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Abstract Here, a C1 finite element is formulated for analyzing the bending/torsional behavior of rectangular 
piezoelectric laminated composite beams. The formulation includes transverse shear, warping due to torsion and
electro-elastic coupling effects. The shear strain is represented by a cosine function of a higher order in nature, 
thus avoiding shear correction factors. The warping function obtained from a three-dimensional elasticity solution 
is incorporated in the present model. The distribution of the electric potential through the thickness is accounted 
for in the formulation based on the observation of the three-dimensional solution. The efficacy of the laminated 
piezoelectric composite element is tested comparing the results with those of analytical and three-dimensional 
finite element models.

1. Introduction

There has been increasing interest in recent years in
the development of lightweight smart structures for many
engineering applications. For weight optimization, structures
made of composite materials having high stiffness-to-weight
and strength-to-weight ratios, and sandwiches separating
the stiff facings with a thick core of low density as load-
bearing substrates, are preferred in aerospace engineering.
Such structures are integrated with distributed piezoelectric
materials that act as sensors and actuators because of
the direct and converse piezoelectric effects, respectively.
These structural members, being integrated with suitable
control strategies and circuits, have self-monitoring and self-
controlling capabilities. For the effective utilization of such
structures, there is a growing appreciation among researchers
for accurately modeling and simulating the characteristics of
smart composite structures.

Studies on the behavior of smart structures have received
considerable attention in the literature and reviewed by Tang

3 Address for correspondence: Mechanical Engineering Faculty, Institute of
Armament Technology, Girinagar, Pune-411 025, India.

et al [1], Saravanos and Heyliger [2], Sunar and Rao [3],
and Benjeddou [4]. It is shown that the structures, in
general, are characterized using classical/first-order shear
deformation theory coupled with either neglecting the electro-
elastic interactions or introducing constant electric field
intensity over the piezoelectric layers with the substrate.
It can be further concluded that most of the studies are
devoted to the flexural analysis of laminated smart composite
structures. Furthermore, a few studies have been devoted
to the analysis of structures with higher-order/layer-wise
theory, and also assuming the through thickness variation
for the electric field of piezoelectric layers [5–10]. It is
also observed that the available work on smart structures
largely pertains to laminated plates. Attempts are also
made in deriving the exact/analytical solutions for simple
cases of geometry and boundary conditions [11–15]. As the
exact solution is not possible/feasible for more general cases
of loading and complicated boundary conditions, improved
approximate techniques such as the finite element method have
been explored for the simulation of the behavior of smart
structures [5, 8, 16–18]. However, in analyzing thick smart
structures, 3D finite elements [19, 20] are used which are
computationally expensive. But, it is highly desirable for
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Figure 1. Laminated composite beam and coordinate system.

the designers/analysts to have a model that can capture the
important 3D effects due to the through-thickness variations
of displacements and stresses in thick laminates but maintain
the efficiency and convenience of a 1D model. To the best
of the authors’ knowledge, however, the study on the torsion
of laminated piezoelectric composite beam structures has not
received adequate attention in the literature [21–24].

Here, a finite element for the analysis of a laminated smart
beam with rectangular cross-section, having only independent
generalized displacements and electric potential, is suggested
by extending the recent work of Ganapathi et al [24]. The
element developed is a one-dimensional model from the point
of view of structural behavior and utilizes a C1 continuous
function for the transverse displacement associated with
bending in accordance with the refined shear deformation
theory, and the torsional warping of the beam is accounted for
based on a 3D elasticity solution. The electric field variation
is taken as a three-dimensional one in which a quadratic form
of the through-thickness variation in the piezoelectric layer
is considered. The element has good features for all the
standard requirements such as free from locking, spurious rigid
modes, etc. The formulation includes electro-elastic coupling
effects, and has no requirement of introducing an arbitrary
shear correction factor as the shear strain is defined through
the cosine function of a higher order nature. The efficacy of
the present formulation is tested comparing the solutions with
those of three-dimensional analysis. A detailed study is carried
out to bring out the effect of the length-to-thickness ratio on
the variation of displacements, stresses and electric potential
fields due to both bending and torsional loads.

