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tnaurice .touratier@ pa ris.ensam.fr ABSTRACT. To achieve computer simulations of jorming processes using the finite element method ( FEM), we need input data such .as non linear nUltèrial behaviour laws and friclion laws. In the majority of cases these data are very specifie to the studied process because they transfer the physical phenomena acting in the studied process. Thus there are no direct experimental means that can provide us these data. Inverse problems give us an answerto this Jack of input data. This consists of evalua ting the parameters thal would lead to the most accurate mode/, minimizing the difference between the experimental and its simulation results. ln this paper, 'we propose to identify the parameters of the mate rial behaviour law in the case of impact loading of a polyurethane paint film (PAC33) by solving the corresponding inverse problem. This inverse problem consists of adj us ting the paint 's behaviour law parameters in the .finite element mode/ until the calculated crater dimensions match the measured dimensions in the /east square sense.

Introduction

Paint stripping and the repainting of aircraft surfaces are required periodically during the lifetime of an aircraft. Traditionally, paint removal has been achieved by chemical stripping. However, the use of methylene chloride and phenol-based chemical strippers for aircraft paint removal generates large quantities of hazardous waste and creates health and safety problems for the operator. One possible alternativeto chemical stripping is starch media blast cleaning, which is increasingly being used to remove organic coatings from substrates. With this paint stripping method, a stream of starch media partiel es removes the coating by mechanical means [START_REF] Papini | Organic Coating Removal by Particle Impact[END_REF][START_REF] Zouari | Simu.lation of organic coating removal by particle impact[END_REF].

Starch media blast cleaning is environmentally benign because the media is nontaxie and biodegradable. Due to their chemical inertness and erosion characteristics, starch media have been used for dry stripping of aircraft paint from ah.iminium alloys and polymer matrix composites. The process is also capable of selective stripping, removing only that needing repainting [START_REF] Monnette | uNew developments in starch media applications and coating removaJ effects on various aerospace materials[END_REF]. But there remains the problem of matching type of paint with the type of particle plus finding the optimal velocity and optimal impact angle to ensure maximum paint removal without damaging the substrate. The numerical simulation of this process can live up to these expectations [START_REF] Zouari | Modélisation et Simulation de l'Enlèvement de Revêtements Polymériques par Impact Particulaire[END_REF][START_REF] Zouari | Simu.lation of organic coating removal by particle impact[END_REF].

Many studies have been carried out on the analysis of contact between a rigid or elastic body on a layered solid. (Komvapoulos, 1998) has used the finite element method to analyse the indentation of a layered solid in normal contact with a rigid surface. (Kral et al. 1995a(Kral et al. , 1995b) ) have studied the repeated indentation of an elastic plastic layered medium by a rigid sphere. Papini and Spelt [START_REF] Papini | Organic Coating Removal by Particle Impact[END_REF] developed a model for the prediction of shear stresses at the interface paint substrate. The behaviour law of the paint is assumed to be rigid plastic. The flow limit of the paint is taken equal to the dynamic hardness which is defined as the instantaneous force resisting indentation during a collision divided by the instantaneous area (Papini et al., 1998) The value of the dynamic hardness is determined by measuring the crater depth after impact. Ail of these studies assumed that the coating has a simplified behaviour and that it is in quasi-static state. These types of paint behaviour are not available for the simulation of the impact. We need to use a paint behaviour law which takes into account the strain rate effect on the flow limit.

Classic methods for the characterisation of the behaviour law of material (traction and flexion tests) are not useful in the case of the paint film because the latter is very thin and the strain rates acting in these tests are very small (about 1 o-2 s-•) compared to those acting in impact tests (about lOs s-1 ).

Another method based on Hopkinson bar [START_REF] Kolsky | Stress Waves in Solids[END_REF] has been used to find the flow stress characterisation required at high strain rates, for example in cutting. [START_REF] Zhao | Testing of Polymerie Foams at High and Medium Strain Rates[END_REF] used the Hopkinson bar to identify the flow stress of polymerie foam at high strain rates. In general, such a test needs to design a specifie specimen to be able to represent the physics considered.

