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Summary

Blanking and machining are commonly used in processes to obtain the shape of many mechanical pieces. Al-
though considerable number of experimental results exist, certain essential aspects of cutting are still not well
understood. This comes from the complexity of the thermomechanical phenomena induced by the material
separation as well as from the complexity of the dynamical behaviour of the whole workpiece/tool/machine
system. Numerical simulations make it possible to go further in the comprehension and the prediction of
machining and cutting processes.
In this work the state-of-the art is analysed and we present the most recent developments in the contribution
of computational mechanics to numerical simulation of machining and blanking. This contribution is, on
one hand, developed at a very global scale called macroscopic scale. At this scale a representation of the
deformations of the piece is necessary, for example when thin walls are present, and when both predictions
of the geometrical state of final surface and/or stability of the process are expected. On the other hand,
the contribution is also located at a more local scale: the mesoscopic scale. At this scale, the aim is the
determination of thermomechanical sollicitations applied to the tool, the simulation of chip formation, or
the description of residual states (mechanical, chemical) inside the workpiece after machining.

1 INTRODUCTION

During machining, metallurgical and chemical transformations, as well as dynamical phe-
nomena produced by the cutting process, occur in the cutting area. Their analysis, includ-
ing phase changes and chemical diffusion between chip and tool, will bring out important
features on material flow during cutting and on cutting capability for a given material.

Whenever understanding or optimisation of cutting conditions is studied, it is highly
important to have numerical tools that can simulate the operations. For example in the
field of metal forming, some efficient simulation codes have been developed during the last
decade for stamping and sheet forming. They are now widely used in industry.

In metal cutting, except for some specific application (CUTPRO [1] for the stability of
the process, AdvantEdgeTM [2] for machining) we do not dispose of such tools. This is due
to the complexity of the forming process wich involves high dynamical shear and friction
mechanisms, inducing heat generation.

Indeed, the thermomechanical coupling which occurs involves viscoplasticity at large
strains (up to 10) and large stain rates (up to 105s−1) where the material goes from room
temperature to the heated state in few milliseconds, heat coming from internal dissipation
and friction. In addition, the constant evolution of the workpiece – due to material removal
– and the complexity of the dynamic behaviour of the machine, particularly for high speed
spindles, are leading to additional difficulties. Finally it is noteworthy that the increase
of the cutting speeds increases the role of the thermal phenomena and thermomechanic
coupling, by causing the localization of the strain and the creation of shear bands – called
adiabatic shear bands – that have a very thin thickness (between 5.10−5m and 10−5m).
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It is a common habit in computational mechanics, as in physical science, to define a
simulation model which is only a representation model of reality. The assumptions done
to build on the model depend on the nature of the expected results. For example, to
make a modal analysis a coarse mesh may be sufficient, but to make a stress analysis a
fine mesh must be used in the area of interest. It is clear that all the above phenomena
observed during the cutting process need appropriate reference scales to be properly and
consistently analysed: the separation of physical effect with large length of variation from
those with smaller characteristic length must be done. We shall hereafter introduce three
different scales (see Figure 1) to consistently study the cutting operation [3]:

• a microscopic scale at the material grain level. This scale will be required to analyse
the material microstucture; for example to construct a polycrystalline thermome-
chanical constitutive law including grain distribution or to take into account phase
changes, chemical diffusion, damage, wear, . . .

• a mesoscopic scale at the tool tip/workpiece material level the material is modeled
as a continuum domain. In blanking the mesoscopic scale is used to study the whole
material separation front inside the workpiece. In machining, this scale is the usual
one to make the study of continuous chip formation, in order to predict chip geometry,
stresses and temperatures, as well as the repartition of the cutting forces along the
tool-tip, the thermomechanical sollicitations on the tool-tip (determination of tool-
chip and tool-workpiece frictions).

• a macroscopic scale to analyse the whole workpiece-tool-machine level. This macro-
scopic scale will be more appropriate when dealing with dynamics of the system. At
this scale the tool is simply seen as an erasing tool.

Macroscopic scale Microscopic scaleMesoscopic scale

Figure 1. The multiscale partition

Computational mechanics is an essential component of the tools that are avaliable to
make it possible to obtain, in a short time, operational results. It takes place mainly in
both macroscopic and mesoscopic scales in the following manner:

• at the macroscopic scale it is an usual way to model the dynamic behaviour of the
machine. For pieces including deep pockets or thin walls, a more specific use of
computational mechanics is encountered as it is necessary to take into account the
deformations of the piece inside the machined zone.

• at the mesoscopic scale to compute complex and time dependent space fields. For
example it permits to make an accurate analysis of stresses and temperatures.
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The two next sections are concerning simulation of machining at the macroscopic scale.
Section 2 recalls the goals and context, gives an overview of the current approaches, and
specifies different ways of using computational mechanics at this scale. Section 3 focuses on
the case of flexible workpieces such as thin-walled workpieces. An accurate definition, and
practical aspects, of material removal are given in this context. Sections 4 and 5 are dealing
with the simulation at the mesoscopic scale. Section 4 presents an overview of simulation at
this scale and points out some remaining difficulties. In section 5 we propose an alternative
to finite element approaches, the C-NEM, to break up the non-reliability of 3D re-meshing.
Some results will be presented in the case of blanking.

2 NUMERICAL SIMULATION AT THE MACROSCOPIC SCALE

2.1 Goals and Context of Simulations at the Macroscopic Scale

The main goals of simulations at the macroscopic scale are to predict the vibrational be-
haviour during machining (displacements, cutting forces), including vibrational instabilities
such as chatter, and possibly the resulting final surface (surface finish, roughness and de-
tailed description of its geometry). Sufficiently accurate mechanical and geometric models
have to be built in order to reproduce with fidelity the vibrational behaviour of the system.

An important aspect of the simulation at the macroscopic level is the nature of the
tool/workpiece interaction which is history dependent. This is due to the evolution, during
machining, of the workpiece domain and boundary. To follow this evolution, the mate-
rial removal is modeled via the concept of an erasing tool (wherever the tool passes the
corresponding workpiece material disappears) associated to a cutting law which gives the
resulting forces versus, among others, the cutting section, which is time dependent and pre-
viously qualified of history dependent [4, 5]. As the cutting section encountered by the tip
of one tool is dependent of previous passing of itself or other tool tip, self-excited machine
behaviour can appear and may conduct to chatter. One of the first theory of self-excited
machine tool chatter was proposed in 1965 by Merritt in [6].

The dynamic model includes the machine, the tool and the workpiece. It can be any
type of model giving a good description of the real physical behaviour (from a simple mass-
spring model to a complex finite element model for instance). This mechanical model may
include the spindle, bearings, some machine parts and workpiece if its flexibility cannot
be neglected. The dynamic model can also be subjected to evolutions. For instance,
large motions of some parts of the machine affect directly stiffness and mass repartitions.
Moreover, in the case of a thin walled piece, the evolution of thickness during machining
leads to important reduction of bending stiffness. All these evolutions are quite predictable
and simulations, where dynamic characteristics can be taken as piecewise constant, can be
done.

The following models are used at the macroscopic scale:

1. Mechanical models for the dynamics of the workpiece, the machine and the tool.

2. Geometry models of the tool, and also of the workpiece to enable its surface (its
boundary) to be known anytime (when the workpiece is flexible, its vibrational de-
formation must be deduced from the mechanical model).

3. A cutting law which gives the resulting forces versus, among others, the cutting
section.

As large motions are known (spindle rotation in milling, workpiece rotation in turning,
translational displacement of tables and carriages), only small variation of them have to
be calculated. Thus an infinitesimal transformation frame can be chosen to conduct the
analysis at the macroscopic scale.
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2.2 Overview of the Current Approaches

Mainly two approaches aim to predict machining stability at the macroscopic scale. The
first one is analytical and can be identified as a periodic approach. Its main idea is to
study only machining stability assuming that the process is periodic and that the small
variations which occur only cause small consequences. The second approach, identified as
a time domain approach, is based on a time study (incremental solving process), which has
a rather high numerical cost. The complete history of the evolution of the cutting part of
the tool as well as of the workpiece surface is simulated.

In the periodic approach a linearized model is build and its theoritical stability is studied
[7, 8, 9, 10, 11, 12, 13]. The periodic approach leads to stability lobes which give the areas
where cutting is stable as a function of the rotation speed and the depth of cut. The
representation of the machined surface is generally very simple: only the passage of the
preceding tooth is taken into account to determine the volume of material removed by a
tooth. Moreover the piece is supposed perfectly rigid in the machined zone. Several software
are used in the industry [14, 15, 16, 17] and results are good as long as the assumptions
are true. The limits of these assumptions are often encountered during finishing operations
where even small vibrations induce a high variation of the cutting forces.

In the time domain approach [19, 20, 21, 22, 23, 13], the updating of the workpiece
surface, which must be done at each increment, needs a very robust geometric algorithm
and takes the major part of the numerical time. Different kinds of geometry models can be
used for the workpiece. For example in 3D the following representations are used: Dexels
[24, 25, 26], Voxels [27], triple-nailboards models[28], boundary representations (B-Rep)
based on triangular tessellation [29], or layer wise representations [30, 31, 19, 32]. The
major interest of the time domain approach is its ability to simulate any type of cutting
conditions. But the definition of a stability criteria is not immediate as it cannot be easily
linked to an analytical one. Generally the evaluation of the quality of the surface generated
or the level of vibrations of certain parts of the system are used. An example of such a
stability criteria is propose by K. Mehdi in [33]. The time domain approach admits the
introduction of a flexible workpiece, even in the region where the machining is done.

2.3 Specific Use of Computational Mechanics at the Macroscopic Scale

As in other applications, a finite element approach may be used in machining to construct
parts of the dynamic model. For example beam based model can be used for the spindle
or for the body of the tool if it has a long overhang. As usual, a compromise must be done
between quality of representation, complexity of the model and amount of time spent in
calculation.

Generally the workpiece undergoes deformations due to clamping, cutting forces, ther-
mal expansion. However, two categories of cases must be distinguished: the case of a
workpiece that can be considered as rigid in the region where the cutting teeth are oper-
ating, and the case of a workpiece which undergoes deformations in the machined region.
When the machined parts of workpiece are flexible, as it is the case of thin-walled pieces,
two specific difficulties occur. The first one is due to the deformation of the machined sur-
face, which is a part of the piece boundary. It is not immediate to define material removal
in the context where both tool and workpiece boudary are moving, while the workpiece
deforms itself. The second one is due to the material removal which affects signigicantly
and continuously mass and stiffness of slenderness parts.

For the first case, if the interaction between tool and workpiece affects a large zone
of the piece, the mechanical model must take into account a large area and thus a finite
element model is well suitable. The surface model must be constrained to follow the given
finite element kinematics. For the second case, it is hardly to envisage to make a continuous
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update of the mesh: the numerical costs would be prohibitive. Thus, alternative approaches
must be introduced.

