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Introduction

There has been increasing interest in recent years in the development of lightweight smart structures for many engineering applications. For weight optimization, structures made of composite materials having high stiffness-to-weight and strength-to-weight ratios, and sandwiches separating the stiff facings with a thick core of low density as loadbearing substrates, are preferred in aerospace engineering. Such structures are integrated with distributed piezoelectric materials that act as sensors and actuators because of the direct and converse piezoelectric effects, respectively. These structural members, being integrated with suitable control strategies and circuits, have self-monitoring and selfcontrolling capabilities. For the effective utilization of such structures, there is a growing appreciation among researchers for accurately modeling and simulating the characteristics of smart composite structures.

Studies on the behavior of smart structures have received considerable attention in the literature and reviewed by Tang 3 Address for correspondence: Mechanical Engineering Faculty, Institute of Armament Technology, Girinagar, Pune-411 025, India.

et al [START_REF] Tang | Assessment of computational models for thermoelectroelastic multilayered plates[END_REF], Saravanos and Heyliger [START_REF] Saravanos | Mechanics and computational models for laminated piezoelectric beams, plates, and shells[END_REF], Sunar and Rao [START_REF] Sunar | Recent advances in sensing and control of flexible structures via piezoelectric materials technology[END_REF], and Benjeddou [START_REF] Benjeddou | Advances in piezoelectric finite element modeling of adoptive structural elements: a survey[END_REF]. It is shown that the structures, in general, are characterized using classical/first-order shear deformation theory coupled with either neglecting the electroelastic interactions or introducing constant electric field intensity over the piezoelectric layers with the substrate. It can be further concluded that most of the studies are devoted to the flexural analysis of laminated smart composite structures. Furthermore, a few studies have been devoted to the analysis of structures with higher-order/layer-wise theory, and also assuming the through thickness variation for the electric field of piezoelectric layers [START_REF] Ray | Static analysis of an intelligent structures by the finite element method[END_REF][START_REF] Batra | Higher-order piezoelectric plate theory derived from a three-dimensional variational principle[END_REF][START_REF] Yang | Equations for thick elastic plates with partially electroded piezoelectric actuators and higher order electric fields Smart[END_REF][START_REF] Bisegna | A layer-wise Reissner-Mindlin-type model for the vibration analysis and suppression of piezoactuated plates[END_REF][START_REF] Mitchell | A refined hybrid plate theory for composite laminates with piezoelectric laminae[END_REF][START_REF] Fukunaga | FEM modeling of adaptive composite structures using a reduced higher-order plate theory via penalty functions[END_REF]. It is also observed that the available work on smart structures largely pertains to laminated plates. Attempts are also made in deriving the exact/analytical solutions for simple cases of geometry and boundary conditions [START_REF] Xu | Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates[END_REF][START_REF] Ray | Exact solution for static analysis of an intelligent structure under cylindrical bending[END_REF][START_REF] Dube | Piezothermoelastic solution for angle-ply laminated plate in cylindrical bending[END_REF][START_REF] Vel | Cylindrical bending of laminated plates with distributed and segmented piezoelectric actuators/sensors[END_REF][START_REF] Fernandes | Model et etude de composants piezoelectriques: applications aux structures multifonctionnelles[END_REF]. As the exact solution is not possible/feasible for more general cases of loading and complicated boundary conditions, improved approximate techniques such as the finite element method have been explored for the simulation of the behavior of smart structures [START_REF] Ray | Static analysis of an intelligent structures by the finite element method[END_REF][START_REF] Bisegna | A layer-wise Reissner-Mindlin-type model for the vibration analysis and suppression of piezoactuated plates[END_REF][START_REF] Raja | Active vibration control of composite sandwich beams with piezoelectric extension-bending and shear actuators Smart[END_REF][START_REF] Lam | A finite-element model for piezoelectric composite laminates Smart[END_REF][START_REF] Trindade | Piezoelectric active vibration control of damped sandwich beams[END_REF]. However, in analyzing thick smart structures, 3D finite elements [START_REF] Tzou | Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter system: a piezoelectric finite element approach[END_REF][START_REF] Koko | Finite element based design tool for smart structures Smart Structures and Materials (Washington)[END_REF] are used which are computationally expensive. But, it is highly desirable for the designers/analysts to have a model that can capture the important 3D effects due to the through-thickness variations of displacements and stresses in thick laminates but maintain the efficiency and convenience of a 1D model. To the best of the authors' knowledge, however, the study on the torsion of laminated piezoelectric composite beam structures has not received adequate attention in the literature [START_REF] Park | Bending and torsion models of beams with induced-strain actuators Smart[END_REF][START_REF] Spearritt | Torsional vibration control of a flexible beam using laminated PVDF actuators[END_REF][START_REF] Zhu | Modelling of torsional vibration induced by extension-twisting coupling of anisotropic composite laminates with piezoelectric actuators Smart[END_REF][START_REF] Ganapathi | A C 1 finite element including transverse shear and torsion warping for rectangular sandwich beams[END_REF].