2. Formulation

A laminated composite beam is considered with the
coordinates x along the length, y along the width and z
along the thickness directions as shown in figure 1. The
displacements in the kth layer uk , vk and wk at point (x ,
y, z) from the median surface are expressed as functions of
mid-plane displacements u, v, w, independent shear bending
rotations θx and θy of the normal in xz and yz planes. They
are also the functions of torsional rotation θ and independent
parameter γ for the torsional rotation gradient in the length
direction as

uk(x, y, z) = u(x)− yv,x (x) + f2(y)[v,x (x) + θy(x)]

− zw,x (x) + [ f3(z) + gk(z)][w,x (x) + θx(x)]

+ ψ k(y, z)γ (x)

vk(x, y, z) = v(x) − zθ(x)

wk(x, y, z) = w(x) + yθ(x)

(1)
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Figure 2. (a) Detail of the structural degrees of freedom of a
piezoelectric beam element. (b) Description of the electrical
potential degrees of freedom (1 DOF per node) in a piezoelectric
beam element.

where the subscript comma denotes the partial derivative with
respect to spatial coordinate succeeding it. The functions
f2(y), f3(z) and gk(z) are defined as

f2(y) = b/π sin(πy/b) (2a)

f3(z) = h/π sin(πz/h)− h/πb55 cos(πz/h) (2b)

gk(z) = ak z + bk (2c)

where b and h are the width and total thickness of the beam,
respectively.

In equation (2), coefficients bk are determined such that the
contribution to the displacement component uk , due to bending
in the xz plane, is continuous at the interface of adjacent layers
and is zero at the mid-point of the cross-section. Finally,
coefficients b55 and ak in equation (2) are computed from the
requirement that the transverse shear stress due to bending in
the xz plane is continuous at the interface of the adjacent layers
and vanishes at the top and bottom surfaces of the beam. The
detailed derivation of these constants b55, ak and bk can be
obtained from the work of Beakou and Touratier [25]. The
kinematics shown in equation (1), in particular for torsion,
allows one to represent the constrained torsion where axial
stress is not zero, for instance near the clamped support, and
free torsion, i.e. Saint–Venant torsion when γ approaches θ,x ,
which may be realized far away from the support of a thin beam.

The torsional warping function ψk used in defining
the kinematics in equation (1) is the solution derived from
three-dimensional elasticity equations in conjunction with the
Saint–Venant assumption of torsion for a composite beam of
rectangular cross section made of different layers. The general
expression for ψ k is taken in the form of a harmonic function
and is expressed as

ψ k =
∞∑

N=1,3,...

(Ck
N sinh(αz)+ Dk

N cosh(αz)) sin(αy)+ yz (3)

where α is defined as Nπ/b.
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Figure 3. Comparison of nondimensional displacements (U and W ), electrical potential (�) and stress Tx x for a laminated piezoelectric
beam subjected to mechanical (left side) and electrical (right side) loadings (a) in problem no. 1; L/h = 10. (b) in problem no. 1;
L/h = 50.

The coefficients Ck
N and Dk

N , in equation (3), while
defining the warping function for the rectangular cross section
are determined such that the contribution to the displacement
component uk due to torsion is continuous at the interface of
adjacent layers, and the transverse shear stress associated with
torsion is continuous at the interface of the adjacent layers and
vanishes at the top and bottom surfaces of the beam [26].

The strains in terms of mid-plane deformation for the kth
layer can be written as

{εk} =
{
εp

0
0

}
+



εk

xx

2εk
xz

2εk
x y




b

+



εk

xx

2εk
xz

2εk
x y




t

(4)

where superscripts b and t denote the strain contributions due
to bending and torsion, respectively.