To identify the behaviour law of the paint under impact, we choose here to use the inverse problem technique (Bonnet, 1999; Bui, 1993; Massoni, 1994; Tarantola, 1987) on the impact of the paint. The aim of this technique consists of comparing the experimental answers of a system and the answer of a _system rnodel to the same loading. The wanted parameters are those where the difference between experimental and madel results are the smallest according to a chosen norm.

In this paper, we present the identification of paint layer behaviour law parameters by solving an inverse problem and using the finite element simulation of particle impact, based on a model including large elasto viscoplastic deformations at large strain rates. In the first section we introduce the fonn of the behaviour law of the paint. We then present the specifie impact experiments which have been carried out in arder to have experimental crater dimensions. The third section deals with the inverse problem techniques and the finite element mode!" used in the identification procedure. Finally we present sorne results of the numerical simulation of paint decoating and compare these with experimental results.

Constitutive law and flow stress in elasto-viscoplasticity for large plastic strains and large strain rates

To simulate the impact of a spherical particle on a coated substrate, we first need to find a behaviour. law of the coating film which takes into account the physical phenomena acting during impact and second to identify the input data of this law.

To get an idea about the behaviour of the paint film, we have done classical traction tests on it. The results of these tests were not satisfactory because we found a fragile fracture of the film and visco-elastic behaviour [START_REF] Zouari | Modélisation et Simulation de l'Enlèvement de Revêtements Polymériques par Impact Particulaire[END_REF]. In fact in these tests the strain rates were about 10-2 s-1 , completely different from the values reached under i~pact (about 10 5 s -l ). In this section we present the form of the constitutive law of the paint and its mathematical forn1ulation. •

The current configuration is chosen in Cartesian coordinates X; ; i = 1, 2, 3 . To study the 1naterial behaviour under large strains and large strain rates, we introduce an elasto-viscoplastic constitulive madel and the assomption that the elastic strains are small. Therefore the Eulerian strain rate tensor e can be decomposed into its elastic part èei and its viscoplastic part ê vp so that: [1] where the strain rate tensor e is defined by the symmetric part of the velocity gradient as:

[2]

In equation [2], V is the gradient operator in current configuration, while v is the Eulerian velocity vector.

In general the elastic deformation rate components èe 1 can be related to the Cauchy-stress rate components aii according to the generalised Hook's law available for a linear and isotropie thermo-elastic material as follows: [3] where: v is the Poisson ratio, E the Young modulus, a the thermal dilatation coefficient, T the temperature, T 0 the initial temperature, 8 ij the Kronecker symbol and Tr the trace operator. The time derivative of the stress tensor is here based on the objective J aumann formulation using the antisymmetric part of the velocity gradient. The visco-plastic strain rate components are related to the Cauchy stress components from the classic flow rate given by: [4] According to the Von-Mises criterion available for isotropie materials, the viscoplastic yield fonction f is described by: { 2}i

J(a, ë, t, T, ... )= ~ r{ n-~ Tr(n )1) -a(ë, t, T, ... ) =a -a eq [5]
In equation [5], a eq is the Von Mises equivalent stress, a is the flow stress, t E = J t d-r is the cumulated equivalent plastic strain, e is the generalised strain rate 0 deduced from the second invariant of the visco-plastic strain rate tensor and 1 is the identity operator. Taking into account the consistèncy condition in standard associated plasticity ÀP = ê/(4a ), we find that:

ë~!' = ~ ê (a . . -~Tr 1 u)c5 .. ) ' 1 2a ' 1 3 ~ f} [6]
Finally, equations [1], (3] and [6] give us the standard elasto-visco-plastic constitutive law expressed in the current configuration.

Our objective is now to express the flow stress a by introducing phys~cal • features required by simulation of paint decoating by impacts. In this case strain rates in the range of 10 3 -10 5 s-1 occur. The constitutive law of the paint rnust take into account the effect of strain rates. In order to include sensitivity to the above phenomena, the flow stress of the paint is modelled by the following modified Johnson-Cook law [START_REF] Johnson | A Constitutive Madel and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures[END_REF]:

a = A (1 + C ln t*) [7J
where e* = t / ë 0 is the dimensionless plastic strain rate for ë 0 = 1 s _,, A the elastic li mit of the material and C the viscosity.