In the next chapter, the general mechanical frame is presented (section 3.1), and then
we propose an accurate definition of material removal in the context of flexible workpiece
(section 3.2). This definition is compatible with the assumption of an erasing tool. Practical
aspects, in particular those linked to the use of a finite element model, are developed in
section 3.2.2 and 3.2.3. Before to give some examples in section 3.5 we suggest an efficient
technique to take into account the evolution of the mass and stiffness matrices (section 3.3)
for thin-walled pieces.

3 TAKING INTO ACOUNT INSTANTANEOUS WORKPIECE
DEFORMATION AT THE MACROSCOPIC SCALE

3.1 General Mechanical Frame

As stated before, in the context of the time domain approach, the mechanical model of
the Workpiece-Tool-Machine system used can be a simple mass-spring model or a complex
Finite Element one, as long as it gives a good description of the real dynamics. It leads to
write the equilibrium equation as:

M q̈ + C(ω) q̇ + K q = Q
cut

(q, q̇, ∂Ωcut) (1)

where M is the mass matrix, C(ω) is the damping and Coriolis matrix, K is the stiff-
ness matrix, q represents the column of degrees of freedom, Q

cut
(q, q̇,Γcut) is the vector

representing the cutting forces.
In the macroscopic approach, the main assumption is based on the concept of an erasing

tool: wherever the tool passes, the corresponding workpiece material disappears. But
a model must be introduced to determine the internal forces to apply between tool and
workpiece in coherence with this erasing vision: the cutting law gives the cutting forces from
the chip section associated with Γcut which depends on time. It then allows to calculate
Q
cut

.
M , C and K are considered constant throughout the machining operation, as long as

this operation does not significantly modify the mass and stiffness characteristics of the
workpiece or machine (see section 3.3).

Equation (1) is non-linear because Q
cut

(q, q̇,Γcut) depends upon the displacement col-
umn q and its time derivatives as well as on the history of the surface being machined.
It may be solved using Newmark’s incremental scheme and a Newton-Raphson iterative
method.

3.2 Definition of Material Removal

As we want and need to get an accurate description of regenerative forces due to previous
motion of rake faces, we need a good modelling of the machined surface at each time step.
This is necessary to insure a good coupling with the workpiece deformation.

To follow the geometry of the workpiece and get the chip section we introduce two
geometry models, one for the workpiece and another one for the rake faces of the tool.

• For the workpiece, only the volume subjected to machining has to be modeled. We
can use two types of representation: a B-Rep model based on a set of plane facets,
or a volume dexel model (multi-level Z-Map models [34]) (Figure 2). The first one
allows very fine description of machined surface, but leads to many difficulties to
achieve a sufficient reliability, in particular when the tool is passing many time at the
same place (this is often the case in milling). The second one, strongly reliable, has
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Figure 2. Z-map models

a precision which depends on the grid coarseness in the two directions normal to the
Z-Map direction.

• For the surface of the rake faces we use a set of plane triangular facets.

In the following sections we focus on the dexel model for the workpiece.

3.2.1 Definition of the machined domain

Due to the simultaneous movements of the tool and the workpiece it is not straightforward
to define the material removal. To achieve this goal it is necessary to choose a configuration
where the workpiece does not move, i.e. a material configuration for the workpiece. In the
dexel description, the material configuration is the reference configuration where the dexels
remain straight and undeformed. This reference configuration is the only configuration
where intersection algorithms can be defined easily with the dexel description.

To follow the deformation of the machined part of the workpiece we then need to define,
at each time t, a one-to-one mapping tΦW from the reference (or material) configuration
to the current configuration of the workpiece (2)(Figure 3)

∀t, ∀rM ∈ rΩW (t), ∃!tM ∈ tΩW ,
tM = tΦW (rM) (2)

tΩW is the current domain filled by the workpiece in the current (deformed) configura-
tion at time t and rΩW (t) is the reference domain filled by the workpiece in the material
configuration at the same time. If a dexel description is not choosen, many equivalent
choices are possible for the reference configuration, for example the initial configuration.
The only restriction is the ability of doing the one-to-one mapping from the chosen reference
configuration and the current configuration.

The position of each rake faces of the tool is defined in a same way by the one-to-one
mapping tΦT (3)(Figure 3)

∀t, ∀rM ∈ rΓT , ∃!tM ∈ tΓT , tM = tΦT (rM) (3)

tΓT is the current surface filled by the rake faces at time t and rΓT is the reference surface
describing the set of rake faces, for example the initial configuration of the rakes faces. rΓT
is time independent as we do not take into account wear in the present model.

We can then introduce rVgenerated, the 3D domain generated by the displacement of the
rake faces of the tool in material configuration. For a time interval ]t1, t2], the material is
then defined by the intersection: rΩW (t1) ∩ rVgenerated(t1, t2).
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Initial Configuration : t = 0

Current Configuration : t > 0

Tool's Reference 
Configuration

0ΩW

Tool's Initial
Configuration

Workpiece's
Material
Configuration

0ΦW

0ΦT

Workpiece's
Initial
Configuration

(Z-Map Buffer)

tΩW

Tool's Reference 
Configuration

Tool Current's
Configuration

tΦT

Workpiece's
Current
Configuration

rΩW(t)

Workpiece's
Material
Configuration

(Z-Map Buffer)

rΩW(0)

rZW

rXW

rYW

rZW

rXW

rYW

Figure 3. Piece and tool configurations

To carry the image of the rake faces in the material configuration we have to use
(tΦW )−1. Only a part Γcut of rake faces of the tool is included in the space filled by
the workpiece ΩW . Thus, to transfer triangular facets of the geometric description of the
rake faces which have only a potion inside the workpiece, an extension tΦ+

W of tΦW must
be built.

tΦ+
W is a one-to-one mapping verifying this only necessary condition:

∀t, ∀ rM ∈ rΩW (t), tΦ+
W (rM) = tΦW (rM) (4)

This mapping is not unique and can be chosen conveniently in order to get an efficient
implementation.

Once the extended mapping tΦ+
W is defined, the point of the rake faces of the tool can

be calculated in the extended reference domain rΩextended for any time t. By construction
rΩW (t) is included in rΩextended.

rVmachined(t1, t2) = rΩW (t1) ∩ rVgenerated(t1, t2) (5)

and
rVgenerated(t1, t2) = Sweep

t∈]t1,t2]
[(tΦ+

W )−1(Γcut(t))] (6)
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Workpiece's
Material Configuration

Workpiece's
Current Configuration

rZW

rXW

rYW

tΦW
+

Workpiece's
Finite
Element mesh

Figure 4. tΦ+
W construction — Hexahedron mesh

3.2.2 Definition of Φ+
W

Defining tΦ+
W by use of a Finite Element approach gives a systematic and simple process.

As soon as thin-walled pieces are machined, the use of shell, or plate, finite element comes
naturally. But, to maintain generality we introduce an hexahedron mesh, fully connected
with the shell mesh, to define tΦ+

W . tΦ+
W is constructed as follows:

- Construction of a regular hexahedron mesh in the material configuration in which the
domain represented by the dexels is included. For example, if the domain represented
by the dexel model is not too wide an unique hexahedron can be associated to it, an
a set of 26 other hexahedrons surrounds it (Figure 4).

- The positions of the hexahedron’s nodes, internal to the hexahedron mesh, are iden-
tified with respect of the shell, or plate, mesh of the piece in the undeformed configu-
ration of the piece (initial configuration). This allows to construct the kinematic link
matrix GShell

Hexa
which is time independent.

This matrix connects the column q
Hexa

, containing the kinematic parameters of the
internal hexahedron’s nodes (3 by nodes), to q

shell
, which contains the degrees of

freedom of the shell mesh (7). q
shell

is time dependent.

- The external nodes of the hexahedron mesh are fixed. They do not follow any motion.

- The knowledge of q
Hexa

and a classical interpolation on the hexahedron mesh com-
pletes the definition of tΦ+

W

q
Hexa

(t) = GShell
Hexa

.q
shell

(t) (7)

3.2.3 Obtaining the workpiece final surface

To achieve the simulation of the material removal we have to send back the points of the
triangular facets of the rake faces in the material configuration with (tΦ+

W )−1 (6). At each
iteration of the incremental scheme only the current coordinates of these points are known.
Let be tM one of theses points. The problem is then to find rM such that:

tM = tΦ+
W (rM) (8)
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To solve this problem we have to find in which hexahedron is rM and then a Newton
iterative procedure is employed to find rM . Only a few number of iteration are required (2
or 3) because the deformations of the piece are very small and then rM and tM are close.

When this problem is solved for every point for the new position of the rakes faces it
is possible to define rVgenerated(t1, t2) by its boundaries: the material position of the rake
faces at t = t1, the material position of the rake faces at t = t2, and a triangular mesh that
joint theses two sets of rake faces images (volume swept by the rake faces).

The intersection (boolean operation) between the workpiece domain and the domain
generated by the rake faces enables then to follow the evolution of the workpiece geometry.

3.3 Workpiece-Machine-Tool System Updates

During machining, material removing induces a modification of rigidity and mass of the
workpiece. This modification can generate a significant evolution of the dynamic behaviour
of the piece if the latter is thin-walled. It is in particular the case for the thin shells where
2/3 of the thickness can be removed during a roughing cut. The taking into account of the
evolution of the behaviour is then necessary and must often be associated to the taking into
account of the deformations of the workpiece in the machined zone (section 3).

A first possibility to take into account, as accurately as possible, the evolution of the
machined domain is to adapt the finite element mesh after each step of time. That is unfor-
tunately not possible for several reasons. It would be firstly necessary to have a sufficiently
reliable meshing tool to be able to carry out simulation without spurious shutdowns, and
sufficiently effective not to increase the calculating time in an exaggerated way. Then, a
projection of the kinematic quantities (displacement and velocity) should be realized be-
tween the successive mesh what would generate a loss of information and additional costs.
Finally, the constant evolution of the column of degrees of freedom q (evolution of the
number of lines) would render the definition of Φ+

W more delicate to realize.
To overcome these difficulties, we propose to take into account in a simplified way the

effect of material removal. The principal idea of this approach is to fix the geometry of
the finite element mesh while modifying the mechanical characteristics (Young modulus
E, density ρ) of the elements concerned with the removal thanks to a function of material
presenceD(t, x); x is the position of a point belonging to one of the elements in the machined
zone. As the vibrations remain small, with respect to the cut thickness, it is reasonable
to assume that, at each time t, real removed volume is close to the theoretical removed
volume (volume removed without any vibration). More precisely, it is possible to build, a
each time t, a column p(t) of values defining the theoretical position of workpiece and tool
(without vibrations). The theoretical geometry can then be deduced, at a time t, from the
history of p(τ) for τ ∈ [0, t]. Under this circumstances D(t, x) can be defined explicitly over
all the simulation.

The correction on E and ρ is then defined by:

E′ = E(1 −D) ρ′ = ρ(1−D) with 0 < D < Dmax (9)

Dmax is chosen equal to 0.95 to avoid singular matrices. The Poisson’s ratio ν remains
unchanged. The choice of a similar correction for the Young modulus and the density was
retained not to generate spurious eigenvectors.