Here, a finite element for the analysis of a laminated smart beam with rectangular cross-section, having only independent generalized displacements and electric potential, is suggested by extending the recent work of Ganapathi et al [START_REF] Ganapathi | A C 1 finite element including transverse shear and torsion warping for rectangular sandwich beams[END_REF]. The element developed is a one-dimensional model from the point of view of structural behavior and utilizes a C 1 continuous function for the transverse displacement associated with bending in accordance with the refined shear deformation theory, and the torsional warping of the beam is accounted for based on a 3D elasticity solution. The electric field variation is taken as a three-dimensional one in which a quadratic form of the through-thickness variation in the piezoelectric layer is considered. The element has good features for all the standard requirements such as free from locking, spurious rigid modes, etc. The formulation includes electro-elastic coupling effects, and has no requirement of introducing an arbitrary shear correction factor as the shear strain is defined through the cosine function of a higher order nature. The efficacy of the present formulation is tested comparing the solutions with those of three-dimensional analysis. A detailed study is carried out to bring out the effect of the length-to-thickness ratio on the variation of displacements, stresses and electric potential fields due to both bending and torsional loads.

Formulation

A laminated composite beam is considered with the coordinates x along the length, y along the width and z along the thickness directions as shown in figure 1. The displacements in the kth layer u k , v k and w k at point (x, y, z) from the median surface are expressed as functions of mid-plane displacements u, v, w, independent shear bending rotations θ x and θ y of the normal in xz and yz planes. They are also the functions of torsional rotation θ and independent parameter γ for the torsional rotation gradient in the length direction as where the subscript comma denotes the partial derivative with respect to spatial coordinate succeeding it. The functions f 2 (y), f 3 (z) and g k (z) are defined as

u k (x, y, z) = u(x) -yv ,x (x) + f 2 (y)[v ,x (x) + θ y (x)] -zw ,x (x) + [ f 3 (z) + g k (z)][w ,x (x) + θ x (x)] + ψ k (y, z)γ (x) v k (x, y, z) = v(x) -zθ(x) w k (x, y, z) = w(x) + yθ(x) (1)
f 2 (y) = b/π sin(π y/b) (2a) f 3 (z) = h/π sin(π z/ h) -h/πb 55 cos(π z/ h) (2b) g k (z) = a k z + b k (2c)
where b and h are the width and total thickness of the beam, respectively.

