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ABSTRACT. Despite of the significant technological progress in machining, at present it is very 
difficult to model cutting processes in order to predict optimal process performance. Usually, 
Eulerian, Lagrangian and ALE (arbitrary Lagrangian Eulerian) methods have been adopted 
for modeling cutting process. Lagrangian formulations allow accurate representations of the 
domain boundary evolution, however it requires a remeshing procedure. Eulerian 
formulations have been used in order to compute steady-state solution. However, these 
Eulerian techniques lead to accurate simulations of processes involving large deformations, 
as presented in this paper. In the context of Lagrangian simulation, the use of a new meshless 
technique, called the Natural Element Method, is proposed. This technique allows treating 
large deformations without remeshing requirements. 
KEYWORDS: Cutting simulation, Eulerian and Lagrangian descriptions, Meshless methods, 
Natural Element Method. 
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1. Introduction

Despite of the significant technological progress in machining, at present it is 
very difficult to model cutting processes in order to predict optimal process 
performance. Material cutting is a very complex forming process involving large 
strains, severe shear and friction, thermomechanical couplings and 
thermoelastoviscoplastic behaviour, metallurgical and chemical transformations 
with material diffusion, material damage and fracture. Moreover, an accurate 
description of these phenomena requires a multiscale approach as proposed in 
several works. A good overview of the state of the art on this topic is given, for 
example, in the proceedings of the second CIRP International Workshop on 
Modeling of Machining Operations (2000), as well as in the proceedings of the 
fourth and fifth ESAFORM Conferences (2001 and 2002) where a minisymposium 
was devoted these problems (see for example Touratier and Lorong, 2000; Ueda et 
al., 2000; Ceretti et al., 2001; Saanouni et al., 2002).   

In the past, Eulerian, Lagrangian and ALE (arbitrary Lagrangian Eulerian) 
methods have been adopted. Even if the Lagrangian or updated Lagrangian 
formulations allow accurate representations of the domain boundary evolution (Ali, 
2001), the large deformation of the material results in a large distortion of the finite 
element mesh. Then, a remeshing procedure is frequently carried out. Eulerian 
formulations have been used in order to compute steady-state analysis (Joyot et al. 
1998). However, Eulerian techniques lead to accurate simulations of processes 
involving large deformation (which occurs in the chip formation zone) using a fixed 
mesh. The Eulerian techniques, widely used for simulating complex fluid flows, 
allow to predict accurately the position of free and moving boundaries. In this paper 
two different Eulerian strategies are considered, and we will focus on surface 
tracking aspects. The first one concerns a pseudo-behavior or penalty technique, and 
the second one makes use of a level set function in order to locate the material 
boundaries. 

The main limitation of Eulerian techniques is related to the treatment of 
convective terms in the motion and constitutive equations. This problem is avoided 
by the use of a Lagrangian strategy because in this case the mesh moves with the 
material, and advection terms are simply treated from the difference between the 
final and the initial configurations. However, in Eulerian simulations the mesh is 
fixed in space, and the numerical strategies must take into account the hyperbolic 
character of the advection terms. 

The use of a meshless technique is a good choice since it keeps the advantages of 
moving meshes for the accurate integration of the transport equations along the 
nodal flow path lines, and for the representation of free and moving boundaries, 
avoiding the necessity of remeshing. However, the disadvantage of standard 
meshless techniques (SPH, RKPM or moving least square) is the use of non-nodal 
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interpolations, which introduces some difficulties in the imposition of essential 
boundary conditions. To avoid this problem and solve the equations of motion the 
use of the Natural Element Method (NEM) is proposed. This technique defines a 
nodal interpolation (that allows us to impose essential boundary conditions) without 
the necessity of a mesh support.  

The main aim of this work is not the establishment of a thermomechanical model 
for describing the complex phenomena involved in the cutting processes, but the 
evaluation of the capabilities of different numerical strategies to describe large 
material transformations (evolution of complex kinematics). For this reason, a very 
simple constitutive equation (Norton-Hoff) without taking into account other 
physical phenomena was considered.   