The mid-plane strains, εp , the strain terms associated with
bending and torsion in equation (4), are written as

εp = u,x (5a)



εk

xx

2εk
xz

2εk
x y




b

=
{ A
( f3,z + gk

,z)(w,x + θx )

f2,y(v,x + θy)

}
(5b)



εk

xx

2εk
xz

2εk
x y




t

=



ψ kγ,x
ψ k
,zγ + yθ,x

ψ k
,yγ − zθ,x


 . (5c)

where A in equation (5b) = −zw,xx + [ f3(z) + gk(z)][w,xx +
θx,x ] −yv,xx + f2(y)(v,xx + θy,x).

The total strain can be rewritten as

{εk} =
{
εxx

2εxz

2εx y

}
= [Z ]{ε̄} (6a)

where

[Z ] =
[ 1 y f2 z f3 + gk 0

0 0 0 0 0 0
0 0 0 0 0 f2,y

0 0 0 ψ k

f3,z + gk
,z y ψ k

,z 0

0 −z ψ k
,y 0


 (6b)

{ε̄} = { u,x −v,xx v,xx + θy,x −w,xx w,xx + θx,x

v,x + θy w,x + θx θ,x γ γ,x }T . (6c)

For a composite laminated beam of thickness hk (k =
1, 2, 3, . . .), and ply-angle βk (k = 1, 2, 3, . . .), the necessary
expressions for computing the stiffness coefficients available
in the literature [27] are used. The stress-strain relation,
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Figure 3. (Continued.)

incorporating the piezoelectric effect, for the kth layer is
written as

{σ k} =
[ Qk

11 0 Qk
16

0 Qk
44 0

Qk
16 0 Qk

66

]
{εk}

−
[ 0 0 ek

31
ek

14 ek
24 0

0 0 ek
36

]


Ek
x

Ek
y

Ek
z


 (7a)




Dk
x

Dk
y

Dk
z


 =


 0 ek

14 0

0 ek
24 0

ek
31 0 ek

36


 {εk}

+


 κ

k
11 κk

12 0

κk
21 κk

22 0

0 0 κk
33







Ek
x

Ek
y

Ek
z


 (7b)

where Qk
i j(i, j = 1, 4, 6) are the reduced stiffness coefficients

of the kth layer, ek
i j are piezoelectric coefficients, κk

i j

are dielectric coefficients, Dk
x , Dk

y and Dk
z are electrical

displacements.
The electrical field intensities Ek

x , Ek
y and Ek

z can be related
to the electric potential φk as

{ Ek
x Ek

y Ek
z }T = −

{
∂φk

∂x

∂φk

∂y

∂φk

∂z

}T

. (8)

The total potential energy functional U of the system is
given as

U (δ) = (1/2)
∫ L

0

∫ b/2

−b/2

∑
k

∫ hk+1

hk

[{σ k}T{εk}

− {Dk}T{Ek}] dx dy dz

−
∫ L

0
{d}T { fx fy fz m y mz mx }T dx (9)

where δ and L are the vector of the generalized coordinates
and length of the beam, respectively. fx , f y , fz are the
distributed forces in x , y and z directions and mx , m y , mz

are the distributed moments about x , y and z axes. The vector
{d} is the vector of generalized displacements and is given by
{d}T = { u v w θx θy θ }.

Using equations (6) and (7), equation (9) can be rewritten
as

U (δ) = 1/2
∫ L

0

∫ b/2

−b/2

∑
k

∫ hk+1

hk

[{ε̄}T[Z ]T[Qk][Z ]{ε̄}

− {Ek}T[e][Z ]{ε̄} − {ε̄}T[Z ]T[e]{Ek}
− {Ek}T[κ]{Ek}] dx dy dz

−
∫ L

0
{d}T { fx fy fz m y mz mx }T dx . (10)