In equation [START_REF] Saravanos | Mechanics and computational models for laminated piezoelectric beams, plates, and shells[END_REF], coefficients b k are determined such that the contribution to the displacement component u k , due to bending in the xz plane, is continuous at the interface of adjacent layers and is zero at the mid-point of the cross-section. Finally, coefficients b 55 and a k in equation ( 2) are computed from the requirement that the transverse shear stress due to bending in the xz plane is continuous at the interface of the adjacent layers and vanishes at the top and bottom surfaces of the beam. The detailed derivation of these constants b 55 , a k and b k can be obtained from the work of Beakou and Touratier [START_REF] Beakou | A rectangular finite element for analysing composite multilayered shallow shells in statics, vibration and buckling[END_REF]. The kinematics shown in equation [START_REF] Tang | Assessment of computational models for thermoelectroelastic multilayered plates[END_REF], in particular for torsion, allows one to represent the constrained torsion where axial stress is not zero, for instance near the clamped support, and free torsion, i.e. Saint-Venant torsion when γ approaches θ ,x , which may be realized far away from the support of a thin beam.

The torsional warping function ψ k used in defining the kinematics in equation ( 1) is the solution derived from three-dimensional elasticity equations in conjunction with the Saint-Venant assumption of torsion for a composite beam of rectangular cross section made of different layers. The general expression for ψ k is taken in the form of a harmonic function and is expressed as

ψ k = ∞ N =1,3,... (C k N sinh(αz) + D k N cosh(αz)) sin(αy) + yz (3)
where α is defined as N π/b. The coefficients C k N and D k N , in equation ( 3), while defining the warping function for the rectangular cross section are determined such that the contribution to the displacement component u k due to torsion is continuous at the interface of adjacent layers, and the transverse shear stress associated with torsion is continuous at the interface of the adjacent layers and vanishes at the top and bottom surfaces of the beam [START_REF] Cheng | Stress distribution and deformation of adhesive-bonded laminated composite beams[END_REF].

The strains in terms of mid-plane deformation for the kth layer can be written as

{ε k } = ε p 0 0 +    ε k xx 2ε k xz 2ε k x y    b +    ε k xx 2ε k xz 2ε k x y    t (4)
where superscripts b and t denote the strain contributions due to bending and torsion, respectively.

The mid-plane strains, ε p , the strain terms associated with bending and torsion in equation ( 4), are written as

ε p = u ,x (5a)    ε k xx 2ε k xz 2ε k x y    b = A ( f 3,z + g k ,z )(w ,x + θ x ) f 2,y (v ,x + θ y ) (5b)    ε k xx 2ε k xz 2ε k x y    t =    ψ k γ ,x ψ k ,z γ + yθ ,x ψ k ,y γ -zθ ,x    . ( 5c 
)
where

A in equation (5b) = -zw ,xx + [ f 3 (z) + g k (z)][w ,xx + θ x,x ] -yv ,xx + f 2 (y)(v ,xx + θ y,x ).
The total strain can be rewritten as

{ε k } = ε xx 2ε xz 2ε x y = [Z ]{ε} (6a) 
where

[Z ] = 1 y f 2 z f 3 + g k 0 0 0 0 0 0 0 0 0 0 0 0 f 2,y 0 0 0 ψ k f 3,z + g k ,z y ψ k ,z 0 0 -z ψ k ,y 0   (6b) {ε} = { u ,x -v ,xx v ,xx + θ y,x -w ,xx w ,xx + θ x,x v ,x + θ y w ,x + θ x θ ,x γ γ ,x } T . (6c)
For a composite laminated beam of thickness h k (k = 1, 2, 3, . . .), and ply-angle β k (k = 1, 2, 3, . . .), the necessary expressions for computing the stiffness coefficients available in the literature [START_REF] Jones | Mechanics of Composite Materials[END_REF] are used. The stress-strain relation, incorporating the piezoelectric effect, for the kth layer is written as

{σ k } = Q k 11 0 Q k 16 0 Q k 44 0 Q k 16 0 Q k 66 {ε k } - 0 0 e k 31 e k 14 e k 24 0 0 0 e k 36      E k x E k y E k z      (7a)      D k x D k y D k z      =   0 e k 14 0 0 e k 24 0 e k 31 0 e k 36   {ε k } +   κ k 11 κ k 12 0 κ k 21 κ k 22 0 0 0 κ k 33        E k x E k y E k z      (7b)
where 