The unknown parameters A and C, are subjected to constraints based on the physics of the problem. Thcse constraints must deal with the thermal activation theory developed by Eyring [START_REF] Brown | Yield Behaviour of Polymers[END_REF]. For polyurethane, they must satisfy the conditions (Van Krevelen, 1990):

A -0.01 GPa'?:.O 2GPa-A'?:.O c -0.012~0 0.21-C~O

Test hench for impacts and experiments on painted substrate [8]

To obtain data for the constitutive law coefficients of the paint, within impact loading conditions, we have to solve an inverse problem [START_REF] Bonnet | Le problème mathématique de l'inversion : généralités, solutions exactes[END_REF][START_REF] Bui | Introduction aux problèmes inverses en mécanique des matériaux[END_REF][START_REF] Massoni | Identification automatique du comportement par anaJyse inverse[END_REF]Tarantola, 1 987). The aim of this technique is to compare the impact crater dimensioqs issued from experiments with those from finite element computations achieved as stated hereafter in Section 4.

The experilnental test benclt

An experimental test ben ch has been built [START_REF] Zouari | Modélisation et Simulation de l'Enlèvement de Revêtements Polymériques par Impact Particulaire[END_REF] based on a gas gun used to accelerate •spherical particles. The velocity of the particles is measured with an accuracy of 3% by ~iming their flight between two infrated light beams located near the muzzle of the gun. The specimen is placed on a pivotai support allowing a change of the value of the impact angle.

Impact tests and crater measurements

The tests consist of impacting specimens at right angles and measuring the resulting crater dimensions. Specimens used were aluminium alloy circular plates 30 mm in diameter and 1 mm thick, coated with a 0.1 mm polyurethane paint layer, and clamped at the ir circumference.

We made two right angle impacts. In the first, the particle was of alumina, had a 2 mm diârneter and an initial velocity of 45 rn/s. In the second, the particle was of steel (IOOC6), had a 2 mm diameter and an initial velocity of 35 mis. In the two cases of impact, the paint was not allowed to delaminate nor crack because in our finite element model we assumed that the paint is subjected to only plastic defonnation.

A crater in a paint layer is characterized by its depth (p), diameter (d) and lip height (h), see Figure 1. Before the measurement of the crater dimensions of a specimen, we examined the specimen under the microscope to see if cracks or paint delamination have occurred under impact. If there was no crack or paint delamination, then we measured the crater dimensions and the test was validated. Figure 2 represents an example of an observed crater. The measurement of crater dimensions was made with a profilometer which gave the profile of the crater with a precision equal to sorne micrometers. In this section we solve an inverse problem which consists in minimising, in the least square means, the difference between crater dimensions issuing from experiments and those issuing from a modeL The model function is what ties the crater dimensions to the coefficients of the paint constitutive law. It is evident that such a function is defined in an implicit manner as the mechanical problem is nonlinear and does not have an analytical solution. To reach this goal, we used the finite element method so as to have an estimation of the crater dimensions.

The finiJe element model

The mechanical problem consists of the simulation of a spherical partie le impact on an aluminium alloy plate (A2024) coated with a polyurethane paint (PAC33). The thickness of the plate and paint layer are respective) y 1 mm and 0.1 mm. The plate is circul.ar, its radius is 15 ~ and is assumed to be clamped on at its circumference. The particle is assumed to be elastic and to have an initial velocity just before being in contact with painL This problem is quite complex, with large deformations, high strains~ non Jinear constitutive law and contacts. In our numerical simulation, we use the dynamic explicit finite element software ABAQUS!Explicit.

The paint constitutive law is given by equation [7], which is the Johnson Cook law [START_REF] Johnson | A Constitutive Madel and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures[END_REF] where we neglect the effect of the plastic strain on the flow limit For the substrate we used an elastic perfectly plastic law with a yield stress equal to 465 MPa. The Young' s modulus of the substrate is 71 GPa. The Young's modulus of the paint is 2.3 GPa. It has been obtained from traction tests on paint films at severa) strain rates ( 10 4 -1 o• 2 s•' ). Prony's series have been introduced to deduce the relaxation function [START_REF] Zouari | Numerical Simulation of Aeronautical Paint Layer Decoating[END_REF].

