also refer to papers by Kanazawa et al. [16],
or to Ghahramani for the learning aspects in DBNs [5].

5 Recursive Bayesian Estimation

5.1 Bayesian Filtering, Prediction and
Smoothing

Recursive Bayesian Estimation is the generic de-
nomination for a very largely applied class of numer-
ous different probabilistic models of time series. They
are defined by the Bayesian Program of Figure 5.
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k > 0 ≡ Prediction
k < 0 ≡ Smoothing

Figure 5: Recursive Bayesian estimation in BP.

Variables S0, . . . , ST are a time series of “state” vari-
ables considered on a time horizon ranging from 0 to
T . Variables O0, . . . , OT are a time series of “observa-
tion” variables on the same horizon.

The decomposition is based on three terms.
P (Si | Si−1), called the “system model” or “transition
model”, formalizes the knowledge about transitions
from state at time i− 1 to state at time i. P (Oi | Si),
called the “observation model”, expresses what can be
observed at time i when the system is in state Si. Fi-
nally, a prior P (S0) is defined over states at time 0.

The question usually asked to these models is
P (St+k | O0 . . . Ot): what is the probability distribu-
tion for state at time t + k knowing the observations
made from time 0 to t, t ∈ 1, . . . , T? The most com-
mon case is Bayesian Filtering where k = 0, which
means that one searches for the present state knowing
the past observations. However it is also possible to do

“prediction” (k > 0), where one tries to extrapolate fu-
ture state from past observations, or to do “smoothing”
(k < 0), where one tries to recover a past state from
observations made either before or after that instant.
However, some more complicated questions may also
be asked (see Section 5.2).

Bayesian Filters (k = 0) have a very interesting re-
cursive property which contributes largely to their in-
terest. Indeed, P (St | O0 . . . Ot) may be simply com-
puted from P (St−1 | O0 . . . Ot−1) with the following
formula (derivation omitted):

P (St | O0 . . . Ot) =
P (Ot | St)∑
St−1

[(P (St | St−1)P (St−1 | O0 . . . Ot−1)] (1)

In the case of prediction and smoothing, the imbri-
cated sums for solving the same question can quickly
become a huge computational burden.

Readers interested by Bayesian Filtering should re-
fer to [17].

5.2 Hidden Markov Models

Hidden Markov Models are a very popular special-
ization of Bayesian Filters. They are defined by the
Bayesian Program of Figure 6.
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P (S0) ≡ Matrix
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Figure 6: The HMM formalism rewritten in BP.

Variables are supposed to be discrete. Therefore,
the transition model P (Si | Si−1) and the observation
model P (Oi | Si) are both specified using probability
matrices (or CPTs for conditional probability tables).
Variants exist about this particular point: when the
observation variables are continuous, the formalism
becomes known as “semi-continuous HMMs” [18, 4].
In this case, the observation model is associated either
with a Gaussian form, or a Mixture of Gaussian form.



The most popular question asked to HMMs is
P (S0 S1 . . . St−1 | St O0 . . . Ot): what is the most prob-
able series of states that leads to the present state
knowing the past observations? This particular ques-
tion may be answered with a specific and very efficient
algorithm called the “Viterbi algorithm”.

Finally, the “Baum-Welch” algorithm is a spe-
cific learning algorithm that has been developped for
HMMs: it computes the most probable observation
and transition models from a set of experimental data.

Two nice entry points into the huge HMM literature
are the tutorial by Rabiner [18] and the chapter 6 of
his book Fundamentals of Speech Recognition [19].

5.3 Kalman Filters

The very well known Kalman Filters [20] are an-
other specialization of Bayesian Filters. They are de-
fined by the Bayesian Program of Figure 7.
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P (Oi | Si) ≡ G(Oi, H · Si, R)

Identification
Question: P (St | O0 . . . Ot)

Figure 7: The KF formalism rewritten in BP.

Variables are continuous. The transition model
P (Si | Si−1) and the observation model P (Oi | Si) are
both specified using Gaussian laws with means that
are linear functions of the conditioning variables.

Due to these hypotheses, and using the recursive
Equation 1, it is possible to analytically solve the in-
ference problem to answer the usual P (St | O0 . . . Ot)
question. This leads to an extremely efficient algo-
rithm that explains the popularity of Kalman Filters
and the number of their everyday applications.