Q k i j (i, j = 1,
{ E k x E k y E k z } T = - ∂φ k ∂ x ∂φ k ∂ y ∂φ k ∂z T . ( 8 
)
The total potential energy functional U of the system is given as

U (δ) = (1/2) L 0 b/2 -b/2 k hk+1 hk [{σ k } T {ε k } -{D k } T {E k }] dx dy dz - L 0 {d} T { f x f y f z m y m z m x } T dx (9) 
where δ and L are the vector of the generalized coordinates and length of the beam, respectively. f x , f y , f z are the distributed forces in x, y and z directions and m x , m y , m z are the distributed moments about x, y and z axes. The vector {d} is the vector of generalized displacements and is given by

{d} T = { u v w θ x θ y θ }.
Using equations ( 6) and ( 7), equation ( 9) can be rewritten as

U (δ) = 1/2 L 0 b/2 -b/2 k hk+1 hk [{ε} T [Z ] T [Q k ][Z ]{ε} -{E k } T [e][Z ]{ε} -{ε} T [Z ] T [e]{E k } -{E k } T [κ]{E k }] dx dy dz - L 0 {d} T { f x f y f z m y m z m x } T dx. ( 10 
)
The governing equations obtained by minimization of total potential energy functional given by equation ( 10) can be analytically/numerically solved.

Here, the finite element approach, developing an element describing the structural field variables through three nodes along the length and the electrical field variable threedimensionally through 27 nodes, is employed. The structural fields are based on Hermite cubic functions for transverse displacements (v and w according to the C 1 continuity requirements), quadratic functions for rotations (θ x , θ y and θ ), linear functions for in-plane displacement, u, and rotation gradient pertaining to torsion, γ . The electric potential φ k is interpolated using a Lagrangian function with quadratic variation along length (x), width (y) and thickness (z) directions. Accordingly, the element needs nine structural (u, v, v ,x , w, w ,x , θ x , θ y , θ and γ ) degrees of freedom at both ends of the three-noded beam element and the center node requires three structural degrees of freedom θ x , θ y and θ , as shown in figure 2(a). Similarly, the description of the electrical potential field is based on one degree of freedom per node in all the 27 nodes of the element, i.e. 3 nodes in all directions as shown in figure 2(b). To account for the accurate variation of electrical field, each layer can be divided into many such elements through thickness along the length and width directions of beam structure. The actual element for the analysis is the integration of figures 2(a) and (b).

For obtaining the element level governing equations, the vectors {ε} and {d} involved in equation [START_REF] Fukunaga | FEM modeling of adaptive composite structures using a reduced higher-order plate theory via penalty functions[END_REF] are expressed in terms of shape/interpolation functions, their derivatives and the vector of element level degrees of freedom/generalized displacements {δ e u } as

{ε} 10×1 = [B u ] 10×21 {δ e u } 21×1 ; {d} 6×1 = [H u ] 6×21 {δ e u } 21×1 . ( 11 
)
The matrices [B u ], [H u ] and vector {δ e u } involved in equation [START_REF] Xu | Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates[END_REF] are defined in appendix A.

Similarly, the electric field intensity vector in an element within the layer can be expressed in terms of Lagrangian shape functions, their derivatives and element level potential degrees of freedom as

{E k } 3×1 = -[ Zφ ] 3×18 [B φ ] 18×27 {δ e φ } 27×1 . ( 12 
)
The matrices [ Zφ ], [B φ ] and vector {δ e φ } involved in equation [START_REF] Ray | Exact solution for static analysis of an intelligent structure under cylindrical bending[END_REF] are given in appendix B.