The mechanical problem

In a nonlinear analysis the equilibrium of the body considered must be established in the current configuration, which is unknown. In general, it is necessary to employ an incrementai formulation, and a time variable is used to conveniently describe the loading and the motion of the body [START_REF] Bathe | Finite element procedures[END_REF]. The aim is to evalua te the equilibrium positions of the complete body at discrete ti me steps 0, lit , 2ôt t 3ô.t , .... , where ~~ is the ti me increment.

In a Lagrangian incrementai analysis approach we express the equilibrium of the body at ti me t+f1t using the princip le of virtual powers given below: An approximate solution of equation [9] can be obtained by referring ail variables to a previously calculated known equilibrium contïguration and linearising the resulting equation, see reference [START_REF] Bathe | Finite element procedures[END_REF].

J t+âra .. d . . d'+ruV='+âJR 1) IJ ••~v [9] * .s t+llr R = J (' +At J/ _t+l!J.I p'+Arx_i) u; dt+l!J.Iv + J t+l!J.I t/ u; dt+llrs

The fini te elenlent discretisation

To solve equation [9], we used the tïnite element method for the space discretisation. Equation [9] written at time t and discretized by finite elements then becomes [START_REF] Marusich | hMode11ing of High-Speed Machining[END_REF]:

M , .. 'F 'F 'F x+ ÏOl = t'Xl+ C [ 1 0]
where, M, 'Fexz, 1 F int and 1 F c are the diagonal mass matrix, the external force array, the internai force array and the contact force array respectively.

Time integration

To predict the displacement vector at time t + Il t , we used the second order accurate central difference scheme [START_REF] Hughes | A Precis of Developments in Computational Methods for Transient AnaJysis[END_REF].

1 •• M-1 ( 1 F 'F ) X= exr-int 1 1 1+- , __ 2 x= 2 x+'x llt 1 1+- l+AI x=' x+ 2,X Ill [Il]
[ 12]

[ 13].

To assure the stability of the central difference scheme, the time step must be smaller than a cri ti cal value, see reference (Hallquist, 1 998).

Figure 3. The tnesh used in the finite elenlent sùnulation

The problem to be solved is axisymmetric, and triangular elements have been used with a reduced integration scheme. Figure 3 shows the mesh.

Non linear least square method

The parameters A and C in the finite element model are adjusted from the Levenberg:Marquardt until the calculated crater dimensions match the measured dimensions, in the !east square sense. This is accomplished by minimizing the following error function, <1> , with respect to the parameters m :

tt>(m )= ± ~(1-~; ) 2 +(1-~; ) 2 +(1-~; ) 2 ] •=1 l i h; p, d;
[14]

where h;, P; and d; are experimental crater dimensions issued from the ith measure, and h;, P; and d; are crater dimensions deduced from fini te element simulations of the corresponding impact and mT = {A, C} is the mode! parameters vector.

Because the finite element model is non linear with respect to the parameters, the minimization is referred to as a non linear least square problem.

The minimization of equation [ 14] is subjected to constraints on the unknowns A, C based on the physics of the problem. These constraints are written in the form: [15] The constraints are enforced by the interior penalty function method, which is an unconstrained sequential minimization technique, and they are incorporated straight into the penalized multicriteria objective function <I> • , as follows:

q <1>• (m) = <I>(m )+ Lç i (m) [16]
j=l where the weighted penalty functions Ç i , are the inverse barrier fonctions proposed by [START_REF] Carroll | The created response surface technique for optimizing non-Jinear restrained systems[END_REF], and are expressed by: [17] in which the weighting coefficients w j have to be adjusted. The advantage of the penalty function method is that the constrained problem is solved as unconstrained through the minirnization of equation [ 16]. To minimize the objective function we used the modified Levenberg-Marquardt method [START_REF] Marquardt | An algorithm for ]east-squares estimation of nonlinear parameters[END_REF][START_REF] Schnur | An inverse method for determining elastic material properties and a material interface[END_REF]. The ain1 of this method is making a tirst order Taylor developtnent ~f the observation vector qT ={h 1 h 2 p 1 p 2 d 1 d 2 } near IÎz: q = q~n )+ dq dnz dnz [ 18] We note by J = dq the J acobian ma tri x of the errer function <l> , dlll ~ac;:. ~ a 2 ç. g = -L --1 and H = L 2 1 are, respectively the first and second derivatives j=l ddJn j=l a dnz of the weighted penalty function. We note by qT~= f~1 /; 2 p 1 p 2 d 1 d 2 } the experimental observation vector and r = q -q the residue vector.