In section 3.3.1 we show, on a example, how D rules the dynamic behaviour with
comparison to a reference solution. In addition, due to the use of D, some values of the
matrices M , C, K, are in constant evolution. In order to limit numerical costs, we present
in section 3.3.2 an efficient approximation which limits the number of factorizations of
matrices within the framework of Newmark algorithm.
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100 mm

40 mm

4 mm

Figure 5. The workpiece before machining

PP

Initial mesh modèle 1 modèle 2

Figure 6. Meshes of the workpiece

3.3.1 Validation of the use of D

We compare here, for a finished machining, the dynamic behaviour of a model in which the
”machined” elements are suppressed (model 1 ) with a model where these same elements
are kept and managed via the function of material presence D (model 2 ).

The machined workpiece (Figure 5) is a right-angled parallelepiped. Its dimensions are
100mm × 40mm × 4mm. The base of the piece is fixed. The material is a steel whose
characteristics are as follows:

E = 2.1011MPa ν = 0.3 ρ = 7800kgm−3 (10)

The mesh of the workpiece before machining contains 100 elements (10×5×2). For the
model 1, 30 elements are removed over the entire length (10×3×1). For the model 2, these
same elements have a material presence function set to D = 0.9. Machined volume relates
to half the thickness, the 3/5 the height and the whole length of the piece (Figure 6).

In Table 1, the first five natural frequencies for the two models are given.

N of eigenvalue Model 1 (Hz) Model 2 (Hz) Relative variation (%)
1 2580 2529, 6 1, 95
2 3221, 6 3205, 9 0, 49
3 5063, 3 5119, 8 1, 11
4 8272, 1 8497, 8 2, 73
5 13087 13723 4, 86

Table 1. Natural frequencies for the five first eigenvectors
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The natural frequencies for the two models are very close (relative variation is lower
than 5 % ) and so are shapes of the eigenvectors (no represented here). No spurious low
frequency eigenvector is created in Modele 2 so the presence of material function seems to
be an accurate approach.

3.3.2 Limitation of the numerical costs

We have chosen the Newmark time integration scheme to solve the equilibrium equation
(1). Other integration scheme may be used without particular restrictions. Newmark’s
scheme ([35, 36]) can rapidly be described in the case of a constant time step Δt. The value
of q at the time t + Δt is then given by:

K̂t+Δtq = t+ΔtQ+ t ¯̄Q (11)

with
K̂ =

1
αΔt2

M +
δ

αΔt
C +K (12)

and
t ¯̄Q = M {a3

tq̈ + a2
tq̇ + a0

tq}+ C {a5
tq̈ + a4

tq̇ + a1
tq} (13)

and at last

a0 =
1

αΔt2
a1 =

δ

αΔt
a2 =

1
αΔt

(14)

a3 =
1

2α
− 1 a4 =

δ

α
− 1 a5 = (

δ

2α
− 1)Δt (15)

In the previous expressions, α and δ are parameters of the Newmark’s scheme. For
α = 1

4 and δ = 1
2 the method is unconditionally stable in a linear framework.

When there is material removal the matrix K̂ changes because it depends on the ma-
chining evolution: K̂ = K̂(p(t)). In the case described in the preceding paragraph, the
advance of the tool, a milling-cutter, is described thanks to a single scalar: p(t) = p(t).

In setting

q = t+Δtq ; p = p(t+ Δt) ; Q
total

= t+ΔtQ + t ¯̄Q (16)

the expression (11) can be rewritten in the following form:

K̂(p) q = Q
total

or q = K̂
−1

(p) Q
total

(17)

The factorization of K̂(p(t)) (a Crout factorization L.D.Lt) to each time step represents
an important numerical cost. To limit this numerical cost it is possible to approximate, on
an interval of time [ti−1, ti], the inverse of the matrix K̂ by the linear combination of two
matrices evaluated at the times ti−1 and ti:

∀ t ∈ [ti−1, ti] K̂
−1

(p(t))approx = (1− η)K̂
−1

(pi−1) + ηK̂
−1

(pi) (18)

where pi−1 = p(ti−1), pi = p(ti), and η = η(t) = t−ti−1

ti−ti−1
.

In setting
q
i−1

= K̂
−1

(pi−1)Q
total

q
i

= K̂
−1

(pi)Qtotal (19)
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q
approx

is obtain in an obvious way:

q
approx

= (1− η)q
i−1

+ ηq
i

(20)

With this approach, at each increment, only two linear resolutions with the factorised
form of K̂ are to be carried out (q

i−1
and q

i
calculation). With each new interval of time

[tj−1, tj ] the factorization of K̂(pj) must also be done. The number of time steps per interval
[tj−1, tj ] is chosen as large as possible, taking into account the more or less large variations
of the mechanical characteristics due to the theoretical material removal.

In order to validate the approach, that we will call simplified approach, we present two
different simulations working on the support given on the Figure 5.

• Simulation 1: the FE matrices are recomputed after each time step Δt according to
parameter p(t).

• Simulation 2: the FE matrices are only recomputed at selected time steps. The
interpolated inverse of K̂, on the intervals, is thus introduced in this case. It uses the
simplified approach.

To simplify the study, we took a simple sinusoidal force of form F (t) = cos(ωt) to
make the validation. This force, which appears in the vector q(t), follows the advance of
machining and is applied to the higher part of the workpiece. The parameters of simulation
are such as traversing the piece over all its length takes 10000 increments. The time step
Δt equal to 10−4s.

Number of intervals Number of increments per interval E(t) Max
100 100 1, 975.10−2

50 200 1, 077.10−1

20 500 4, 945.10−1

10 1000 1, 660
5 2000 5, 260
1 10000 63, 111

Table 2. Relative error between simplified and reference approaches (in percent)

To compare the results of the simplified approach with respect to the results of the
reference solution, we calculated a relative error E(t) (equation (21)) in a point P of the
piece belonging to the mesh (Figure 6). As it is visible on the figure, the point P is selected
in the not machined part of the workpiece. The evolution of displacements at P point (for
the reference solution) is given Figure 7. Table 2 gathers the maximum errors relative E(t)
at point P . From 100 increments by interval, we obtain small relative error (2%) what
shows the interest of the approach

E(t) =
|qRef − q(t)|
|qRefMax| (21)

Parameters of the simulations:

• The frequency of the first eigenvector of the unmachined workpiece is f = 3342, 68Hz.
We took for ω the value of the first natural angular frequency: ω = 21002, 66rad/s).
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Figure 7. Displacement evolution at point P

• The damping matrix C is chosen to be proportional to the stiffness matrix K: C =
λK. λ was computed such that a damping ratio of 0, 01 is obtained for first eigenvector
of the not machined workpiece. This leads to λ = 2(0, 01/ω) ∼ 9.10−7s.

• The longitudinal speed of the tool is taken to be 1m/s. This is not very representative
of a speed under real conditions which is a little below 0.1m/s. This choice was made
to limit the calculating times.

3.4 Overview of the Algorithm at the Macroscopic Scale

A recapitulation of the principal steps for a whole simulation is given in Box 1. As shown in
this diagram, the proposed approach needs two incremental loops and two iterative loops.

3.5 Example of Machining of thin Walled Pieces

To conclude this chapter we show an example of the machining of a thin walled workpiece.
The geometry of the workpiece is that described on Figure 5. As shown on Figure 8, the
machined domain has 18mm of axial depth of cut (along the y axis), and the radial depth
of cut is fixed to 1.0mm (in the z direction). The cutter is a helical end mill with 3 teeth,
a constant pitch angle of 30 degrees, and a diameter of 12mm. Feed per tooth is 1.8mm
per revolution which give 0.1mm of roughness.

1.0
 m

m

x

y

z

18 mm18 mm

Zone AZone B

18 mm

18
 m

m

Figure 8. Definition of the machined domains for a thin-walled worpiece
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(i) Initialisation
- Meshing of the workpiece (for example with plate or shell elements)
- Identification of region subjected to machining
- Choice of the Dexels parameters: number, orientation
- Creation of the hexahedron mesh and construction of GShell

Hexa
for tΦ+

W

- Computation and factorisation of K̂(p0), computation of other initial matrices

(ii) Loop over all time intervals
For each time interval [ti−1, ti]:

- Determination of pi = p(ti)
- Computation and factorisation of K̂(pi)
- Loop over each time steps of the current time interval
For each time step [t, t+ Δt]:

- Initialisation of the Newton-Raphson scheme
- Loop until convergence to the Newton-Raphson scheme
For each iteration α:

- Determination of the trial value t+Δtqα
shell

- Computation of t+Δtqα
Hexa

with GShell
Hexa

to define t+ΔtΦ+
W

- From the location each vertex or rake faces triangulation in the
current configuration computation of its image in the material
configuration. This needs an other Newton-Raphson
scheme to apply (t+ΔtΦ+

W )−1

- Determination of rΓcut in the material configuration
- Determination of t+ΔtΓα+1

cut with tΦ+
W

- Determination of t+ΔtQα+1 (application of the cutting law)
- Check the convergence

- Updating of the remaining workpiece domain rΩW (t)→ rΩW (t+ Δt)

(iii) Outputs and post processing

Box 1. Principal steps of the algorithm at the macroscopic scale

The workpiece is modelled with a single 8 nodes plane shell element. The first natural
frequency of this plate is 2134Hz. Spindle angular velocity leads to a frequency of excitation
(2155Hz) very close to the first natural frequency of the workpiece. The damping matrix C
is chosen to be proportional to the stiffness matrix K: C = λK. λ was computed such that
a damping ratio of 0, 005 is obtained for first eigenvector. This leads to λ = 2(0, 005/ω) ∼
7.510−7s.

A dexel description is used for the machined domain. We have put 1400 dexels along
the x axis and 180 along the y axis.

Figure 9 shows, on the left, the machined surface for a rigid workpiece. The two other
pictures correspond to the machined boundaries for zone A and B (defined on Figure 8) for
the flexible workpiece (Young modulus E = 2.11011Pa, density ρ = 7800kg/M3 , Poisson’s
ratio ν = 0.3).

For zone A the roughness is equal to 0.88mm, whereas for zone B the roughness is equal
to 0.30mm, both having to be compare with the roughness of the rigid workpiece: 0.10mm.
It is clear that, for this example, the flexibility of the workpiece plays a very important
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Figure 9. Example of surface quality simulation for a thin-walled worpiece

part. The important variation of the roughness between zone A and zone B shows the
importance of the taking into account of the deformation of the workpiece.