Using equations [START_REF] Xu | Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates[END_REF] and [START_REF] Ray | Exact solution for static analysis of an intelligent structure under cylindrical bending[END_REF], the total potential energy expression for the element can be written as 

U (δ e u , δ e φ ) =
(x1+L e ) x1 [B u ] T × (y1+b e ) y1 (z1+h e ) z1 [Z ] T [Q k ][Z ] T dy dz [B u ] dx [K e φφ ] = (x1+L e ) x1 [B φ ] T × (y1+b e ) y1 (z1+h e ) z1 [ Zφ ] T [κ][ Zφ ] T dy dz [B φ ] dx [K e uφ ] = x1+L e x1 [B u ] T × (y1+b e ) y1 (z1+h e ) z1 [Z ] T [e][ Zφ ] dy dz [B φ ] dx [K e φu ] = x1+L e x1 [B φ ] T × (y1+b e ) y1 (z1+h e ) z1 [ Zφ ] T [e] T [Z ] dy dz [B u ] dx. (14) 
Similarly, the elemental load vector {F e u } due to applied mechanical loads may be expressed as

{F e u } = (x1+L e ) x1 [H u ] T { f x f y f z m y m z m x } T dx. (15) 
The minimization of a total potential energy functional given by equation ( 13) leads to the governing equation for the element as

[K e uu ] [K e uφ ] [K e φu ] [K e φφ ] {δ e u } {δ e φ } = {F e u } {0} . ( 16 
)
The coefficients of stiffness matrices involved in the governing equation ( 16) can be rewritten as the product of terms having thickness (z) and width (y) co-ordinates, and the term containing x. In the present study, while performing the integration, terms having thickness and width co-ordinates are explicitly integrated, whereas the terms with x are evaluated based on full integration, using the three point Gauss integration rule.

Following the finite element assembly procedure, the governing equations for the beam structure are obtained as

[K G uu ] [K G uφ ] [K G φu ] [K G φφ ] {δ G u } {δ G φ } = {F G u } {0} (17) 
where superscript G denotes the global matrices and vector. Equation ( 17) can be solved using any standard method.

Results and discussion

The aim of the present study is to examine the efficacy of this new element for analyzing the bending and torsional behaviors of the laminated or sandwich piezoelectric beam. The choice of the interpolation functions made here in developing the element allows us to have the same order of interpolation for both w ,x and θ x , v ,x and θ y in the definition of shear strain and permits the avoidance of transverse shear locking phenomena. Similarly, θ ,x and γ in the torsional strain are interpolated with the same degree polynomial which recovers the Saint-Venant torsion (γ = θ ,x ). The element behaves very well for both thick and thin situations as highlighted in the work of Ganapathi et al [START_REF] Ganapathi | A C 1 finite element including transverse shear and torsion warping for rectangular sandwich beams[END_REF]. Furthermore, it has been demonstrated [START_REF] Ganapathi | A C 1 finite element including transverse shear and torsion warping for rectangular sandwich beams[END_REF] that this element has no spurious mode and is represented by correct rigid body modes pertaining to flexure and torsion when exact integration is applied to evaluate all the strain energy terms and, for the sake of brevity, these results are not presented here.

The problems chosen for testing the performance of the element are given below as:

Flexural analysis Problem 1. Simply supported laminated piezoelectric composite beam subjected to mechanical/electrical loads [START_REF] Fernandes | Model et etude de composants piezoelectriques: applications aux structures multifonctionnelles[END_REF]. The properties such as elastic, piezoelectric/dielectric coefficients used are: Geometrical properties: Skin thickness h 1 = h 3 = 0.2 h, core thickness h 2 = 0.8 h; width b = 0.0125 m; L/ h is varied as 10 and 50.