The governing equations obtained by minimization of total
potential energy functional given by equation (10) can be
analytically/numerically solved.
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Here, the finite element approach, developing an element
describing the structural field variables through three nodes
along the length and the electrical field variable three-
dimensionally through 27 nodes, is employed. The structural
fields are based on Hermite cubic functions for transverse
displacements (v and w according to the C1 continuity
requirements), quadratic functions for rotations (θx , θy and
θ ), linear functions for in-plane displacement, u, and rotation
gradient pertaining to torsion, γ . The electric potential φk

is interpolated using a Lagrangian function with quadratic
variation along length (x), width (y) and thickness (z)
directions. Accordingly, the element needs nine structural
(u, v, v,x , w, w,x , θx , θy, θ and γ ) degrees of freedom at
both ends of the three-noded beam element and the center
node requires three structural degrees of freedom θx , θy and
θ , as shown in figure 2(a). Similarly, the description of the
electrical potential field is based on one degree of freedom per
node in all the 27 nodes of the element, i.e. 3 nodes in all
directions as shown in figure 2(b). To account for the accurate
variation of electrical field, each layer can be divided into
many such elements through thickness along the length and
width directions of beam structure. The actual element for the
analysis is the integration of figures 2(a) and (b).

For obtaining the element level governing equations, the
vectors {ε̄} and {d} involved in equation (10) are expressed in
terms of shape/interpolation functions, their derivatives and
the vector of element level degrees of freedom/generalized
displacements {δe

u} as

{ε̄}10×1 = [Bu]10×21{δe
u}21×1;

{d}6×1 = [Hu]6×21{δe
u}21×1.

(11)

The matrices [Bu], [Hu] and vector {δe
u} involved in

equation (11) are defined in appendix A.

Similarly, the electric field intensity vector in an element
within the layer can be expressed in terms of Lagrangian shape
functions, their derivatives and element level potential degrees
of freedom as

{Ek}3×1 = −[Z̄φ]3×18[Bφ]18×27{δe
φ}27×1. (12)

The matrices [Z̄φ], [Bφ] and vector {δe
φ} involved in

equation (12) are given in appendix B.

Using equations (11) and (12), the total potential energy
expression for the element can be written as

U (δe
u, δ

e
φ) = 1

2

{
δe

u
δe
φ

}T [
[K e

uu] [K e
uφ]

[K e
φu] [K e

φφ]

]{
δe

u
δe
φ

}
− {δe

u}T{Fe
u }

(13)
where the elemental stiffness matrices [K e

uu], [K e
φφ], [K e

uφ] and
[K e

φu] resulting from mechanical, electrical fields and due to

electro-mechanical couplings are defined as

[K e
uu] =

∫ (x1+Le)

x1

[Bu]T

×
[∫ (y1+be)

y1

∫ (z1+he)

z1

[Z ]T[Qk][Z ]T dy dz

]
[Bu] dx

[K e
φφ] =

∫ (x1+Le)

x1

[Bφ]T

×
[∫ (y1+be)

y1

∫ (z1+he)

z1

[Z̄φ]T[κ][Z̄φ]T dy dz

]
[Bφ] dx

[K e
uφ] =

∫ x1+Le

x1

[Bu]T

×
[∫ (y1+be)

y1

∫ (z1+he)

z1

[Z ]T[e][Z̄φ] dy dz

]
[Bφ] dx

[K e
φu] =

∫ x1+Le

x1

[Bφ]T

×
[∫ (y1+be)

y1

∫ (z1+he)

z1

[Z̄φ]T[e]T[Z ] dy dz

]
[Bu] dx .

(14)

Similarly, the elemental load vector {Fe
u } due to applied

mechanical loads may be expressed as

{Fe
u } =

∫ (x1+Le)

x1

[Hu]T { fx fy fz m y mz mx }T dx .