4 NUMERICAL SIMULATION AT THE MESOSCOPIC SCALE

4.1 Goals and Context of Simulations at the Mesoscopic Scale

The main goals of numerical simulations at the mesoscopic scale are to determine:

• the thermomecanical solicitations applied on the tool in order to predict and/or take
into account tool wear and failure/fracture (which both are strongly dependent on
temperature),

• the residual stress and chemical composition inside the machined surface layer; this
results of phase transformations and applied strain and strain rate during machining,

• the shear-band formation, and strain localization in order to predict the chip flow and
morphology: continuous, segmental, or serrated chip formation can be found,

• macroscopic cutting forces evolution in the case of continuous (turning) or discontin-
uous cutting (milling or blanking).

All theses points are dependent upon the cutting conditions: workpiece parameters (ma-
terial type, crystallography, temperature, pre-deformation), cutting tool parameters (tool
design geometry, material, coated or uncoated carbides), and cutting parameter (speed,
feed, depth of cut, lubrification) (Figure 10). A typical study of the strains, strain rates and
temperature during chip formation is, for example, performed by Jazspers and Dautzent-
berg in [37].

The simulation at the mesoscopic scale allows parametric studies of the cutting processes
in order to optimize cutting conditions. It allows to check the state of the machined or tool
material everywhere and at any instant of the cutting process. It is the only way to improve
the understanding of the material cutting mechanisms, especially at in high speed machining
where experimental data are extremely difficult to obtain.

To achieve theses goals the mechanical frame for the simulations is the following:

• a model of the machined part of the workpiece as a homogeneous continuum media,
or a piecewise continuum (if inclusions have to be taken into account); however,
for micro-machining, some recent approaches use discrete models such as molecular
dynamics [38, 39] and are today limited by the number of cells to avoid a too important
computational time,
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Continuous
Cutting speed : 100 m/s

Quasi-discontinuous
Cutting speed : 1000 m/s

Serrated
Cutting speed : 300 m/s

Figure 10. Example of chip morphology dependence on the cutting speed

• large transformations with high strain and high strain rates,

• different kind of heat-generation: by friction between the tool and the workpiece, by
plastic deformations inside the workpiece material (in particular in the chip),

• different kind of heat-transfer: heat conduction across contact zones, radiation, free
convection along external surfaces for the workpiece and the tool,

• thermomechanical coupling; in particular thermal softening,

• and if needed, phase transformations and chemical diffusions.

Two kinds of constitutive models have to be introduced:

• surface models for friction, heat repartition between workpiece and tool, wear, ...

• volume models for material behaviour which can be thermoelasto-plastic, thermo-
viscoplastic, elastic-plastic, viscoplastic, rigid-plastic, with or without damage, ...

The choice and/or the construction and/or the identification of the constitutive law is
of a particular difficulty:

• it must be as close as possible to material behaviour on a wide range of parameter
variation: up to 5 for the strain, up to 104s−1 for the strain rates and for temperature
from the room temperature to the melting point (from about 293K to 1000K for
standard material and conditions),

• the observation of the physic phenomenon during the cutting process must be done
on volume of only a few mm3, whereas the relative speed between the workpiece is of
the order of 10m/s for high speed machining or up to 30m/s for high speed blanking.

Once the constitutive law is selected and identified, the numerical implementation is
not of major difficulty even if it is not easy because of the large transformations context.

As for all simulations, the quality, the quantities and the predictability of results are
directly dependent upon the choice of the previous models and the resolution algorithms.

4.2 Overviews of the Current Approaches

The first approaches in the modeling of cutting processes where applied on machining in
a analytical way by Ernst and Merchant [40, 41, 42] on orthogonal cutting. Recent pub-
lications still concern the analytical approaches and give more accurate results on cutting
forces [43, 44, 45] in different kind of cutting conditions [46]. Some of them focuse on spe-
cific aspects such as the white layer apparition [47] or the burr formation [48]. At least,
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hybrid analytical numerical approaches also exist; for example Marinov uses this type of
solution to determine the shear angle [49].

Nevertheless, none of theses analytical solutions are able to give detailed 3D solutions
for stresses, strain, temperature, or to predict the chip morphology. Their main interest
is the construction of cutting laws in various cutting conditions for the simulations at the
macroscopic scale.

Among the numerical procedures, the finite-element method (FEM) was the first [50, 51,
52, 53], and still remains the most frequently used. A review of the pioneer work in this field
can be found in [54, 55]. The FE approaches are bi-dimensional (2D) or a three-dimensional
(3D) and differentiated by:

• the choice of the constitutives models,

• the nature of the FE approach: Eulerian, Lagrangian, or Arbitrary Lagrangian Eule-
rian (ALE),

• the adopted strategy to simulate de material separation: simply removing the elements
(”killing elements”) where the strains or strain rates are considered excessive, or using
a separation line (surface in 3D simulations) as in fracture mechanism. The separation
line may be given a priori or not, and if it is not the case an adaptive mesh strategy
must be introduced in order to simulate the material separation flow near the tool
tip.

The Johnson-Cook constitutive model is the more frequently used. This thermo-visco-
platic law (64) is base on a multiplicative form. It allows to take into account the main
experimental phenomena [56]. In [57] a table of coefficients is given for this law for various
materials. Authors made modifications to the Johnson-Cook model in order to introduce in
a more accurate way the observed hardening, for certain materials, when the temperature
increases [58, 59]. Finally a modeling of the damage was also proposed by Johnson and
Cook in a similar form [60].

Many other laws exist:

• the thermo-elastic-plastic law proposed by Z.-C. Lin and S. Y. Lin [61] is also used by
many authors; Usui et Shirakashi [62], Zone-Chin Lin and Yeou-Yih Lin [63], Mamalis
et all [64], Yen et all [65],

• the rigid thermo-viscoplasic law defined by J. S. Wu et all [66] is, for example, used
in [67],

• the Lemonds Needleman law [68] was used by Marusich and Ortiz to make one of the
first 2D simulations of orthogonal cutting with segmented chip [69],

• the law of Lei, Shi et Incropera [70] used par themselves [71], ...

Other constitutive laws can be found in the material database for manufacturing simu-
lation is proposed by J. Söder and T. Altan [72] or in the PhD thesis of Firas Ali [73].

For the sake of simplicity, one of the first approach used for simulating chip formation
was Eulerian [74]. Firstly, only continuous chip were simulated by such an approach but
usually the chips are not continuous. Recently, an extended eulerian procedure, the multi-
material finite element formulation, was applied to high speed machining simulation with
segmented chip [75]. The use of lagrangian approaches is indeed the most frequent way to
simulate any type of chip morphology. One of the main difficulties for theses approaches
is the treatment of material separation near the tool tip. Again, for the sake of simplicity
a predefined split line was introduced. The first authors who used such approach where
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Strenkowski and Carroll [74, 76]; they used a plastic strain criterion to separate the nodes
on this line. Many developments were carried out then in this direction with various criteria
of elements separation [77, 78, 79, 80, 81, 63, 64, 67, 82, 65, 83, 84].

The main drawback of the technique including a line separation is their inefficiency
in predicting the phenomenon near the tool tip, where the higher solicitations are indeed
present. To follow the material separation, adaptive meshing method were introduced by
Camacho et all [85] and used by Marusich and Ortiz in a 2D analysis of metal cutting with
a fracture stress criterion used to define split lines [69]. An more simple splitting technique
is based on a damage criterion coupled with the deletion of the elements when the limit
is reached [86, 87, 88, 89]. At last, continuous remeshing without any damage or fracture
criterion can be used near the tool tip to separate the material [65]. Today, 3D simulations
are available with these kinds of technique with the Deform3D code [90] and example of
simulations are given in [91].

The Arbitrary Lagrangian Eulerian formulation (ALE) offers an alternative to the full
Lagrangian description. In this formulation the grid points are not constrained to remain
fixed in space (as in the Eulerian description) or to move with material points (as in
Lagrangian description), but have their own equations describing the motion. The ALE
formulation was firstly applied on cutting simulation by Rokotomalala et all [92]. The ALE
approach has also been used by Olovsson et al. [93] in a two-dimensional finite element
model of orthogonal metal cutting. Guo et al. use it for 2D segmented chip formation with
a kill element technique [87], and Pantalé et al. [88] still use it on 2D and 3D numerical
models of metal cutting with damage effects (Johnson-Cook damage model is used [60]).

3D simulations can be achieve with ALE approches but, if a reduction of the finite
element mesh distortions is present, the definition of the motion between the grid/mesh
and material points is not trivial.

4.3 Typical Applications of Numerical Simulation on Machining

Two typical applications of the cutting simulation are used for evaluating the technical
choices (in order to improve the numerical strategies) and the practical use of simulation
to study the process.

Concerning the first aspect, the simulations are focusing on the influence of simulation
parameters such as the flow stress [94], the thermal conductivity [95], or influence of the
hourglass treatment [89] on the chip morphology (curvature, thickness, segmentation).

In the second one, process parameters are tested. The accuracy and efficiency of the
machining process modeling is sufficient to give interesting results about:

• the influence of the rake angle in orthogonal cutting [81],

• tool wear in turning operations [84],

• comparison of different tool edge geometries and their influence on chip formation
[65],

• residual stress [83].

4.4 Remaining Difficulties

Today many commercial softwares are able and used to do simulations at the mesoscopic
scale (MSC/Marc, Abaqus/Explicit [96] and Abaqus/Standard [97], Deform2D and De-
form3D [90], AdvantEdgeTM [2], LS-Dyna [98]). Comparison of various codes can be found,
as in [99] between i.e. MSC-Marc and AdventEdge in 2D. The main interest of the com-
mercial codes is their ability to solve problems involving an important number of different
features as it is the case for material cutting simulations (thermomechanical problem with
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large strain and strain rates under contact). However, difficulties still remain in the mod-
eling of the physical phenomenon involved in the high speed cutting processes, and in the
monitoring of the mesh evolution in 3D finite element analysis.

It should be noted that inverse approaches [100] are an appealing choice in order to
find the coefficients of the constitutive laws used in machining as they use an important
number of parameters. As inverse approaches are based on repetitive comparison between
numerical simulation and experimental data, numerical simulation need to be accurate and
efficient.

The evaluation of solutions to solve the encountered difficulties is however a difficult
task in most of the commercial codes in which many parts are insufficiently open, even
inaccessible. In many cases the use to research softwares, even if their potential is limited,
is mandatory. In the next section we propose a original alternative, implemented in a
research code, to simulate large deformations without the difficulties inherent to the finite
element remeshing. The proposed ”mesh-free” approach, based on a Voronoi diagram and
associated Voronoi cells, uses specific data structures. For example, the number of degrees
of freedom is variable for one Voronoi cell to another which makes the use of pre-existing
code very delicate.

5 A NEW APPROACH FOR LARGE DEFORMATION:
THE C-NEM METHOD

In this section, the interest of meshfree techniques in the context of mesoscopic simulations
of machining is presented. The meshless simulations are illustrated in the context of large
strains nonlinear elastoplastic, including dynamics, thermomechanical coupling, as well as
localization in the chip formation. For this purpose, the constitutive equations of the model
as well as algorithmic procedures is briefly described. The weak form of conservation laws
is then discretized using the constrained natural element method (C-NEM). The technique
is presented, and some of its attractive features for cutting simulation, i.e. the possibility
to easily handle discontinuities or refinement, are first illustrated through benchmarks and
then applied to the simulation of blanking and chip formation with shear localization. A first
example of three-dimensional oblique cutting is presented. The purpose of these preliminary
results is to show the potential of the technique, and need further improvements.