When there is no obvious linear transition and ob-
servation models, it is still often possible, using a first
order Taylor’s expansion, to consider that these mod-
els are locally linear. This generalization is commonly
called the Extended Kalman Filter (EKF). Sometimes
KFs also include action variables, and thus become
specializations of Markov Localization models (see
Section 6).

A nice tutorial by Welch and Bishop may be found
on the internet [21]. For a more complete mathemati-
cal presentation one should refer to a report by Barker
et al. [22], but these are only two entries to a huge lit-
erature concerning the subject.

5.4 Particle Filters

The fashionable Particle Filters (PFs) may be seen
as a specific implementation of Bayesian Filters.

The distribution P (St−1 | O0 . . . Ot−1) is approxi-
mated by a set of N particles having weights propor-
tional to their probabilities. The recursive Equation 1
is then used to inspire a dynamic process that produces
an approximation of P (St | O0 . . . Ot). The principle
of this dynamical process is that the particles are first
moved according to the transition model P (St | St−1),
and then their weights are updated according to the
observation model P (Ot | St).

See the tutorial by Arulampalam et al. for a
start [23].

6 Markov Localization

A possible alternative to Bayesian Filters is to add
control variables A0, . . . , At−1 to the model. This ex-
tension is sometimes called input-output HMM [24, 25,
6, 26], or sometimes Bayesian Filters still, but, in the
field of robotics, it has received more attention under
the name of Markov Localization (ML) [27, 28]. In
this field, such an extension is natural, as a robot can
observe its state by sensors, but can also influence its
state via motor commands. ML models are defined by
the Bayesian Program of Figure 8.
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Figure 8: The ML formalism rewritten in BP.

Starting from a Bayesian Filter structure, the con-
trol variable is used to refine the transition model
P (Si | Si−1) into P (Si | Ai−1 Si−1), which is then



called the action model. The rest of the dependency
structure is unchanged.

The forms can be defined in several ways: they
are commonly matrices, but when they are imple-
mented using Particles (in a similar manner as the one
presented Section 5.4), the model takes the name of
Monte Carlo Markov Localization (MCML). Among
the forms, P (Ai−1) is almost always assumed to be
uniform (and thus disappears of Equation 2).

The resulting model is used to answer the ques-
tion P (St | A0 . . . At−1 O0 . . . Ot), which estimates the
state of the robot, given past actions and observations:
when this state represents the position of the robot in
its environment, this amounts to localization. This
question is similar to the Bayesian Filtering question,
and can also be solved in a recursive manner:

P (St | A0 . . . At−1 O0 . . . Ot) =
P (At−1)P (Ot | St)∑
St−1

[
P (St | Ai−1 St−1)
P (St−1 | A0 . . . At−2 O0 . . . Ot−1)

]
(2)

A reference paper to ML and its use in robotics is
the survey by Thrun [29].

7 Decision Theoretic Planning

Partially Observable Markov Decision Processes
(POMDPs) and Markov Decision Processes (MDPs)
are used in robotics to model a robot that has to plan
and to execute a sequence of actions. A complete re-
view of POMDPs and MDPs by Boutilier et al. [30] is
an interesting starting point.

7.1 Partially Observable Markov Decision
Processes

Formally, POMDPs use the same probabilistic
model than Markov Localization except that it is en-
riched by the definition of a reward (and/or cost) func-
tion.

This reward function R models which states are
good for the robot, and which actions are costly. In
the most general notation, it therefore is a function
that associates, for each couple state - action, a real
valued number: R : Si, Ai → IR.

The reward function helps driving the planning pro-
cess. Indeed, the aim of this process is to find an op-
timal plan in the sense that it maximizes a certain
measure based on the reward function. This measure
is most frequently the expected discounted cumula-
tive reward, 〈

∑∞
t=0 γtRt〉, where γ is a discount factor

(less than 1), Rt is the reward obtained at time t,
and 〈·〉 is the mathematical expectation. Given this
measure, the goal of the planning process is to find a
optimal mapping from probability distributions over
states to actions (a policy). This planning process,
which leads to intractable computations, is sometimes
approximated using iterative algorithms called policy
iteration or value iteration. These algorithms start
with random policies, and improve them at each step
until some numerical convergence criterion is met. Un-
fortunately, state-of-the-art implementations of these
algorithms still cannot cope with state spaces of more
than a hundred states [31].