(15)
The minimization of a total potential energy functional

given by equation (13) leads to the governing equation for the
element as [

[K e
uu] [K e

uφ]
[K e

φu] [K e
φφ]

]{ {δe
u}{δe
φ}

}
=

{ {Fe
u }

{0}
}
. (16)

The coefficients of stiffness matrices involved in the
governing equation (16) can be rewritten as the product
of terms having thickness (z) and width (y) co-ordinates,
and the term containing x . In the present study, while
performing the integration, terms having thickness and width
co-ordinates are explicitly integrated, whereas the terms with
x are evaluated based on full integration, using the three point
Gauss integration rule.

Following the finite element assembly procedure, the
governing equations for the beam structure are obtained as[

[K G
uu] [K G

uφ]
[K G

φu] [K G
φφ]

]{ {δG
u }

{δG
φ }

}
=

{ {FG
u }

{0}
}

(17)

where superscript G denotes the global matrices and vector.
Equation (17) can be solved using any standard method.

3. Results and discussion

The aim of the present study is to examine the efficacy of this
new element for analyzing the bending and torsional behaviors
of the laminated or sandwich piezoelectric beam. The choice
of the interpolation functions made here in developing the
element allows us to have the same order of interpolation
for both w,x and θx , v,x and θy in the definition of shear
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Figure 4. Distribution of displacements, electrical potential and stress along the thickness (at (x, y) = (0.5 m, 0.03 m)) due to 1 N m torque
applied at the free end in problem no. 2.

strain and permits the avoidance of transverse shear locking
phenomena. Similarly, θ,x and γ in the torsional strain are
interpolated with the same degree polynomial which recovers
the Saint–Venant torsion (γ = θ,x ). The element behaves
very well for both thick and thin situations as highlighted in
the work of Ganapathi et al [24]. Furthermore, it has been
demonstrated [24] that this element has no spurious mode and
is represented by correct rigid body modes pertaining to flexure
and torsion when exact integration is applied to evaluate all the
strain energy terms and, for the sake of brevity, these results
are not presented here.

The problems chosen for testing the performance of the
element are given below as:

Flexural analysis

Problem 1. Simply supported laminated piezoelectric com-
posite beam subjected to mechanical/electrical loads [15]. The
properties such as elastic, piezoelectric/dielectric coefficients
used are:

For skin (PZT4): C11 = C22 = 139 GPa, C12 = 77.8 GPa,
C13 = C23 = 74.3 GPa, C33 = 115 GPa, C44 = C55 =
25.6 GPa, C66 = 30.6 GPa; e31 = −5.2 C m−2, e32 =
−5.2 C m−2, e33 = 15.1 C m−2, e15 = e24 = 12.7 C m−2;
κ11 = κ22 = 13.06×10−9 F m−1, κ33 = 11.51×10−9 F m−1.

For core (graphite epoxy): C11 = 134.86 GPa, C12 = C13 =
5.1563 GPa, C22 = C33 = 14.352 GPa, C23 = 7.1329 GPa,

C44 = 3.609 55 GPa, C55 = C66 = 5.654 GPa; κ11 = κ22 =
0.031 × 10−9 F m−1, κ33 = 0.0266 × 10−9 F m−1.

Geometrical properties: Skin thickness h1 = h3 = 0.2 h,
core thickness h2 = 0.8 h; width b = 0.0125 m; L/h is varied
as 10 and 50.

Torsional analysis

Problem 2. Cantilever piezoelectric (PZT/epoxy) sandwich
beam subjected to mechanical/electrical loads. The properties
such as elastic, piezoelectric/dielectric coefficients considered
here are [28]:

For face (PZT/epoxy): E1 = 37.8 GPa, E2 = 6.98 GPa,
E3 = 6.98 GPa, G12 = G23 = G13 = 2.89 GPa,
ν12 = ν23 = ν13 = 0.26; d31 = −274 × 10−12 m V−1,
d32 = −120 × 10−12 m V−1, d33 = 374 × 10−12 m V−1;
κ11 = κ22 = κ33 = 16.5 × 10−9 F m−1.

For core: E = 73 GPa, G = 29.2 GPa, ν = 0.25.