5.1 Formulation of the Coupled Thermo-Mechanical Problem
5.1.1 Preliminaries

In this section, we briefly summarize some fundamental kinematic relations and introduce
the appropriate notations. We consider two configurations of a body B: the first one,
the reference configuration Ω0 ⊂ 	dim with external boundary ∂Ω0 (not necessarily the
initial configuration), where X denotes the coordinates of a point in this configuration.
The second, called current configuration, is denoted by Ωx ⊂ 	dim with external boundary
∂Ωx at time t, with x the coordinates of a point in the current configuration. x is related
to X by:

x = X + u(X, t) (22)

the deformation gradient is defined by:

F =
∂x
∂X

= 1 +∇Xu, J = det(F) > 0 (23)

with det(F) being the determinant of F. From now on, we use a hyperelastic formulation
based on the multiplicative decomposition of the deformation gradient, with elastic response
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described by a hyperelastic stored energy function. In this context, elastic predictor becomes
exact and the need for incrementally objective algorithms is entirely avoided.

The basic hypothesis underlying this approach to finite strain elastoplasticity is the
multiplicative split of the deformation gradient, F, into elastic and plastic parts:

F = FeFp (24)

This assumption, firstly proposed by Lee [101], admits the existence of a local unstressed
intermediate configuration. Following the multiplicative split of F, the velocity gradient,
L = ḞF−1 can be decomposed additively as

L = Le + Lp (25)

where Le and Lp are, respectively, the elastic and plastic contributions defined by:

Le = Ḟe[Fe]−1, Lp = FeḞp [Fp]−1 [Fe]−1 (26)

Similarly, the stretching tensor, D := sym[L], can be decomposed as:

D = De + Dp (27)

where sym(.) is the symetric part of (.), and the elastic and plastic stretching tensors given
by:

De = sym[Le], Dp = sym[Lp] (28)

5.1.2 Hyperelastic constitutive law

From polar decomposition, Fe is given by

Fe = ReUe (29)

where Ue and Re are, respectively, the elastic right stretch tensor and the elastic rotation.
Let εe denote the Eulerian (or spatial) logarithmic strain tensor [102]

εe = ln[Ue] (30)

where ln[.] above denotes the tensor logarithm of (.) which involves spectral decomposition
of Ue. Following Peric̀ et al. [103], we assume the existence of a quadratic strain energy
function ψe(εe) in the form of a scalar symmetric function of its stretches λi (i = 1, 2, 3)
given by:

ψe(λe1, λ
e
2, λ

e
3) = μ

[
ln(λe1)2 + ln(λe2)2 + ln(λe3)2

]
+

1
2
λ(Je)2 (31)

where μ and λ are Lamé’s parameters and (Je) = λe1λ
e
2λ
e
3 is the Jacobian. After applying

standard procedure, the following hyperelastic constitutive equation is obtained:

T =
∂ψe

∂εe
= Ce : εe (32)

where T is the rotated stress tensor. Assuming incompressibility of the plastic flow, it is
expressed as:

T = [Re]TτRe (33)

where τ = Jσ is the Kirchhoff stress tensor, Ce is the fourth-order isotropic elastic tensor.
Further details about the thermo mechanical foundations can be found in [104].
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5.1.3 Numerical integration of the constitutive equations

Typically, within an incremental numerical procedure for solving history dependent prob-
lems, a numerical approximation to the material constitutive law is needed to update
stresses τ as well as the internal variables α ≡ ε̄p (equivalent plastic strain) within each time
(load) increment. In the present context, given the values of the variables {τn, Fp

n, αn}
at the beginning of a generic increment [tn, tn+1], an algorithm is required to update{
τn+1, Fp

n+1, αn+1

}
at the end of the increment.

Under the assumption of elastic isotropy, the elastic Eulerian logarithmic strain tensor
is updated according to:

εen+1 = εe trialn+1 −ΔγNn+1 (34)

which has the same format that the standard return mapping used in the infinitesimal
theory [104, 105, 106, 107].

Nn+1 =
3
2

dev(Tn+1)
J2(Tn+1)

(35)

where J2(.) is the second invariant of (.). The trial elastic logarithmic strain εe trialn+1 is given
by:

εe trialn+1 = ln[Ue trial
n+1 ] (36)

where Ue trial
n+1 results from polar decomposition of Fe trial

n+1 defined by:

Fe trial
n+1 = Fn+1(Fp

n)−1 (37)

From Eq.(32) we have:
dev(Tn+1) = 2μdev(εen+1) (38)

Using Eq.(34), Eq.(35) and Eq.(38) we obtain:

dev(Tn+1) = dev(Ttrial
n+1 )− 3μΔγ

dev(Tn+1)
J2(Tn+1)

(39)

with:
Ttrial
n+1 = Ce : εe trialn+1 (40)

which leads to:
J2(Tn+1) = J2(Ttrial

n+1 )− 3μΔγ (41)

We assume that fytrialn+1 = J2(Ttrial
n+1 )−σy(Δγ) is a non-linear scalar function. In the case

of a plastic increment (fytrialn+1 > 0), we must solve for Δγ:

J2(Ttrial
n+1 )− 3μΔγ − σy(Δγ) = 0↔ J2(Tn+1)− σy(Δγ) = 0 (42)

A classical Newton-Raphson procedure has been used in this work to solve the above
equation.

Using Eq.(39) we obtain:

dev(Tn+1) =
dev(Ttrial

n+1 )

1 + 3μΔγ
J2(Tn+1)

(43)

with J2(Tn+1) defined accorind to Eq.(41) and:

Tn+1 = dev(Tn+1) +
1
3
Tr(Ttrial

n+1 ) (44)
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The Cauchy stress tensor may thus be obtained as:

σn+1 =
1

det(Fn+1)

[
Retrial

n+1

]−T
Tn+1

[
Retrial

n+1

]−1
(45)

Finally using Eq.(34) and Eq.(36), and assuming that:

Re
n+1 = Re trial

n+1 (46)

we obtain, after some calculations, the following incremental law for Fp (see [104, 105, 106]):

Fp
n+1 = exp[ΔγNn+1 ]Fp

n (47)

As noticed in [103], as a consequence of the exponential mapping in the implicit integra-
tion of the plastic flow rule, the incompressibility of the plastic flow for pressure insensitive
yield criteria is carried over exactly to the incremental rule (47). The algorithm, therefore,
generalizes the standard return mapping algorithms [108] of the infinitesimal theory. The
overall algorithm for the incremental stress update is outlined in Box 2.

(i) For given displacement un+1, evaluate total deformation gradient
Fn+1 = 1 +∇Xun+1 = 1 + B(X)un+1

with B(X) a matrix containing the shape functions derivatives
in the reference configuration.

(ii) Evaluate elastic trial deformation gradient
(Fe)trialn+1 = (Fn+1)(Fp

n)−1

(iii) Perform polar decomposition of (Fe)trialn+1

(Fe)trialn+1 = Re
n+1U

e trial
n+1

(iv) Evaluate elastic trial logarithmic strain tensor
(εe)trialn+1 = ln[Ue trial

n+1 ]
(v) Evaluate trial stress tensor:

Ttrial
n+1 := Ce : (εen+1)trial

(vi) Check plastic consistency condition
IF J2(Ttrial

n+1 )− σny ≤ 0 THEN :
(.)n+1 = (.)trialn+1 and RETURN
ELSE go to (vii)

(vii) Plastic corrector (solve for Δγ)
J2(Tn+1)− σn+1

y (Δγ) = 0, with J2(Tn+1) = J2(Ttrial
n+1 )− 3μΔγ

(viii) Update Cauchy stress tensor
σn+1 = J−1

n+1[Re
n+1]−TTn+1Re−1

n+1, with Tn+1 = dev(Tn+1) + 1
3Tr(T

trial
n+1 )1

dev[Tn+1] = dev[Ttrial
n+1 ]

1+Ξ , Ξ = 3μΔγ
J2(Tn+1)

(ix) Update plastic part of deformation gradient
Fp
n+1 = exp[ΔγNn+1 ]Fp

n , Nn+1 = 3
2

dev(Tn+1)
J2(Tn+1)

Box 2. Algorithm for integration of constitutive equations

5.1.4 Explicit Lagrangian procedure

With the principle of virtual work as a basis of kinematically based C-NEM solution scheme,
the corresponding continuum incremental boundary value problem is formulated in the
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spatial configuration as follows∫
Ωt
ρ(t)ü · ηdΩt +

∫
Ωt
σt : ∇xηdΩt =

∫
Ωt
ρ(t)b · ηdΩt +

∫
∂Ωtσ

τ · ηdΓt ∀η ∈ ϑ (48)

where ρ is the density, b and τ represent the body forces and applied tractions respectively,
and ϑ is the space of virtual displacements. The properties dΩt = J tdΩ0 and ρ0dΩ0 =
ρ(t)dΩt are used, which leads to:∫

Ω0

ρ0ü · ηdΩ0 +
∫

Ω0

Pt : ∇XηdΩ0 =
∫

Ω0

ρ0b · ηdΩ0 +
∫
∂Ωtσ

τ · ηdΓt ∀η ∈ ϑ (49)

where P denotes the first Piola-Kirschhoff stress tensor related to σ by P = JF−1σ.
The C-NEM discretization (71) of the variational form (49) results in the discrete set

of algebraic time dependent equations which may be expressed, in matrix form, as:

Mün+1(t) = Fext
n (t)− Fint

n (un, t) (50)

where t is the time, M denotes the mass matrix, Fint
n (u, t) the internal force vector, while

Fext
n (t) is the external force vector, expressed, respectively, by:

M =
∫

Ω0

ρ0φ
T (X)φ(X)dΩ0 (51)

Fint
n (un, t) =

∫
Ω0

JnF−1
n σnB(X)dΩ0 (52)

Fext
n =

∫
Ω0

ρ0φ
T (X)bdΩ0 +

∫
∂Ωtσ

φT (x)τdΓt (53)

with φ(X) a matrix containing the shape functions in the reference configuration and B(X)
a matrix containing the shape functions derivatives also in the reference configuration. In
the following, body forces have been neglected. As shown in the next section, the use of
the SCNI quadrature [109] results in a M matrix diagonal, whose diagonal terms are given
by mi = ρ0Ωi, with Ωi the area (volume in 3D) of the Voronoi cell related to node ni.