We write the vector b = -JT r + g and the matrix L = JT J + H.

The new expression of the objective function is then given by the following expression:

<I> *(rn+ dnz) =.!. [q(,n )-q + J dnz f [qvn )-q_ + J dnz ]+ 2 f Ç i (iii)-dnz Tg + ~ cbn TH dnz j=l 2 [ 19]
The observation function is non linear, therefore the minimisation of the objective function is done under. the constraint JJduzJJ = JJdJn 0 JJ, to ensure. that the Taylor development is still available for the new parameters.

Using the Lagrange multiplier, [START_REF] Marquardt | An algorithm for ]east-squares estimation of nonlinear parameters[END_REF] demonstrates that the solution of the problem minimisation is given by solving the following Iinear problem:

(L + J.ll }bn = b [20]
where. J.l is the ~evenberg-Marquardt parameter which determines the norm and direction of the step dnz .

To facilitate the choice of Jl and to improve the conditioning of the system, equation [20] is scaled before it is solved. The scaled matrix L and the scaled vector ~ are defined as [START_REF] Schnur | An inverse method for determining elastic material properties and a material interface[END_REF]:

a, {J = 1, n . [21] a= l,n
The scaled form of equation [20] is solved for d1n : [22] and dm is calculated from dm using: a= l,n [23] Note that Laa. = 1, a= 1, n, allowing Jl to be controlled in the manner of an independent problem, consistent from one iteration to the next.

Because the parameters are included implicitly in the finite element formulation, a fini te difference approximation of the Jacobi an matrix J in equation [ 19] is chosen. The Jacobian matrix is calculated at each iteration by perturbing each parameter and only one at once and solving a direct finite element problem for each perturbation of the parameters.

The modified Levenberg-Marquardt method and the• finite element analysis are integrated in a solution algorithm as follows:

L Set the initial values of the parameters m (o) and the Levenberg-Marquardt parame ter, JL(o) = 0.0 1.

2. Solve the direct fini te element problem and calcula te the observed values q (o) and evaluate the error function <1> (o).

3. Set the initial penalty fonction weight ro) 0 > = 0.0001 z) 0 > q,(o) ; j = 1, q.

Evaluate the weighted penalty function, Ç ~o) ; j = 1, q and the objective fonction <I> •(o).

4. For iteration k = 0, 1, ... , K a. Calculate the Jacobian function, J(k) using a finite difference approximation. 

nz (k+l) = m (k) +dm (k).
d. Solve the direct finite element problem and calculate the new observed values corresponding to the parameters nz (k+l) . Evaluate ç)k+l) ; j = 1, q and <1> •(k+l). f. Decrease J..l (k) and w ~*) 

J.l(k+l) = J.l(*) /v, w~*) = w~*> /v • • ld1n~*)j g. Check if iteration has converged l' (t)l < E,

Results

We have studied the influence on the optimization results, of the initial parameters and errors of the measured dimensions of the craters.

Influence of the initial para1neters

The final result of an optimization problem is very sensitive to the values of the initial parameters. To be sure that the obtained resuJt is an absolute minimum of the objective function, we need to vary the values of the initial parameters in the optimization procedure.

Curves in Figures 4 and5 represent respectively the evolution of the madel parameters and the value of the objective function at the end of each iteration for different values of the initial parameters.