Geometrical parameters: Width (b) = 0.06 m, total
thickness of the beam h = 0.1 m, h1 = 0.01 m, h2 = 0.08 m,
h3 = 0.01 m, length L = 1 m.
The boundary conditions used are:
simply supported case: u = v = w = 0 at x = 0, L

Clamped end: u = v = v,x = w = w,x = θx = θy = θ =
γ = 0 at x = 0
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Figure 5. Distribution of displacements, electrical potential and stresses along the thickness (at (x, y) = (0.5 m, 0.015 m)) due to 1 N m
torque applied at the free end in problem no. 2.

Based on progressive mesh refinement, mesh idealization
of the 10-element along the length and the 1-element in
each piezoelectric layer is found to be adequate to model
problem 1 for the bending analysis. For the mechanical
case, a uniform pressure of 0.05 MPa is assumed on the
top surface, in addition to zero electrical potential conditions
at the top and bottom surfaces as well as the core of the
beam. For the electrical loading situation, the potential of
100 V at the top and bottom surfaces of the beam, and
−100 V at the top and bottom surfaces of the core are applied.
The normalized displacements/stress due to mechanical load
(U = u(0, 0, z)C00/(hq); W = w(L/2, 0, z)C00/(hq);
� = φ(L/2, 0, z)C00/(hq E0); T11 = σ11(L/2, 0, z)/q
where C00 = 134.86 GPa and E0 = 1 × 1010 V m−1)
and applied electrical field (U = u(0, 0, z)E0/V0; W =

w(L/2, 0, z)E0/V0; � = φ(L/2, 0, z)/V0; T11 =
σ11(L/2, 0, z)hE0/(C00V0) where V0 = 100 V) obtained
through the thickness of the simply supported piezoelectric
beam using the present element are shown in figures 3(a)
and (b) along with the exact analytical solutions [15] for both
the thick and thin cases (L/h = 10 and 50). The present
model predicts the solutions accurately and they match very
well with the available analytical results. It is further inferred
from figure 3(b) that the element does not lock and is free from
the locking phenomenon, irrespective of the type of loading.

Next, the torsional characteristics of the piezoelectric
beam is analyzed considering a cantilever with geometrical
parameters and material properties given in problem 2 for
both mechanical and electrical loading situations. Unlike
in problem 1, here, the skins are treated as PZT/epoxy
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Figure 6. Distribution of displacements, electrical potential and stresses along the width (at (x, z) = (0.5 m, 0.045 m)) due to 1 N m torque
applied at the free end in problem no. 2.

layers. The lamination scheme considered for this case is
−45◦ (bottom skin)/0◦ (core)/45◦ (top skin). A torque of
1 N m is assumed at the free end of the cantilever beam
for the mechanical case, whereas the electrical potential of
100 V at the bottom surface of the beam and −100 V at
the top surface of the beam are considered for the electrical
loading case. The electrical potential conditions in the core
and along the interfaces of the laminate are treated as zero
values for all the analyses. A detailed convergence study
is conducted by increasing the number of elements in the
thickness as well as the width directions and also increasing
number of terms in the warping function, and, for the sake of
brevity, these results are not presented here. For the chosen
problem here, the finite element solutions are evaluated based
on the 14-term in the warping function in conjunction with
8-, 4- and 6-element idealization along the length, thickness
and width of the each piezoelectric layers of the sandwich
beam, respectively. The numerical results generated here for
deflections and stresses along the thickness (at x/L = 0.5,