The velocity v = u̇ and acceleration ü = v̇ are approximated by using central differences
with variable time steps. Thus, we have:

vn+1/2 = vn−1/2 +
Δt1 + Δt2

2
ün (54)

un+1 = un + Δt2vn+1/2 (55)

Finally, the general explicit algorithm is outlined as follows. Being known the initial
conditions or the computed solution at time: tn: un, vn−1/2, ün, Fn, Fp

n:

(i) Update displacements and velocity using Eqs. (54) and (55).
(ii) Evaluate σn+1, Fp

n+1 by using Box 2.
(iii) Update accelerations ün+1

(üi)n+1 = 1
mi

{(
F exti

)
n+1
− [F inti

]
n+1

}
Remark: In case of contact, ün+1 is only used as a predictor phase, which has to be

corrected according to the prescribed displacements or traction.
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5.1.5 Thermo-mechanical coupling

The weak form of the heat balance can be expressed as∫
Ωt
ρ(t)c(t)Ṫ ηdΩt +

∫
Ωt
k(t)∇xT · ∇xηdΩt =

∫
Ωt
rtηdΩt +

∫
∂2Ω

q̄ηdΓt ∀η ∈ VT (56)

where c(t) is the specific heat, k(t) is the thermal conductivity for isotropic conduction,
and rt a heat source related to the inelastic deformations, defined at time t. In the fol-
lowing, we assume c and k constant in time. VT is the space of virtual temperatures and
q̄ represents the heat transfer at the boundary ∂2Ω. Following similar arguments as in
the mechanical problem (48), the weak form of the heat balance can be expressed in the
reference configuration by∫

Ω0
ρ0cṪ ηdΩ0 +

∫
Ω0
k∇XTF−TF−1∇XηdΩ0 =

∫
Ω0
det(F)rtηdΩ0

+
∫
∂2Ω q̄ηdΓt ∀η ∈ VT (57)

The C-NEM discretization of Eq.(57) results in the ODE system:

CṪ + KT = Q (58)

which in the context of an explicit scheme can be written as

CTn+1 = [C + ΔtK]Tn + ΔtQn

with
C =

∫
Ω0

ρ0cφ
T (X)φ(X)dΩ0 (59)

K =
∫

Ω0

kBT (X)F−TF−1B(X)dΩ0 (60)

Qn =
∫
∂Ωt2

φT (x)q̄dΓt +
∫

Ω0

det(F)rtφ(X)dΩ0 (61)

The matrix C becomes diagonal in the context of C-NEM when stabilized conforming
nodal integration is used, being the diagonal terms ci = ρ0cΩi. The heat source resulting
from the inelastic deformations is given by

rt = χσt : D̂p
t (62)

with
D̂p
t = sym

[(
Ḟp
t

)
(Fp

t )
−1
]

(63)

where σt is the Cauchy stress tensor et time t, and χ is the Taylor-Quinney parameter [110]
representing the fraction of plastic work converted into heat. In the present work, we have
used χ = 0.9 [69]. The thermo-mechanical coupling is carried out by the effects of inelastic
deformations (62) and by the softening effects due to temperature in the hardening law.
The hardening law adopted in the present simulation is given by the classical Johnson-Cook
law [56]

σy(ε̄p) = [A+B(ε̄p)n]
[
1 + Cln

(
˙̄εp

˙̄εp0

)] [
1−

(
T−T0
Tf−T0

)m]
(64)

where A, B, C, m, n and ˙̄εp0 are material parameters, ε̄p represents the equivalent plastic
strain and ˙̄εp represents the rate of plastic strain. T and T0 correspond to the current and
initial temperature respectively.
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When mechanical and thermal problems are coupled, a staggered solution approach is
usually adopted, which solves the mechanical and the thermal problems in an uncoupled
manner with data exchange performed at the end of each time step or increment. In par-
ticular, the nodal temperatures are transferred to the mechanical procedure, while plastic
work is communicated to the thermal solver.

In order to handle large strains or adaptive refinement easily, an appropriate discretiza-
tion scheme must be applied to the above constitutive equations. For this purpose, the
interest of meshfree methods is presented below.

5.2 Meshfree Approaches

Meshless methods have been developed over the past decade to circumvent the inherent
difficulties of the traditional finite element method. Different methods can be found, such
as the diffuse element method (DEM) [111], the element free Galerkin method (EFG) [112],
the reproducing kernel particle method [113], SPH and radial basis functions methods
[114, 115], or the natural element method (NEM) [116].

Some advantages of meshfree methods over mesh-based techniques are: (a) the pos-
sibility to handle geometric changes like free surfaces or large deformation better, as the
quality of the approximation is less sensible to the relative position of the nodes, and due
to the larger connectivity [117]; (b) the generation of the cloud of nodes is not constraint
by a criterion (i.e. minimum angle) on the relative position of the nodes, which simplifies
the task in the 3D case [118]; (d) the possibility to add or remove freely some nodes for
adaptivity purpose; (e) the possibility to define the internal variables at the nodes, which
removes the numerical diffusion in the case of projection of the fields between updates [119];

On the other hand, the following drawbacks are usually attributed to meshfree meth-
ods: (a) issues related to boundary conditions [112, 120]; (b) issues related to numerical
integration [121]; (c) the size of the shape functions (domain of influence) is in the vast
majority of meshless methods radial, and a size parameter must be appropriately chosen to
avoid instability or loss of accuracy [113, 122]; (d) finally, some difficulties in the treatment
of non-convex domains and material interfaces [123] occur.

The so-called constrained natural element method (C-NEM) [124] is a recent meshfree
methods, in which most of the drawbacks founds in most meshfree methods are alleviated.
Basic theory about the method and its interest in machining simulation is described as
follows.

5.3 The C-NEM Approach

5.3.1 Natural neighbor interpolation

We briefly touch upon the foundation of Sibson’s natural neighbor coordinates (shape func-
tions) that are used in the natural element method. For a more in-depth discussion on the
Sibson interpolant and its application for solving second-order partial differential equations,
the interested reader can refer to Braun and Sambridge [125], and Sukumar et al. [116].
The NEM interpolant is constructed on the basis of the Voronoi diagram. The Delaunay
tessellation is the topological dual of the Voronoi diagram.

Consider a set of nodes S = {n1, n2, . . . , nN} in 	dim, being dim the space dimension
considered. The Voronoi diagram is the subdivision of 	dim into regions Ti (Voronoi cells)
defined by:

Ti = {x ∈ 	dim : d(x,xi) < d(x,xj),∀j �= i}, ∀ i (65)

The Sibson coordinates of x with respect to a natural neighbor ni (see Figure 11) is
defined as the ratio of the overlap area (volume in 3D) of their Voronoi cells to the total
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Γ

(a) (b)

Figure 11. Construction of the Sibson shape functions

area (volume in 3D) of the Voronoi cell related to point x:

φi(x) =
Area(afghe)
Area(abcde)

(66)

If the point x coincides with the node ni, i.e. (x = xi), φi(xi) = 1, and all other shape
functions are zero, i.e. φi(xj) = δij (δij being the Kronecker delta). The properties of
positivity, interpolation, and partition of unity are then verified [116]:⎧⎨

⎩
0 ≤ φi(x) ≤ 1
φi(xj) = δij∑n

i=1 φi(x) = 1
(67)

The natural neighbor shape functions also satisfy the local coordinate property [126],
namely:

x =
n∑
i=1

φi(x)xi (68)

which combined with Eq.(67) implies that the natural neighbor interpolant spans the space
of linear polynomials (linear completeness).

It turns out that the support of φi(x) is the union of the n circles (spheres in 3D) passing
through the vertices of the n Delaunay triangles (tetrahedra) containing the node ni (in
this case n is the number of natural neighbors of node ni). The support of a node ni in a
particular nodal distribution is depicted in Figure 12.

Natural neighbor shape functions are C∞ at any point except at the nodes, where they
are only C0, and on the boundary of the Delaunay circles (spheres in 3D) where they
are only C1, because of the discontinuity in the neighbors nodes across these boundaries.
Hiyoshi and Sugihara [127] have shown that the Sibson interpolant belongs to a more
general class of Voronoi-based interpolants, called k-th order standard coordinates, proving
that the interpolant generated by the k-th order standard coordinates have Ck continuity
on the Delaunay circles (spheres) boundaries. In this context, the Sibsonian and non-
Sibsonian (Laplace) coordinates [128] results to be the standard coordinates of order 1 and
0, respectively.

Another important property of this interpolant is the ability to reproduce linear func-
tions over the boundary of convex domains. The proof can be found in Sukumar et al.
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Figure 12. Support of the natural shape function related to node ni

[116]. An illustration is depicted in Figure 11 (b): as the areas associated to points on the
boundary become infinite, the contribution of internal points vanish in the limit when the
point approaches the convex boundary, and the shape functions associated with nodes n1

and n2 become linear on the segment (n1 − n2). This is not true in the case of non convex
boundaries, and the next section focuses on an approach to circumvent this difficulty.

Consider an interpolation scheme for a function (vectorial, scalar or tensorial) u(x), in
the form:

uh(x) =
n∑
i=1

φi(x) ui (69)

where ui are the nodal values at the n natural neighbor nodes, and φi(x) are the shape
functions associated with each neighbor node. It is noted that Eq.(69) defines a local
interpolation scheme. Thus, the trial and test functions used in the discretization of the
variational formulation describing both the mechanical and thermal problems treated in
this paper take the form of Eq.(69).

5.3.2 The Constrained natural element method

Constrained Voronoi diagram
In its original form [116], the NEM can only be applied to strictly convex domains. For
non-convex domains, two main issues occur: (a) It was proved in [116, 124] and [129] that a
loss of linearity in the interpolation along boundaries of non convex domains appear. Thus
essential boundary conditions can only be imposed directly over convex boundaries; (b) For
strongly non-convex domains (cracks, auto-contact...) some spurious influences between
nodes of the boundaries appear [124]. An additional treatment is thus required to maintain
all the properties of the NEM for any geometry.

In order to avoid these drawbacks, we have proposed in a previous paper [124] an
extension of the NEM in which a visibility criterion is introduced in order to restrict influent
nodes among natural neighbors. The computation of the shape functions is done on the
basis of the so-called constrained (or extended) Voronoi diagram (CVD), which is the strict
dual to the constrained Delaunay triangulation, introduced by Seidel in [130], instead of
the Voronoi diagram (see [124] for further details). The intersection between the CVD and
the domain results into new cells TCi , called constrained Voronoi cells, defined formally by:

TCi = {x ∈ 	n : d(x,xi) < d(x,xj), ∀j �= i, Sx→ni ∩ Γ = ∅, Sx→nj ∩ Γ = ∅ (70)

where Γ is the domain boundary, composed by a set of segments li ∈ L and Sa→b denotes
the segment between the points a and b. In this framework, a point located inside a cell
TCi is closer to the node ni than to any other visible node nj.