Torsional analysis

Problem 2. Cantilever piezoelectric (PZT/epoxy) sandwich beam subjected to mechanical/electrical loads. The properties such as elastic, piezoelectric/dielectric coefficients considered here are [START_REF] Wetherhold | Piezoelectric PZT/epoxy composites for controlling torsional motion[END_REF]:

For face (PZT/epoxy): E 1 = 37.8 GPa, E 2 = 6.98 GPa, E 3 = 6.98 GPa, G 12 = G 23 = G 13 = 2.89 GPa, ν 12 = ν 23 = ν 13 = 0.26; d 31 = -274 × 10 -12 m V -1 , d 32 = -120 × 10 -12 m V -1 , d 33 = 374 × 10 -12 m V -1 ; κ 11 = κ 22 = κ 33 = 16.5 × 10 -9 F m -1 .
For core: E = 73 GPa, G = 29.2 GPa, ν = 0.25. Based on progressive mesh refinement, mesh idealization of the 10-element along the length and the 1-element in each piezoelectric layer is found to be adequate to model problem 1 for the bending analysis. For the mechanical case, a uniform pressure of 0.05 MPa is assumed on the top surface, in addition to zero electrical potential conditions at the top and bottom surfaces as well as the core of the beam. For the electrical loading situation, the potential of 100 V at the top and bottom surfaces of the beam, and -100 V at the top and bottom surfaces of the core are applied. The normalized displacements/stress due to mechanical load (U = u(0, 0, z)C 00 /(hq); W = w(L/2, 0, z)C 00 /(hq); = φ(L/2, 0, z)C 00 /(hq E 0 ); T 11 = σ 11 (L/2, 0, z)/q where C 00 = 134.86 GPa and E 0 = 1 × 10 10 V m -1 ) and applied electrical field

= v = w = 0 at x = 0, L Clamped end: u = v = v ,x = w = w ,x = θ x = θ y = θ = γ = 0 at x = 0
(U = u(0, 0, z)E 0 /V 0 ; W = w(L/2, 0, z)E 0 /V 0 ; = φ(L/2, 0, z)/ V 0 ; T 11 = σ 11 (L/2, 0, z)h E 0 /(C 00 V 0 )
where V 0 = 100 V) obtained through the thickness of the simply supported piezoelectric beam using the present element are shown in figures 3(a) and (b) along with the exact analytical solutions [START_REF] Fernandes | Model et etude de composants piezoelectriques: applications aux structures multifonctionnelles[END_REF] for both the thick and thin cases (L/ h = 10 and 50). The present model predicts the solutions accurately and they match very well with the available analytical results. It is further inferred from figure 3(b) that the element does not lock and is free from the locking phenomenon, irrespective of the type of loading.

Next, the torsional characteristics of the piezoelectric beam is analyzed considering a cantilever with geometrical parameters and material properties given in problem 2 for both mechanical and electrical loading situations. Unlike in problem 1, here, the skins are treated as PZT/epoxy layers. The lamination scheme considered for this case is -45 • (bottom skin)/0 • (core)/45 • (top skin). A torque of 1 N m is assumed at the free end of the cantilever beam for the mechanical case, whereas the electrical potential of 100 V at the bottom surface of the beam and -100 V at the top surface of the beam are considered for the electrical loading case. The electrical potential conditions in the core and along the interfaces of the laminate are treated as zero values for all the analyses. A detailed convergence study is conducted by increasing the number of elements in the thickness as well as the width directions and also increasing number of terms in the warping function, and, for the sake of brevity, these results are not presented here. For the chosen problem here, the finite element solutions are evaluated based on the 14-term in the warping function in conjunction with 8-, 4-and 6-element idealization along the length, thickness and width of the each piezoelectric layers of the sandwich beam, respectively. The numerical results generated here for deflections and stresses along the thickness (at x/L = 0.5, y/b = 0.5 and 0.25) and width (at x/L = 0.5, z/ h = 0.45) directions of the beam are plotted in figures 4-7 and compared with those of the three-dimensional finite element model using ANSYS 5.6. Furthermore, the present model exhibits the presence of axial stress due to the torsional load and this is due to the fact that the formulation accounts for the constrained torsion. It is revealed from these figures that the results predicted by the present element are, in general, in fairly good agreement with three-dimensional solutions. Some differences noticed in the results between the present one and the 3D model for the distributions of stress/potential fields are obvious, as the state of stress/potential distributions for this class of problems is three-dimensional in nature. It can be noted that the element treated here is essentially a three-dimensional representation of an electrical field, but is structurally a one-dimensional one. It is worthwhile giving the details of the mesh using an 8-noded brick element (with 4-DOF per node) for 3D modeling of the problem from ANSYS. The beam for the torsional analysis is discretized, using 20 × 30 mesh along the length and width directions, 20 elements in each skin (piezoelectric layer) and 40 elements in the core along the thickness direction. It may be opined from these studies that, for the given accuracy, the present formulation leads to significant reduction in computational time and memory requirements in comparison with those of rigorous 3D analyses.