y/b = 0.5 and 0.25) and width (at x/L = 0.5, z/h =
0.45) directions of the beam are plotted in figures 4–7 and
compared with those of the three-dimensional finite element
model using ANSYS 5.6. Furthermore, the present model
exhibits the presence of axial stress due to the torsional load
and this is due to the fact that the formulation accounts for
the constrained torsion. It is revealed from these figures that
the results predicted by the present element are, in general,
in fairly good agreement with three-dimensional solutions.
Some differences noticed in the results between the present
one and the 3D model for the distributions of stress/potential
fields are obvious, as the state of stress/potential distributions
for this class of problems is three-dimensional in nature. It
can be noted that the element treated here is essentially a
three-dimensional representation of an electrical field, but is
structurally a one-dimensional one. It is worthwhile giving
the details of the mesh using an 8-noded brick element (with
4-DOF per node) for 3D modeling of the problem from
ANSYS. The beam for the torsional analysis is discretized,
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Figure 7. Distribution of displacements, electrical potential and stresses along the thickness (at (x, y) = (0.5 m, 0.015 m)) due to electrical
load in problem no. 2.

using 20 × 30 mesh along the length and width directions, 20
elements in each skin (piezoelectric layer) and 40 elements
in the core along the thickness direction. It may be opined
from these studies that, for the given accuracy, the present
formulation leads to significant reduction in computational
time and memory requirements in comparison with those of
rigorous 3D analyses.

4. Conclusions

The finite element suggested for analyzing laminated/sandwich
piezoelectric beams with rectangular cross section, is based on
refined shear deformation theory, and the inclusion of three-
dimensional effects for warping and the distribution of electri-
cal potential field. The present element, in general, performs
well for both flexural and torsional behaviors of a laminated
piezoelectric beam. The presence of axial stress while the
beam is subjected to torsional load is brought out, as the con-
strained torsion is incorporated in the model. The formulation
outlined here results in significant reduction in computational
time and memory.
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Appendix A

The various matrices involved in equation (11) are

[Bu] =




n1,x 0 0 0 0 0
0 −h̄1,xx −h̄2,xx 0 0 0
0 h̄1,xx h̄2,xx 0 0 0
0 0 0 −h̄1,xx −h̄2,xx 0
0 0 0 h̄1,xx h̄2,xx s1,x

0 h̄1,x h̄2,x 0 0 0
0 0 0 h̄1,x h̄2,x s1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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0 0 0 0 0 0 n2,x 0
0 0 0 0 0 0 0 −h̄3,xx

s1,x 0 0 0 s2,x 0 0 h̄3,xx

0 0 0 0 0 0 0 0
0 0 0 s2,x 0 0 0 0
s1 0 0 0 s2 0 0 h̄3,x

0 0 0 s2 0 0 0 0
0 s1,x 0 0 0 s2,x 0 0
0 0 n1 0 0 0 0 0
0 0 n1,x 0 0 0 0 0

0 0 0 0 0 0 0
−h̄4,xx 0 0 0 0 0 0
h̄4,xx 0 0 0 s3,x 0 0

0 −h̄3,xx −h̄4,xx 0 0 0 0
0 h̄3,xx h̄4,xx s3,x 0 0 0

h̄4,x 0 0 0 s3 0 0
0 h̄3,x h̄4,x s3 0 0 0
0 0 0 0 0 s3,x 0
0 0 0 0 0 0 n2

0 0 0 0 0 0 n2,x




(A.1)

[Hu] =




n1 0 0 0 0 0 0 0 0 0 0
0 h̄1 h̄2 0 0 0 0 0 0 0 0
0 0 0 h̄1 h̄2 0 0 0 0 0 0
0 0 0 0 0 s1 0 0 0 s2 0
0 0 0 0 0 0 s1 0 0 0 s2

0 0 0 0 0 0 0 s1 0 0 0

0 n2 0 0 0 0 0 0 0 0
0 0 h̄3 h̄4 0 0 0 0 0 0
0 0 0 0 h̄3 h̄4 0 0 0 0
0 0 0 0 0 0 s3 0 0 0
0 0 0 0 0 0 0 s3 0 0
s2 0 0 0 0 0 0 0 s3 0