2. Eulerian formulations

2.1. Material tracking: a Volume of Fluid technique 

Eulerian formulations usually proceed with a fixed mesh. In this case, the 
location of moving boundaries remains rather difficult. One possibility, widely used 
in the area of the fluid mechanics, is based on the definition of a material presence 
variable which takes a unit value in the region occupied by the material and which 
vanishes in the empty region. Thus, the equations defining the mechanical model 
must be imposed only in the fulfilled elements. To illustrate the numerical procedure 
we focus on a simple mechanical model, the Norton-Hoff viscoplastic model, which, 
neglectes mass and inertia terms. This model is defined by a set of equations, 
namely  

   [1] 

where:  is the stress tensor,  is the strain rate tensor (the symmetric part of the 

gradient of velocity tensor),  is the velocity field, p is the Lagrange multiplier 

associated with the incompressibility constraint, is the unit tensor, and k and n 

are two material parameters. The symbol “:” denotes the product defined by 
. Thus,  represents the second invariant of the strain rate 
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tensor. The previous model is defined in the material domain , which evolves in 

time, i.e. . 

In order to simulate material transformations involving very large displacements, 
the function of material presence I defined in any fixed domain  containing the 
material domain during its transformation was introduced (Pichelin and Coupez, 
1998), i.e. . Thus, the function I is defined by

   [2] 

A possible extended variational formulation defined in the whole domain is 
given by 

   [3] 

 and 

   [4] 

where the pseudobehaviour  and  are enforced in the empty region 

(  and ).  The function  for intermediate values of 

the material presence function , and the function  must be chosen in 
order to guarantee the scheme conservation and an accurate moving boundary 
location (the thickness of the region for which 0<I<1 must be minimized).  When 

 and  is a constant small enough, the scheme proposed by Pichelin 
and Coupez, (Pichelin and Coupez, 1998), is obtained. However, Monton (Monton, 
2002),  proved  that taking  

   [5] 

where Ith is a threshold value close to 1 and  is a  small enough constant,  the 
thickness of the moving boundary is reduced to one or two elements. The variational 
formulation (Eqs. [3] and [4]) can be solved accurately, in a fixed mesh associated 
to the whole domain , using a standard mixed finite element formulation. The 
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functional spaces used in the interpolation of the velocity and pressure variables 
must verify the “inf-sup” condition. Thus, in our simulations an enriched linear 
approximation is considered for the velocity interpolation, whereas a linear 
approximation is used for the pressure interpolation (P1+buble-P1). 

On the other hand, the evolution of the function I is given by the following linear 
advection equation  

   [6] 

Due to its hyperbolic character, appropriate discretisation techniques are needed. 
One possible solving is based on the use of the discontinuous finite element 
formulation (Chinesta, 2002).  

In spite of the reduced numerical diffusion and mass conservation accuracy 
resulting from the application of the numerical schema described, the exact position 
of the moving boundary remains uncertain. Thus, the imposition of surface tractions 
remains a delicate matter. In order to improve the domain boundary localization the 
level set method can be applied as noticed in the next section. 

2.2. Material tracking: the Level Set Method 

In order to improve the interface localization, we can define a smooth function 
(level set function)  (see references of Sussman et al.) whose zero value 
determines the position of the flow front. The equation governing the evolution of 
this function is given by 

   [7] 

where  is an arbitrary velocity field which takes the material velocity  on the 

moving boundary . This equation can be solved 
using a numerical technique, taking into account its hyperbolic character.  The main 
difficulty in the application of such techniques is that the quality of the function 

 is degraded during the process simulation. Thus, the slope of the level 
function can reach very high or very small values. In both cases a significant error 
can be introduced in the interface updating (determination of the curve where  
vanishes). In order to reduce these numerical errors some researchers proposed to 
modify the level function at each iteration in order to obtain a unit slope in the flow 
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direction on the moving boundary. For this purpose, and knowing the level function 
at time t, we need to solve the following non-linear advection equation 

   [8] 

where the function is equal to  along the moving boundary. Today, the 
numerical treatment of non-linear advection equations is a difficult matter (see the 
works of Sussman et al.). Moreover, an accurate velocity description on  is also 
required, which is not simple if one proceeds using a penalization technique as 
described in the previous section. 

2.3. Taking into account the material history 

Using an Eulerian description, the material history can be defined from some 
variables whose evolution is governed by an advection equation. One of these 
variables is the gradient of deformation , whose evolution verifies the equation 

   [9] 

Equation [9] can be solved applying the same numerical scheme used to 
integrate Eq. [6]. The main difficulties found in this explicit integration are related 
to the field updating through the moving boundary (Chinesta, 2002). 