For ali initial parameter values, the objective function reaches approximately the same final value (Figure 5), but for the model parameters we found different values when the initial parameters had been changed (Figure 4). This shows that the objective function presents different local minima.
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Evolution of the objective function with iteration numbers for different initial values

For the three last values of the initial parameters, we obtain final values of the model parameters which are very close. The retaîned values for the two parameters are A= 1.49 1 o-1 Gfa and C = 2.71 1 o-2 • ln this optimization process, w~ have taken into account only thre.e parameters of the crater and not the total. In order to see the influence of the optimization on the total crater shape, we have in Figure 6 drawn the optimized profile, the experimental profile and the protile issuing from the following initial parametèrs (A = 0.5 10-1 GPa and C = 0.5 1 o-t ). For this test, a steel particle impact with an initial velocity of 35 mis has been considered. Note thal similar results regarding the predicted crater shape, have been obtained in the case of a ve1ocity of 45 mis and an alumina particle. We conclude that the final profile is near the experimental only on the crater t1ank. +~----+-----+-------; .
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Figure 6. Crater shape before and after optitnization

4.3."2. Influence .of n1easurenzent errors

Because inverse problems are ill-posed, solutions obtained using exact data are not necessarily representative of those deduced from data including errors. ln practice, errors in experimental data occur, and the stability of the solution method with respect to small changes in the given data is important. To simulate experimental errors, small and normally distributed random numbers were added .to the crater dimensions. The mean of each distribution was zero, and the standard deviation was one percent (referred to as the percent error) of the mean of the crater dimensions. The optimized parameters obtained from each experimental data are plotted in figure 7.

To get better information about the variation of madel parameters, we calculated the relative error and the standard deviation of each 1nodel's parameters. These results are shown in table 2. We conclude that we have better precision on paramete.r A than on parameter C . 5. Numerical simulation of organic coating removal by particle impact Delamination and spalling of coatings subjected to compressive stresses have been studied by many au thors. (Evans et al., EV A 1984) have developed a model based on the fracture mechanics theory and the plate buckling theory. The au thors demonstrate that the delamination of pre-compressed films occurs if the film buckles, while a stress concentration appears at the buckle perimeter. [START_REF] Yin | 4 Axisyrnmetric buckling and growth of a circular delamination in a compressed laminate[END_REF] has used an iterative procedure based on the fourth-order Runge-Kuita integration formula to generate a family of nondimensionalized postbuckling solutions of the von Kannan's nonlinear plate theory. These solutions determine the change of the energy-release rate with the growth of a circular thin-film or midplane delamination, which in turn determines the stability characteristics of growth.

When a coating is subjected to an indentation, the corresponding penetration into the coating induces compressive stresses. These stresses, in the presence of the initial delaminated region of the coating, can induce buckling of the coating and subsequently the propagation of delamination (Papini et al., 1998). Papini and Spelt (Papi ni et al., 1 ~98) developed a model for predicting the coating buck ling under normal impact by a spherical particle. They assumed that the region of the coating in contact with the particle can not buckle.

In this section we model and simulate the delamination of the paint layer induced by the impact of a spherical parti cie on an aluminium allo y plate (A2024) coated with a polyurethane paint (PAC 33) in the cases of nonnal and oblique impact. The paint has the mechanical properties identified in the section below.

The ji11ite elenzent model

The impact problem has a symmetric plane, so we only consider half of both the particle and plate. The region under the impact (around three times the diameter of the particles) is meshed with three-dimensional eight node elements (HEXA8), see Figure 8, as the impact is very localised, while the rest of the plate is meshed with four node Belytchko shell elements (Hallquist, 1998). The junction between the two types of mesh is achieved by introducing kinematic conditions. During the calculation, brick nodes located at the junction surface ~re constrained to lie along the full fiber thickness of the shell, having the capability to move relative to each other in this fiber direction.

The target elements have a full integration scheme to avoid possible hourglass 1 modes during simulations. The other elements have a reduced integration scheme. In our model, there are 46 000 brick elements and 1 600 shell elements, giving 206 514 degrees of freedom. In our numerical simulation, we used the dynamic explicit finite element software LS-DYNA. In order to study the propagation of paint delamination under particle impacts, we have introduced a debonding criterion between paint and substrate in our finite element model. We adopt a special finite element mesh. Initially, corresponding nodes on the substrate surface and on the paint surface are perfectly bonded and therefore have identical displacements. During the simulation, the nodes debond introducing tear-off of the paint layer. This node separation is govemed by the following debonding criterion, (

(] n ) ) 2 + ( las 1 ) 2 S 1 NFLS SFLS [24] ( 
~ where (an) is the positive part of the stress vec_tor normal to the interface, as is the shear stress, NFLS and SFLS are, respectively, normal and shear failure stresses.