An introduction to POMDPs is proposed by Kael-
bling et al. [32].

7.2 Markov Decision Processes

Another class of approach for tackling the in-
tractability of the planning problem in POMDPs is
to suppose that the robot knows what state it is in.
The state becomes observable, therefore the obser-
vation variable and model are not needed anymore:
the resulting formalism is called a (Fully Observable)
Markov Decision Process (MDP), and is summed up
by the Bayesian Program of Figure 9.
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Variables
S0, . . . , ST , A0, . . . , AT−1

Decomposition
P (S0 . . . ST A0 . . . AT−1) =

P (S0)
TQ

i=1

[P (Ai−1)P (Si | Ai−1 Si−1)]

Forms: Matrices
Identification

Question: P (A0 . . . At−1 | St S0)

Figure 9: The MDP formalism rewritten in BP.

MDPs can cope with planning in state-spaces bigger
than POMDPs, but are still limited to some hundreds
of states. Therefore, many recent research efforts are
aimed toward hierarchical decomposition of the plan-
ning and modelling problems in MDPs, especially in
the robotic field, where their full observability hypoth-
esis makes their practical use difficult [33, 34, 31].

8 Bayesian Robot Programming

Lebeltel et al. applied the BP methodology to mo-
bile robotics [35, 10]. The adequacy of the method



as a robotic programming tool has been demonstrated
through a succession of increasingly complex experi-
ments: learning of simple behaviours, behaviour com-
bination, sensor fusion, hierarchical behaviour compo-
sition, situation recognition and temporal sequencing.
This series of experiments were also integrated for solv-
ing a complex robotic task, showing the possibility of
incremental development.

9 Bayesian Maps

One of the most crucial problems in robotics is the
modelling by the robot of its environment. Most com-
mon approaches rely either on ML models, or variants
of KFs (for example, that include action variables).
However, as can be easily seen Figure 8, the only ques-
tion asked to such models is a localization question, of
the form P (St | A0 . . . At−1 O0 . . . Ot). Therefore, the
action variables are merely used as input variables, as
the model is not concerned with computing probability
distributions over actions.

As noted by Diard [9] and Thrun [36], such a sepa-
ration between the localization and control models is
not satisfying. This remark, among others, led to the
definition of the Bayesian Map model, which is a gen-
eralization of ML models. The local model (see Sec-
tion 4) of a Bayesian Map is defined by the Bayesian
Program of Figure 10.
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8>>>><>>>>:
S

8>><>>:
Variables

St, St′ , At, Ot

Decomposition: any
Forms: any

Identification: any
Question: behaviour definition

P (Ai | X), Ai ⊆ A, X ⊆
`
{P, Lt, Lt′ , A} \ Ai

´
Figure 10: The Bayesian Map formalism in BP.

A Bayesian Map is a model that includes four vari-
ables: an observation, an action, and a state vari-
able at time t, and a state variable at a later time
t′. The decomposition is not constrained (if the four
variables are atomic, there are already 1015 decompo-
sitions to choose from – Attias recently exploited one
of these [37]), nor are the forms or the identification
phase.

On the contrary, the use of this model is strongly
constrained, as we require that the model generates be-
haviours, which are questions of the form P (Ai | X):
what is the probability distribution over (a subset of)

the action variable(s), knowing some other variables?
This constraint ensures that the model will be, in fine,
used for controlling the robot. That the model is
also used for explicitly computing a distribution over
state variables (i.e., localization) is an optional goal,
that can be convenient for human-robot communica-
tion purposes, for example.

The interested reader can refer to Diard et al. for
more details concerning the Bayesian Map formalism,
and in particular for the definition of the Abstraction
and Superposition Operators, that allow for building
hierarchies of Bayesian Maps [9, 38].

10 Conclusion

In this paper, we have presented a large class of
probabilistic modelling formalisms. They all have
been rewritten in the Bayesian Programming frame-
work, which proves its generality. Moreover, the ex-
ploring of the relations between the various formalisms
was greatly eased, because BP forces to express ex-
plicitly all the hypotheses made, from the choice of
variables to the use of the model (questions).

We think that this studying of the different hy-
potheses can be very fruitful, especially for designing
new formalisms, as we have briefly illustrated by some
of the reasoning that led to the Bayesian Map model.
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