3. The natural element method: an efficient meshless Lagrangian strategy

Concerning the treatment of convective terms, one of the most accurate 
integration techniques is the method of characteristics. This technique proceeds 
integrating along the material trajectories, which correspond to the nodal pathlines 
in a Lagrangian description. However, it is well known that the use of a Lagrangian 
formulation in finite elements requires frequent remeshing. This is because the mesh 
becomes quickly highly distorted. In this case a field projection between the old and 
new meshes is required. Moreover, in 3D simulation this remeshing procedure is not 
an easy matter. It is in this context where the so-called meshless methods have been 
introduced. The most popular are the SPH (Smooth Particle Hydrodynamics) and 
the Moving Least Square techniques (MLS), for which the main limitation is the 
imposition of the essential boundary conditions. One possibility to avoid this 
problem and solve the equations of motion is to consider the Natural Element 
Method (NEM). This technique defines a nodal interpolation (that facilitate the 
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imposition of essential boundary conditions). However, the main advantage of using 
this technique is that the interpolation accuracy does not depend on the regularity of 
the nodal distribution. Thus, we can simulate large material deformations without 
remeshing.  

The NEM is based on the natural neighbor interpolation scheme (Sibson, 1981; 
Watson 1981), which relies on the concepts of Voronoi diagrams (Voronoy, 1908) 
and Delaunay triangulations (Delaunay, 1934) (see figure 1), to build Galerkin trial 
and test functions. These are defined as the Natural Neighbor coordinates (also 
known as Sibson’s coordinates) of the point under consideration, that is, with 
respect to figure 2, the value of the shape function associated with the node 1 at 
point x is defined as 

 [10]

Figure 1. Delaunay triangulation (a) and Voronoy diagram (b) 

Figure 2. Definition of the Natural Element shape functions 

(a) (b) 
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These functions are used to build the discrete system of equations arising from 
the application of the Galerkin method in the usual way. It has been proved (see 
Sukumar et al., 1998) that angles of the Delaunay triangulation are not influencing 
the accuracy of the results, in contrast to the standard FEM. 

In addition, the NEM has interesting properties such as linear consistency and 
smoothness of the shape functions (natural neighbor coordinates are C∞ everywhere 
except at the nodes, where they are C0). These functions are dependent on the 
position and density of nodes, leading to standard FE constant strain triangle shape 
functions, bilinear shape functions or rational quartic functions in different 
situations.  

But, perhaps, the most interesting property of the Natural Element Method is the 
Kronecker delta property, i.e. φi(xj)=δij. In contrast to the vast majority of meshless 
methods, the NEM shape functions are strictly interpolant. This property allows an 
exact reproduction of linear (even bilinear in some 3D cases) fields on the boundary 
of convex domains, since the influence of interior points vanishes along convex 
boundaries (this is not true in the non-convex ones). Proofs of this behaviour can be 
found in (Sukumar,  1998), and references therein. 

A Galerkin technique is considered for the discretisation of the previous mixed 
variational formulation (Eqs. [3] and [4]). In this work we have chosen a C0-C-1 
interpolation for velocity and pressure fields, respectively. A discontinuous field has 
been considered for the pressure approximation, given by 

[11] 

where n is the number of natural neighbors of  point x and  denotes the nodal 
pressures. 

No spurious pressure modes and no locking have been detected in the 
implementation of the method. Although it is known that this approximation does 
not verify the “inf-sup” condition, its behavior has been proved to be similar to the 
bilinear quadrilateral (BLQ) finite element with discontinuous constant pressure 
interpolation for incompressible elasticity in a regular nodal distribution. 

In (Cueto et al., 2000) the issue of imposing essential boundary conditions is 
analyzed. Two main approaches are possible: in the first one the boundary of the 
material domain is not explicitly defined (in a CAD sense) and in the second one it 
is defined. The first approach leads to the alpha-shape based Natural Elements 
Method, which was applied in the examples presented in this paper. Thus, the 
material domain boundary can be automatically extracted from the cloud of nodes 
by using the alpha-shape concepts, and an exact reproduction of linear fields on the 
boundary of convex or non-convex domains can be obtained.  