 (A.2)

where (n1, n2), (s1, s2, s3) and (h̄1, h̄2, h̄3, h̄4) are the set
of shape functions (linear, quadratic and Hermite) used for
interpolating the structural field variables (u, γ ), (θx , θy, θ)

and (v,w), respectively. They are defined as:

n1 = 1 − (x − x1)/Le; n2 = (x − x1)/Le

s1 = 1 − 3(x − x1)/Le + 2

(
x − x1

Le

)2

;

s2 = 4(x − x1)/Le − 4

(
x − x1

Le

)2

;

s3 = −(x − x1)/Le + 2
(

x − x1

Le

)2

h̄1 = 1 − 3

(
x − x1

Le

)2

+ 2

(
x − x1

Le

)3

;

h̄2 = (x − x1)

(
1 − x − x1

Le

)2

;

h̄3 = 3

(
x − x1

Le

)2

− 2

(
x − x1

Le

)3

h̄4 = (x − x1)

[(
x − x1

Le

)2

− x − x1

Le

]
.

Here, x1 is the global x-coordinate of first node of an element.

The vector of elemental structural degrees of freedom is
denoted as:

{δe
u}T = { u1 v1 v,x1 w1 w,x1 θx1 θy1 θ1 γ1 θx2

θy2 θ2 u3 v3 v,x3 w3 w,x3 θx3 θy3

θ3 γ3 } . (A.3)

Appendix B

The matrices involved while defining the electrical field
intensities in equations (12) are

[Z̄φ] =
[ l1 l2 l3 l4 l5 l6 l7 l8 l9 0 0

0 0 0 0 0 0 0 0 0 l1,y l2,y

0 0 0 0 0 0 0 0 0 l1,z l2,z

0 0 0 0 0 0 0
l3,y l4,y l5,y l6,y l7,y l8,y l9,y

l3,z l4,z l5,z l6,z l7,z l8,z l9,z

]
. (B.1)

The non-zero elements of matrix [Bφ] are:

Bφ(i, i) = s1,x ; Bφ(i, i + 9) = s2,x ;
Bφ(i, i + 18) = s3,x ; Bφ(i + 9, i) = s1;

Bφ(i + 9, i + 9) = s2; Bφ(i + 9, i + 18) = s3

(i = 1, 2, . . . , 9).

(B.2)

The shape functions (l1, l2, . . . , l9)which are expressed as
the product of quadratic Lagrangian polynomials in y (ny

i , i =
1, 2, 3) and z (nz

i ) directions, and (s1, s2, s3) quadratic shape
functions along the length (x) employed for the interpolation
of the electrical potential field are:

l1 = ny
1nz

1; l2 = ny
2nz

1; l3 = ny
3nz

1;

l4 = ny
1nz

2; l5 = ny
2nz

2; l6 = ny
3nz

2;

l7 = ny
1nz

3; l8 = ny
2nz

3; l9 = ny
3nz

3

ny
1 = 1 − 3(y − y1)/b

e + 2

(
y − y1

be

)2

;

ny
2 = 4(y − y1)/b

e − 4

(
y − y1

be

)2

;

ny
3 = −(y − y1)/b

e + 2

(
y − y1

be

)2

nz
1 = 1 − 3(z − z1)/he + 2

(
z − z1

he

)2

;

nz
2 = 4(z − z1)/he − 4

(
z − z1

he

)2

;

nz
3 = −(z − z1)/he + 2

(
z − z1

he

)2

s1 = 1 − 3(x − x1)/Le + 2

(
x − x1

Le

)2

;

s2 = 4(x − x1)/Le − 4

(
x − x1

Le

)2

;

s3 = −(x − x1)/Le + 2

(
x − x1

Le

)2

.
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Here, (x1, y1, z1) are the global coordinates of the first node of
an element.
The vector of element level electrical potential degrees of
freedom is described as:

{δe
φ}T = {φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10

φ11 φ12 φ13 φ14 φ15 φ16 φ17 φ18 φ19

φ20 φ21 φ22 φ23 φ24 φ25 φ26 φ27y } . (B.3)
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