The constrained Delaunay triangulation does not always exist in 3D without adding new
nodes, as shown in [131]. Nevertheless, some techniques for constructing 3D constrained
Delaunay tessellations are available and provided in [132, 133] by adding Steiner points.
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The constrained natural element approximation
In order to solve partial differential equations defined on non convex domains, or to repro-
duce functional discontinuities, we consider the following approximation for both the trial
and the test functions:

uh(x) =
V∑
i=1

φCi (x)ui (71)

where V is the number of natural neighbors visible from point x and φCi is the constrained
natural neighbor shape function related to the i-th node at point x. The computation of
the C-n-n (constrained natural neighbor) shape functions is similar to the natural neighbor
shape function, when one proceed using the constrained Voronoi diagram introduced previ-
ously. It was shown in [124] and [134] that the use of the constrained Voronoi diagram does
not affect the properties of the NEM interpolation, allowing the extension of the linearity
of the shape functions to any geometry, convex or not.

The ability of the C-NEM for treating problems involving cracks has been illustrated
in [124] and in the context of moving interfaces in [134], where we have shown how the
C-NEM simplifies the treatment of material discontinuities in meshfree methods, due to
the continuity of the approximation across interfaces (consequence from the interpolant
character and linearity of the C-NEM shape functions over any external boundary or inter-
nal interface). It is noteworthy that no size parameter is involved in the definition of the
influent nodes (neighbors), which is essential for the robustness of refinement procedures,
in which the nodal density varies in some parts of the domain.

5.4 First Result with the C-NEM

Some features of the C-NEM, such as the possibility to handle large transformations of
the domain without remeshing (nodal repositioning) and without field projection, to easily
described cracks or discontinuities, the direct imposition of essential boundary conditions,
or the possibility to refine the cloud of nodes without size support parameter, makes the
C-NEM an appealing candidate to discretize the constitutive equations for the simulation
of machining, among the many other available schemes.

One important point in cutting or blanking simulations is the accurate description of
cracks or material interface in domains that can be submitted to large strains. The C-NEM
offers a simple framework in that context, as material interfaces can be inserted arbitrarily
in the cloud of nodes, without any restriction on the relative position of the nodes. To
illustrate the performance of the method to describe the material interfaces of material
separation, a simple benchmark involving a cracked domain is presented.

5.4.1 Crack analysis

In this example, we consider the problem defined in Figure 13 where 2a = 0.2 mm, 2W = 2
mm and σ∞22 = 1 Mpa. Plane stress conditions are assumed with an elastic modulus of
E = 1 MPa and a Poisson coefficient of ν = 0.3. Firstly, we consider the case of γ = 0
whose exact solution in an infinite plate was obtained by Muskelishvili [135]. For γ = 0
and θ = 0 in Figure 13, this solution results:{

σ22(θ = 0, γ = 0, r) = σ∞22
a+r√
r(2a+r)

σ11(θ = 0, γ = 0, r) = σ∞22 − σ22

(72)

When the crack size is much smaller than the domain size, Muskelishvili’s solution can
be taken as a reference solution.

A cloud of 760 nodes is considered in the C-NEM simulation (400 nodes are uniformly
distributed, other 20 nodes are located on each crack side and the remaining 320 nodes
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Figure 13. Square plate with an inclined crack.(a) Geometry and loads. (b) Dis-
tribution of nodes

Figure 14. Zoom of the constrained Voronoi diagram in the neighborhood of the
crack (detail)

are concentrated in the crack tip zones) as depicted in Figure 13 without assuming any
symmetry condition. Numerical results are reported in Figure 15.

Now, we consider the case of an inclined crack. The stress intensity factor (SIF) KI

has been computed using the contour form of the interaction integral method [136], the
different values of interest being easily interpolated anywhere in the domain. The size of
the square domain used in the computation is 0.6a× 0.6a (see Figure 6). Numerical results
concerning the intensity factor KI for different values of γ are compared in Figure 16 with
the exact ones given in [135]:

KI = σ∞22

√
πa cos2 γ (73)

Accuracy can be improved by increasing the nodal density in the crack tip neighborhood.
Another possibility is to extrinsically enhance the trial function by adding terms reproducing
the local

√
r behaviour. As the shape functions φCi (x) define a partition of unity, the

enrichment of the C-NEM trial function in crack problems can be achieved in the partition
of unity framework [137]. Let Ω0 ⊂ Ω be a sub-domain in a region around the crack-tip
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Figure 16. Stress intensity factor KI for diferent values of the crack orientation γ

where the crack-tip singularity domainates. Then the enriched function for two-dimensional
crack problems could follow the form suggested by Sukumar in [116]:

uh(x) =
n∑
i=1

φci (x)ui +
√
r

m∑
j=1

φcj(x)aj (74)

where aj are additional nodal coefficients that are associated with the m nodes in Ω0.

5.4.2 Adaptive refinement

In this section, an adaptive strategy is proposed for non-linear problems with history-
dependent internal variables in the C-NEM context, including: (a) a Zienkiewicz-Zhu error
indicator [138] based on equivalent plastic strain; (b) a transfer technique based on the
stabilized conforming nodal integration [109] and (c) a refinement strategy for domains
evolving in time based on the Voronoi cells.

In the context of the finite element method, the transfer of internal variables between
successive remeshing operations is an important issue (see i.e. [139, 140, 103]). In this work,
we use the stabilized conforming nodal integration proposed by Chen et al. [109] to define
all variables at the nodes, in order to avoid projection between two successive actualisation
of the reference configuration (update of the Voronoi diagram and shape functions).
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Figure 17. Representative domain around a node for the evaluation of F̃i

We thus consider a deformation gradient at node ni:

F̃i =
1
|Ωi|

∫
Ωi

(
∇Xuh(x) + 1

)
dΩ = 1 + ∇̃Xuh(xi) = 1 + B̃iui (75)

where Ωi is a representative domain around the node (typically a Voronoi cell) (see Figu-
re 17). Introducing C-NEM discretization scheme into (75) we obtain:

∇̃Xuh(xi) =

⎡
⎢⎢⎣
uh,X(xi)
uh,Y (xi)
vh,X(xi)
vh,Y (xi)

⎤
⎥⎥⎦ = B̃iui (76)

where B̃i is expressed by:

B̃i =

⎡
⎢⎢⎣
φ̃1,X 0 φ̃2,X 0 . . . φ̃N,X 0
φ̃1,Y 0 φ̃2,Y 0 . . . φ̃N,Y 0

0 φ̃1,X 0 φ̃2,X . . . 0 φ̃N,X
0 φ̃1,Y 0 φ̃2,Y . . . 0 φ̃N,Y

⎤
⎥⎥⎦ (77)

with
φ̃j,X =

1
Ωi

∫
Ωi

φj,X(X)dΩ (78)

φ̃j,Y =
1
Ωi

∫
Ωi

φj,Y (X)dΩ (79)

where ui are the nodal displacements. In the context of a Lagrangian procedure, different
options can be considered:

1. A total Lagrangian procedure, where the Voronoi diagram as well as the shape func-
tions are computed only once at the beginning of the simulation;

2. An updated Lagrangian procedure where the Voronoi diagram and the shape functions
are adapted every time steps.

3. A periodically updated Lagrangian procedure where the Voronoi diagram and the
shape functions are computed after several total Lagrangian steps.
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In the context of a total Lagrangian procedure, no internal variable transfer is necessary.
Nevertheless, in updated Lagrangian procedures (2) and (3), it is necessary to update the
reference configuration, which implies to reconstruct the new Voronoi diagram associated
with the new nodal distribution, as well as the new shape functions. In that case, the use
of the assumed gradient defined in (75) allows the definition of all internal variables at the
nodes. In the case of an explicit procedure, all quantities defined in the former time step
are defined at the nodes in the same way. If the same cloud of nodes is used through the
whole simulation, the transfer is thus direct as integration points coincide with the nodes.
If a different cloud of node is used during the simulation (due to the refinements or nodal
repositioning), a direct C-NEM interpolation (71) can be performed to define the internal
variable the new nodes.

In the context of the finite element method, adaptive strategies have been extensively
applied and continuously developed for linear [141] [142] [138] and some class of nonlinear
problems and history-dependent nonlinear problems over the last two decades or so (see
i.e. Ladevèze et al. [143], Belytschko et al. [144], Ortiz et Quigley [145], Gallimard et al.
[146], among many others).

The present section aims to propose a simple error indicator for adaptive solutions
of large elasto-plastic transformations in the C-NEM framework. In the context of the
finite element method, an elementary procedure for the error estimation may be defined
by substituting the exact solution by some post-processed field obtained from the available
FEM solution. When the finite element solution is accurate enough, the post-processed
solution is expected to be more accurate than the original FEM solution. In particular, the
a posteriori error estimation procedure originally proposed and used by Zienkiewicz and
Zhu [138] for linear elliptic problems is based on the observation that exact stress σ may be
represented accurately by smoothed stress σ∗ obtained by a suitable projection of stresses
σh.

In the context of meshless methods, the field σh is smooth in the general case, unlike
in the FEM. Many options have been considered to construct error indicators in meshfree
methods, mostly using some recovery Zienkiewicz-Zhu fields (see the work by Liu et al.
[147], You et al. [148], Chung et Belytschko [149], Lee et Zhou [151, 150] and Lu et Chen
[152] for an overview of the recent proposed techniques). In most of the referred papers
in which a MLS approximation is used, an important issue is the influence of the shape
function support size on the efficiency of error estimates [149]. Furthermore, it has been
shown in [150] that adaptive refinement in MLS meshless techniques is a delicate task
due to the necessity to adapt locally the shape function support according to the local
nodal density. In the following, an error indicator based on the NEM shape functions is
proposed to circumvent the just referred difficulties, as the NEM shape functions support
automatically adapts its shape and size to the surrounding neighborhood.

We propose a simple error indicator using the Zienckiewicz-Zhu idea in tandem with the
stabilized conforming nodal integration. Let α(X, t) a variable either associated with the
spatial derivatives (i.e. F(X, t)), or with internal variables (i.e. ε̄p(X, t)). In the C-NEM
context, the stabilized conforming nodal integration scheme proposed by Chen et al. [153]
produces constant piece-wise fields associated with the different derivatives, discontinuous
across the Voronoi cells. This is a consequence of the stabilization scheme used in (75).
In addition, the different internal variables can be considered at the nodes, as we have
nodal integration. Constant fields αh(Xi, t) associated with variables α(X, t) can thus be
considered in each Voronoi cell Ωi. A simple solution for recovery fields α∗(X, t) with
assumed better accuracy is to interpolate the nodal values of αh(Xi, t) with the C-NEM
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Figure 18. Refinement procedure based on the Voronoi cells. (o): additional nodes

interpolation scheme:

α(X, t)∗ =
V∑
i=1

φCi (X)αh(Xi, t) (80)

Then, the error based on the equivalent plastic strain for any cell Ωi may be defined in
the reference configuration, as:

|e|2Ωi =
∫

Ωi0

([ε̄p(X, t)]∗ − [ε̄p(Xi, t)]
h)

2
JidΩ0 (81)

with

[ε̄p(X, t)]∗ =
V∑
j=1

φcj(X)[ε̄p(Xj , t)]
h Ji = det(F̃i) (82)

where [ε̄p(Xj , t)]
h is the equivalent plastic strain associated with the natural neighbor nj

of point x, assumed constant in the constrained Voronoi cell Ωj. In order to evaluate (81),
the constrained Voronoi cells are triangulated and standard Gauss quadrature is applied
on the triangles.