8



4. Numerical results

In order to illustrate the ideas introduced previously we consider a simple 
geometry (see Fig. 3) of a material piece (its behaviour is modeled by the Norton-
Hoff constitutive equation), which moves from the left to the right with an imposed 
velocity. 

Figure 3. Piece geometry used in the simulations 

The chip formation has been widely simulated using Lagrangian techniques for 
simple material behaviour (Norton-Hoff) and for more realistic elastoviscoplastic 
behaviors (Ali, 2001). Remeshing operations require a non negligible CPU time, and 
as previously indicated, the efficient treatment of 3D models remains today an open 
problem.  

A first possibility lies in using an Eulerian description. In this case, as previously 
described, we consider a domain  containing the piece and a fixed mesh of the 
whole domain (see Fig. 4)  

Figure 4. Mesh of the pseudo-domain containing the material piece 
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Now, we can solve the extended variational formulation (Eqs. [3] and [4]) using 
a mixed finite element technique and a Norton-Hoff behavior law. The Newton’s 
technique is used to treat the non-linearity.  Figures 5 and 6 depict the first velocity 
field obtained for values of the power index n=1 (Newtonian fluid) and n=0.5 
respectively. 

Figure 5. Velocity field at the first time step obtained for a power index value n=1 

Figure 6. Velocity field at the first time step obtained for a power index value n=0.5 

It can be noticed froms Figs. 5 and 6 that the deformation is much more localized 
for small values of power index n. The same effect can be obtained using the 
Bingham model (which introduces a yield stress) or its regularized version 
(Papanastasiou, 1987). It can also be  observed that the introduction of the 
pseudobehaviour in the empty region does not affect the mechanical state of the 
piece. From the computed velocity field we can update the function I defining the 
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material domain, to solve again the extended variational formulation to obtain the 
kinematics and the stresses in the updated material domain. Thus, the chip formation 
can be simulated with proper accuracy in a fixed mesh. Figure 7 illustrates the 
beginning of the chip formation when the power index is equal to n=0.5.  

Figure 7. Chip formation based on a fixed mesh description 

Figure 8 shows the solution found by using the NEM for a power index value of 
n=0.3. In spite of the very large deformations that can be appreciated in the 
sequence shown in figure 8, no nodal redistribution is required in order to assure the 
computation accuracy, even if the Delaunay’s triangulation (which is the dual 
structure of the Voronoy tessellation from which the interpolation is defined) 
contains after few iterations a lot of triangles extremely distorted. Thus, the nodal 
position is updated directly from the velocity field.   
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a b 

c d 

e f 

Figure 8. Chip formation simulation using the Natural Element Method 

Figure 9 depicts a function of the equivalent strain rate.  It can be noticed that the 
localization of the strain rate is well predicted in spite of the coarse and uniform 
nodal distribution. However, as it could be expected, the introduction of new nodes 
or their elimination is a very easy task, because in both cases any nodal 
redistribution to ensure an interpolation accuracy is required. Thus, the introduction 
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of a new node in a region of the domain to improve the solution accuracy at that 
zone (for example to approximate high gradients) only requires the interpolation of 
the different fields at that node from their values at the neighbor nodes using the 
standard natural elements interpolation.  

Figure 9. Strain rate localization in the chip formation zone 

6. Conclusions

Eulerian simulations of cutting processes using a fixed mesh can be carried out 
accurately, however some difficulties persist related to the treatment of the 
advection equations governing the material domain evolution and consequently the 
position of the domain boundaries. Moreover, the constitutive equations, taking into 
account the material deformation history, also introduce advection terms.  

The use of a meshless technique is a good choice since it keeps the advantages of 
moving meshes for the accurate integration of the transport equations along the 
nodal flow path lines, and for the representation of free and moving boundaries, 
avoiding the necessity of remeshing. However, the disadvantage of standard 
meshless techniques (SPH, RKPM or moving least square) is the use of non-nodal 
interpolations, which introduces some difficulties in the imposition of essential 
boundary conditions. To avoid this problem and solve the equations of motion the 
use of the Natural Element Method (NEM) is proposed. This technique defines a 
nodal interpolation (that allows us to impose essential boundary conditions) without 
the necessity of a mesh support. Preliminar results involving a simple constitutive 
model (Norton-Hoff) in the simulation of a chip formation have been presented, 
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which prove the capabilities of that technique to the discretisation of more complex 
thermomechanical cutting models. 
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