Conclusions

The finite element suggested for analyzing laminated/sandwich piezoelectric beams with rectangular cross section, is based on refined shear deformation theory, and the inclusion of threedimensional effects for warping and the distribution of electrical potential field. The present element, in general, performs well for both flexural and torsional behaviors of a laminated piezoelectric beam. The presence of axial stress while the beam is subjected to torsional load is brought out, as the constrained torsion is incorporated in the model. The formulation outlined here results in significant reduction in computational time and memory. n 1 0 0 0 0 0 0 0 0 0 0 0 h1 h2 0 0 0 0 0 0 0 0 0 0 0 h1 h2 0 0 0 0 0 0 0 0 0 0 0 s 1 0 0 0 s 2 0 0 0 0 0 0 0 s 1 0 0 0 s 2 0 0 0 0 0 0 0 s 1 0 0 0 0 n 2 0 0 0 0 0 0 0 0 0 0 h3 h4 0 0 0 0 0 0 0 0 0 0 h3 h4 0 0 0 0 0 0 0 0 0 0 s 3 0 0 0 0 0 0 0 0 0 0 s 3 0 0 s 2 0 0 0 0 0 0 0 s 3 0

       (A.2)
where (n 1 , n 2 ), (s 1 , s 2 , s 3 ) and ( h1 , h2 , h3 , h4 ) are the set of shape functions (linear, quadratic and Hermite) used for interpolating the structural field variables (u, γ ), (θ x , θ y , θ) and (v, w), respectively. They are defined as: Here, x 1 is the global x-coordinate of first node of an element.

n 1 = 1 -(x -
The vector of elemental structural degrees of freedom is denoted as: 

{δ e u } T = { u 1 v 1 v ,

1 Figure 1 .

 11 Figure 1. Laminated composite beam and coordinate system.

Figure 2 .

 2 Figure 2. (a) Detail of the structural degrees of freedom of a piezoelectric beam element. (b) Description of the electrical potential degrees of freedom (1 DOF per node) in a piezoelectric beam element.

Figure 3 .

 3 Figure 3. Comparison of nondimensional displacements (U and W ), electrical potential ( ) and stress T x x for a laminated piezoelectric beam subjected to mechanical (left side) and electrical (right side) loadings (a) in problem no. 1; L/ h = 10. (b) in problem no. 1; L/ h = 50.

Figure 3 .

 3 Figure 3. (Continued.)

Figure 4 .

 4 Figure 4. Distribution of displacements, electrical potential and stress along the thickness (at (x, y) = (0.5 m, 0.03 m)) due to 1 N m torque applied at the free end in problem no. 2.