Any kind of error indicators can be constructed on the above framework, i.e. error
indicators based on rate of plastic work or based on damage [103]. For the sake of simplicity,
we only focus in this study on the error indicator described below. The global error is
obtained, in a standard way, by: |e|2Ω =

∑N
i |e|2Ωi . In addition, the relative error η is

defined as ηi := |e|Ωi/|e|Ω.
A simple refinement strategy can then be used, when the error in a Voronoi cell is above

a given tolerence. The adaptation of the nodal density can be performed by adding nodes
in the Voronoi cells, between the central node and the neighbors, or on the vertices of the
Voronoi cell, as depicted in Figure 18. The details of the preocedure can be found in [119].

33



5.4.3 Numerical simulation of high-speed shearing with the C-Nem

High-speed shearing is a new metal cutting operation which offers significant advantages
compared to traditional shearing. In this process, the high velocity of the punch induces
adiabatic shear bands which combined with the damage phenomena produces high-quality
of the cutting zone, without any burr formation. This process allows to perform shearing in
high strength material such as titanium, or to produce holes in plates with relatively large
thickness (up to 20mm) in traditional metals such as aluminium.

The example shows a first insight into the simulation of a plane-strain, high-speed shear-
ing operation using the error indicator and the refinement procedure described previously.
The geometry of the problem is depicted in Figure 19. The following material data for
stainless steel 304L have been used: A = 253 MPa, B = 685 MPa, C = 0.0973 n = 0.312,
m = 2.044, ˙̄εp0 = 1; T0 = 296 K, Tf = 1698 K, E = 210 GPa, ν = 0.33, c = 500 J/kgK,
k =5.86 J/JgmK, ρ = 7850 kg/m3. The initial velocity of the punch is taken as V = 11
m.s−1.

The main aim was to illustrate the capability of the refinement procedure to capture the
details of the shear bands when different geometries of the tools are used. The high speed
of the punch, combined to the material characteristics, induces high strain localization.
The high rate of energy generation induced by the plastic deformation and the low thermal
diffusivity of the material causes localized heating, which in turn, causes thermal softening
and consequently localized plastic deformation. Two test have been performed using the
following geometrical parameters: R = 5 mm, L = 20 mm, H = 10 mm and j = 0.2 mm.

In a first test, zero corner radii R1 and R2 have been used. Figure 20 shows the refined
nodal distribution during the shear band formation. Figure 21 illustrates the evolution of
the underlying Voronoi diagram used for the refinement procedure in half of the workpiece.
Figure 22 depicts the equivalent plastic strain. In this first example, the direction of the
shear band is observed parallel to the punch speed direction.

In a second test, corner radii R1 = 0.5 mm and R2 = 0.5 mm have been used. We can
notice that the increase in the corner radius induces inclined shear bands, which causes
conical deformation in the workpiece and lower quality of the manufactured workpiece.

At least, we show on Figure 23 first results of a 3D simulation with 16, 200 Voronoi cells
(ie 48, 600 Degrees of Freedom). For the example the initial velocity of the punch is taken
as V = 10m.s−1 and the material behaviour is identical to the previous 2D simulations.

R1

R2j

R

V

L

H

Figure 19. High-speed shearing: geometry of the problem
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t = 2 μ s

t = 4 μ s

t = 5 μ s

t = 12 μ s

Figure 20. High-speed shearing (R1 = 0 mm and R2 = 0 mm): adaptive refinement
during shear band formation

5.4.4 Preliminary results of cutting simulations using the natural element method

Preliminary results of cutting simulations using the natural element method are shown with
2D simulation in a case of orthogonal cutting on Figure 24. As it can be see the refinement
procedure is applied to this example.

On Figure 25 some 3D effects can be see with a 3D simulation.
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Figure 21. High-speed shearing (R1 = 0 mm and R2 = 0 mm): adaptive refinement
during shear band formation and constrained Voronoi cells

6 CONCLUDING REMARKS

Numerical simulation is currently a key issue for the development of efficient cutting pro-
cesses. However, at the macroscopic scale or at the mesoscopic scale, one of the principal
difficulties remains to have sufficiently representative mechanical models. With the macro-
scopic scale, these models are the cutting law with discontinuous cutting condition (case
of milling) and dynamic models of the machine, in particular of the spindle. For the lat-
ter, and in particular for the spindles at high speed (ω > 10000 rev/min), the behavior
is strongly nonlinear (bending according to the applied effort and the revolution speed).
With the mesoscopic scale the definition and the identification of the constitutive laws at
high speed and high temperature remain a major difficulty.

One way to solve some of these difficulties is to couple analysis at the macroscopic
scale and at the mesoscopic scale. Indeed, the definition of consistent ways to go from
one scale to another is of particular interest. For example if, at the macroscopic scale,
thermal effect cannot be taken into account with detail near the tool tip(s) it can still
be taken into acount for macroscopic deformations due to thermoelastic effects inside the
workpiece. Thus, analysis done at the mesoscopic scale may give some help to construct
cutting laws for the macroscopic scale with thermal aspects. A contrario, analysis done at
the macroscopic scale can give various types of cutting condition to be simulated at the
mesoscopic scale. Finally, many experimental data are obtained at a macroscopic level and
then, the coupling of the two scales via an inverse approach will permit to achieve more
representative models of metal cutting.
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Figure 22. High-speed shearing (R1 = 0 mm and R2 = 0 mm): shear band pro-
gression (equivalent plastic strain)

37



Mises equivalent stress Plastic equivalent strain

Figure 23. 3D C-Nem simulation of blanking
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Figure 24. Adaptive refinement during cutting: shear localization
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Figure 25. 3D simulation of orthogonal cutting
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103 D. Perić, M. Vaz and D.R.J. Owen (1999). On adaptive strategies for large deformations of
elasto-plastic solids at finite strains: computational issues and industrial applications. Comp.
Meth. Applied Mech. and Eng., 176, 279–312.

104 A.L. Eterovic and K.-J. Bathe (1990). A hyperelastic-based large strain elasto-plasstic con-
stitutive formulation with combined isotropic-kiematic hardening using the logarithmic stress
and strain measures. Int. J. Numer. Meth. in Engng, 30, 1099–1114.

105 J.C. Simo (1992). Algorithms for static and dynamic multiplicative plasticity that preserve the
classical return-mapping algorithm schemes of the infinitesimal theory. Comp. Meth. Applied
Mech. and Eng., 99, 61–112.

106 A. Cuiti no and M. Ortiz (1992). A material-independent method for extending stress-update
algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. En-
gineering computations, 9, 437–451.

107 J.C. Simo and C. Miehe (1992). Associative coupled thermoplasticity at finite strains : for-
mulation numerical analysis and implementation. Comp. Meth. Applied Mech. and Eng., 98,
41–104.

108 J.C. Simo and T.J.R. Hughes (1998). Computational inelasticity. Springer-Verlag.

109 J.S. Chen, Y. Yoon and C.T. Wu (2002). Non-linear version of stabilized conforming nodal
integration for galerkin mesh-free methods. Int. J. Numer. Meth. Engng, 53, 2587–2615.

110 G. Taylor and H. Quinney (1934). The latent energy remaining in a metal after cold working.
Proceedings of the Royal Society, 143, 307–326.

111 B. Nayroles, G. Touzot and P. Villon (1992). Generalizing the finite element method: diffuse
approximation and diffuse elements. Computational mechanics, 10, 307–318.

112 T. Belytschko, Y.Y. Lu and L. Gu (1994). Element-free galerkin methods. Int. J. Numer.
Meth. in Engng, 37, 229–256.

113 W.K. Liu, S. Jun and Y.F. Zhang (1995). Reproducing kernel particle methods. Int. J. Numer.
Methods Fluids., 21, 1081–1106.

114 L.B. Lucy (1977). A numerical approach to the testing of fuion process. The astronomical
journal, 88, 1013–1024.

115 S. Gupta M. Sharan and E.J. Kansa (1997). Application of the multiquadratic method for
numerical solution of elliptic partial differential equations. Applied Mathematics and Compu-
tation, 84, 837–857.

116 N. Sukumar, B. Moran and T. Belytschko (1998). The natural elements method in solid
mechanics. Int. J. Numer. Meth. in Engng, 43, 839–887.

117 S. Li, W. Hoa and W.K. Liu (2000). Mesh-free simulations of shear banding in large deforma-
tion. Int. Journ. Solids. and Sruct., 37, 7183–7206.

118 I. Alfaro, D. Gonzalez, D. Bel, E. Cueto, M. Doblare and F. Chinesta (2004). Recent advances
in the meshless simulation of aluminium extrusion and other related forming processes. Archives
of Computational Methods in Engineering. to appear.

44



119 J. Yvonnet, P. Lorong, D. Ryckelynck and F. Chinesta (2005). Simulating dynamic thermo-
elastoplasticity in large transformations witha adaptive refinement in the natural element
method: application to shear banding. Int. J. Forming Processes. accepted.

120 J.S. Chen, C. Pan and C.T. Wu (1997). Large deformation analysis of rubber based on a
reproducing kernel particle method. Computer methods in applied mechanics and enginnering,
173, 99–109.

121 J. Dolbow and T. Belytschko (1999). Volumetric locking in the element-free galerkin method.
Int. J. Numer. Meth. in Engng, 46, 925–942.

122 W.K. Liu, S. Li and T. Belytschko (1997). Moving least square reproducing kernel method
(i) methodology and convergence. reproducing kernel particle methods. Comput. Meth. Appl.
Mech. Engng., 143, 113–154.

123 P. Krysl and T. Belytschko (1996). Element-free galerkin : convergence of the continuous and
discontinuous shape functions. Comp. Meth. Applied Mech. and Eng..

124 J. Yvonnet, D. Ryckelynck, P. Lorong and F. Chinesta (2004). A new extension of the natural
element method for non convex and discontinuous domains: the constrained natural element
method (c-nem). Int. J. Numer. Meth. in Engng, 60, 1451–1474.

125 M. Sambridge, J. Braun and H. McQueen (1995). Geophysical parameterization and interpo-
lation of irregular data using natural neighbours. Geophys. J. Int., 122, 837–857.

126 R. Sibson (1980). A vector identity for the dirichlet tesselations. Math. Proc. Camb. Phil. Soc.,
87, 151–155.

127 H. Hiyoshi and K. Sugihara (2002). Improving continuity of voronoi-based interpolation over
delaunay spheres. Computational Geometry, 22, 167–183.

128 V.V. Belikov, V.D. Ivanov, V.K. Kontorovich, S.A. Korytnik and A.Y. Semenov (1997). The
non-sibsonian interpolation : a new method of interpolation of the values of a function on an
arbitrary set of points. Computational Mathematics and Mathematical Physics, 37(1), 9–15.
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