Failure is assumed if the left side of [24] is greater than one.

The values of NFLS and SFLS are deduced from tear-off tests [START_REF] Zouari | Modélisation et Simulation de l'Enlèvement de Revêtements Polymériques par Impact Particulaire[END_REF]) and are, respectively, equal to 50 MPa and 200 MPa. This criterion does not take into account the results of the fracture mechanics theory.

Results

We have applied this model for a 81 rnls velocity normal impact (Figure 9) with a 2 mm diameter alumina particle and for an oblique impact at 60° with the same type of partie le with an initial velocity equal to 60 mis (Figure 1 0). As observed from experiments, see Figures 11 and12, the present numerical model predicts that delamination does not occur under the particle. This is due to this region being subjected to high normal compressive stresses. The debonding criterion given by Equation [24] is therefore not reached.

Figure 9 shows the evolution of radial stresses in the structure at different normal impact times. At the beginning of the impact, the paint delamination is initiated. When radia) compressive stresses are enough to induce paint buckling, the paint is buckled and the delamination then propagates till the particle rebounds.

Figure 10 shows the evolution of radial stresses in the paint and substrate at different times for oblique impacts. The paint delamination is initiated around the limit of the contact region between the particle and paint, but the delamination propagates only from the side in front of the particle. In fact in this region the radial stresses in the paint are in compression and higher than in the region behind the parti cie. The paint buckling then occurs only in a region in front of the particle. W e have compared the dimensions of the delaminated region issued from measurements using micrographies (from an optical microscope) and numerical simulations. We found that in normal impact the diameter of the delaminated region after experiments (repeated 5 times) was 2 mm and based on simulations was 2.3 mm, which is near the experimental value. However in oblique impacts we noticed that the delaminated region is overestimated relative to our madel. 

Conclusion

The identification of material parameters of a behaviour law by solving an inverse problem is a very efficient technique, especially when there is no experimental procedure to give direct values of these parameters. We have used this technique to identify the coefficients of the behaviour law of a paint layer in the case of impacts. We notice that the difficulties are in finding the best minimisation technique of the objective function. The use of the Levenberg-Marquardt method presents sorne weaknesses, for instance the need of derivatives which are computed numerically. This can induce difficulties in the convergence process. The use of a non deterministic method as genetic algorithm can bring sorne improvements.

The use of a constitutive behaviour law taking into account the strain rates is essential to having a realistic model and results of the impact problem. The establishment of numerical data for the paint constitutive law has enabled us to achieve a numerical simulation of the paint delamination~ These simulations confirm that the paint delamination is initiated by shear stresses at the beginning of the impact. When the particle penetrates through the coating, the radial stresses are compressive and induce paint buckling when they reach a critical value. Paint delamination propagates following a mixed mode.
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Table 1 .

 1 Table1shows the mean values of the crater dimensions for the two tests. Crater dimensions

	Parti cie	Steel (1 OOC6)	Alumina
	Velocity (mis)	35	45
	h (J.tm)	14	12

p (J.tm) 43 41 d (JJm) 580 560 Figure 2. Microscopie obsen•ation of crater 4. Identification of the parameters of the Dow stress from impacts on paint

  are the components of the virtual velocity vector imposed on a configuration at time t +ru r+ru X; and t+lll X; are the Cartesian co-ordinates and acceleration of a material point at ti me t + fit S 1 is the surface at ti me t + At on which extemal tractions are applied
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where t+At OE;i are the Cartesian components of the Cauchy stress tensor * u; d ii = -Ar + Ar' are the vtrtual stratn rate tensor correspondtng to the 2 ar+ x. ()f+ x. ~+Ar y is the volume at time t + ô.t • r+6r /; 8 are the components of externally a pp lied forces per unit volume at time t +At t+& p is the mass density at time t + & t+lll J/ are the components of extemally applied surface traction per unit surface area at time t + ru 1+lll

Table 2 .

 2 Values and errors on the mode/ parameters

	Parame ter	Mean value	Absolute error	Relative error	Standard deviation
	A (GPa)	0.14876	8.32 10-j	5.6%	2.67 to-3
	c	0.02719	4.94 10-j	18.2%	1.32 to-J