  For skin (PZT4): C 11 = C 22 = 139 GPa, C 12 = 77.8 GPa, C 13 = C 23 = 74.3 GPa, C 33 = 115 GPa, C 44 = C 55 = 25.6 GPa, C 66 = 30.6 GPa; e 31 = -5.2 C m -2 , e 32 = -5.2 C m -2 , e 33 = 15.1 C m -2 , e 15 = e 24 = 12.7 C m -2 ; κ 11 = κ 22 = 13.06 × 10 -9 F m -1 , κ 33 = 11.51 × 10 -9 F m -1 . For core (graphite epoxy): C 11 = 134.86 GPa, C 12 = C 13 = 5.1563 GPa, C 22 = C 33 = 14.352 GPa, C 23 = 7.1329 GPa, C 44 = 3.609 55 GPa, C 55 = C 66 = 5.654 GPa; κ 11 = κ 22 = 0.031 × 10 -9 F m -1 , κ 33 = 0.0266 × 10 -9 F m -1 .

  Geometrical parameters: Width (b) = 0.06 m, total thickness of the beam h = 0.1 m, h 1 = 0.01 m, h 2 = 0.08 m, h 3 = 0.01 m, length L = 1 m. The boundary conditions used are: simply supported case: u

Figure 5 .

 5 Figure 5. Distribution of displacements, electrical potential and stresses along the thickness (at (x, y) = (0.5 m, 0.015 m)) due to 1 N m torque applied at the free end in problem no. 2.

Figure 6 .

 6 Figure 6. Distribution of displacements, electrical potential and stresses along the width (at (x, z) = (0.5 m, 0.045 m)) due to 1 N m torque applied at the free end in problem no. 2.

Figure 7 .

 7 Figure 7. Distribution of displacements, electrical potential and stresses along the thickness (at (x, y) = (0.5 m, 0.015 m)) due to electrical load in problem no. 2.

2 ; s 2 = 4 (x -x 1 )/L e - 4 x -x 1 L e 2 ; s 3 3 h4= 2 -

 224142332 1 )/L e ; n 2 = (xx 1 )/L e s 1 = 1 -3(xx 1 )/L e + 2 xx 1 L e = -(xx 1 )/L e + 2 x -(xx 1 ) xx 1 L e xx 1 L e .

  x1 w 1 w ,x1 θ x1 θ y1 θ 1 γ 1 θ x2 θ y2 θ 2 u 3 v 3 v ,x3 w 3 w ,x3 θ x3 θ y3 θ 3 γ 3 } .Here, (x 1 , y 1 , z 1 ) are the global coordinates of the first node of an element. The vector of element level electrical potential degrees of freedom is described as:{δ e φ } T = { φ 1 φ 2 φ 3 φ 4 φ5 φ 6 φ 7 φ 8 φ 9 φ 10 φ 11 φ 12 φ 13 φ 14 φ 15 φ 16 φ 17 φ 18 φ 19 φ 20 φ 21 φ 22 φ 23 φ 24 φ 25 φ 26 φ 27 y } . (B.3)

		(A.3)
	s 1 = 1 -3(x -x 1 )/L e + 2	x -x 1 L e

2

;

s 2 = 4(xx 1 )/L e -4

xx 1 L e

2

;

s 3 = -(xx 1 )/L e + 2 xx 1 L e 2 .
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Appendix A

The various matrices involved in equation [START_REF] Xu | Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates[END_REF] are

Appendix B

The matrices involved while defining the electrical field intensities in equations ( 12) are

[ Zφ ] = l 1 l 2 l 3 l 4 l 5 l 6 l 7 l 8 l 9 0 0 0 0 0 0 0 0 0 0 0 l 1,y l 2,y 0 0 0 0 0 0 0 0 0 l 1,z l 2,z 0 0 0 0 0 0 0 l 3,y l 4,y l 5,y l 6,y l 7,y l 8,y l 9,y l 3,z l 4,z l 5,z l 6,z l 7,z l 8,z l 9,z

The non-zero elements of matrix [B φ ] are:

The shape functions (l 1 , l 2 , . . . , l 9 ) which are expressed as the product of quadratic Lagrangian polynomials in y (n y i , i = 1, 2, 3) and z (n z i ) directions, and (s 1 , s 2 , s 3 ) quadratic shape functions along the length (x) employed for the interpolation of the electrical potential field are: