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Abstra
t

An analyti
al method to 
ompute thermodynami
 properties of a given Hamiltonian system is proposed. This method


ombines ideas of both dynami
al systems and ensemble approa
hes to thermodynami
s, providing de fa
to a possible alternative

to traditional Ensemble methods. Thermodynami
 properties are extra
ted from e�e
tive motion equations. These equations

are obtained by introdu
ing a general variational prin
iple applied to an a
tion averaged over a statisti
al ensemble of paths

de�ned on the 
onstant energy surfa
e. The method is applied �rst to the one dimensional β-FPU 
hain and to the two

dimensional latti
e ϕ4
model. In both 
ases the method gives a good insight of some of their statisti
al and dynami
al

properties.

The problem raised by Clausius and the se
ond prin-


iple found its answer with Boltzmann and the rise of

equilibrium statisti
al physi
s[1, 2℄. An essential point

in the theory is related to the law of large numbers,

whi
h ensures that �u
tuations around mean values of

the thermodynami
 quantities are negligible [3℄. The


on
ept of ensembles is introdu
ed, as for instan
e the

mi
ro
anoni
al ensemble for isolated systems, and their

asso
iated measures are used to average. Developments

within the Ensemble framework have generalized the use

of various te
hniques su
h as perturbation expansions,

mean �eld approximation, or renormalization group [4℄

and greatly improved our understanding of phase tran-

sitions phenomena (see for instan
e the review [5℄ and

referen
es therein). However, the 
omputation of ther-

modynami
 properties for a given Hamiltonian system

remains in general inextri
able.

The purpose of this Letter is to introdu
e an analyt-

i
al approa
h of the thermodynami
 limit and provide

an alternative to 
lassi
al te
hniques. This method relies

on the large size limit and the universality of traje
tories

(good ergodi
 and mixing properties are assumed). We

de�ne an ensemble of paths drawn on the energy surfa
e

and 
ompute thermodynami
 variables through averaged

equations of motion. This approa
h applies to systems

at equilibrium, and proves to be very su

essful in the


hosen examples. Note that, the ensemble averaging im-

plies a large time limit before the large system limit, but

we invert the order of these two limits.

Let us identify a set of traje
tories on the hypersurfa
e

de�ned by the mi
ro
anoni
al measure in the phase-spa
e

by a set of labels ℓ, whi
h may be initial 
onditions for in-

stan
e. The thermodynami
 state does then not depend

on these labels (this property permits the introdu
tion of

the ensemble averaging). In the same spirit, we 
onsider
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FIG. 1: Representation of the 
onstant energy surfa
e. Dif-

ferent labeled paths are drawn on it.

a family of paths qℓ(t) (we noted expli
itly the time t
and label ℓ dependen
es) drawn on the 
onstant energy

surfa
e (see Fig. 1). To ea
h path we asso
iate a La-

grangian L(qℓ, q̇ℓ) where the dot denotes time derivative

and the 
orresponding a
tion A =
∫

dt L. The basis of

the proposed method relies on the following 
laim: sin
e

the thermodynami
 state is label independent, we 
an

average the Lagrangian over the labels, and apply the

variational prin
iple on the mean dynami
al system:

〈δA〉 = δ〈A〉 = δ

∫

dt 〈L〉 = 0 , (1)

(where 〈· · ·〉 denotes averaging over the labels). The se
-
ond equality in (1) is imposed as a 
ompatibility 
ondi-

tion at equilibrium and de�nes a smooth path as the aver-

age of a �ow of paths of the original system. We note that

after the average is performed, traje
tories and points re-

lated to the mean dynami
al system must already 
om-

prise some information on the thermodynami
 state,

hen
e we shall refer to the resulting motion equations

as thermodynami
 motion equations. Let us now 
on-

sider Hamiltonian systems of the type H = p
2/2+V (q),

namely quadrati
 in momentum and with separated 
on-

jugated variables. Mi
ro
anoni
al statisti
s leads to a

linear relation between the mean kineti
 energy MCp
2/2

and the temperature T (MC · · · stands for mi
ro
anoni
al

averaging) [6℄ and predi
ts that the momentum is Gaus-
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sian with ea
h 
omponent pi independent and a vari-

an
e proportional to the temperature MCp2i ∼ T . In

the 
anoni
al ensemble this results in a trivial fa
toriza-

tion of the partition fun
tion, all the 
omplexity being

in
luded in the potential V . The present approa
h uses

this Gaussian property and reverse the usual argument

to pass from time averaging to ensemble averaging: at

thermal equilibrium, we interpret p as being a Gaussian

sto
hasti
 pro
ess on the labels and get thermodynami


quantities from the mean dynami
al system. We now

propose a possible implementation of these ideas.

We 
onsider a latti
e (in dimension D = 1, 2) of N
sites with 
oordinates xi, i = 1, · · · , N . At ea
h site i
is pla
ed a parti
le, in general 
oupled to its neighbors,

having momentum pi and 
onjugate 
oordinate qi. We

take units su
h that the latti
e spa
ing, the Boltzmann


onstant, and the mass are equal to one. Sin
e pi is

Gaussian, we 
hoose to represent it as a superposition of

random phased waves:

pi =

Nk0
∑

k=0

α̇k cos(kxi + φk) , (2)

where the wavenumber k is in the re
ipro
al latti
e (an

integer multiple of k0 = 2π/N (1/D)
), the wave amplitude

is α̇k, and its phase φk is uniformly distributed on the


ir
le. The momentum set is labeled, using (2), with

the set of phases ℓ ≡ {φk}. This equation 
an also be

interpreted as a 
hange of variables, from p to α, with

onstant Ja
obian (the 
hange is linear and we 
hose an

equal number of modes and parti
les). Besides, if the

total momentum is 
onserved, we 
hoose to take α̇0 = 0.
As the varian
e of pi is �xed, we shall assume that the

α̇k are all of the same order (we need a large number

of relevant modes for the 
enter-limit theorem to apply).

Using the relation 〈p2i 〉 =
∑

α̇2
k/2 (we average over the

random phases) and imposing that at equilibrium the

�u
tuations are small, we write 〈p2i 〉 ≈ T and obtain

α̇2
k ≈ O[(T/N )] (we 
all this relation the Jeans 
ondition

[7℄). We shall see in the examples that for this s
aling

in N for α̇ and the short range intera
tion, the mean

dynami
al system be
omes a set of os
illators with mean-

�eld type intera
tions and a kind of Jeans spe
trum. The


oordinate variables asso
iated with the representation of

momenta (2) are

qi = α0 +

Nk0
∑

k=k0

αk cos(kxi + φk) . (3)

Note that this equation supposes true the relation pi =
q̇i. The equilibrium state is 
onstru
ted from the av-

eraged Lagrangian L = 〈L〉/N , the 
ondition that the

paths belong to the energy surfa
e e(T ) = E/N =
〈H〉/N , and the Jeans 
ondition whi
h �xes the tempera-

ture from the averaged kineti
 energy. We in fa
t applied

a version of this method to the Kosterlitz-Thouless phase

transition in the XY model [8℄.

We shall start to test this approa
h with the generi



ase of a 
hain of 
oupled harmoni
 os
illators. The

Hamiltonian writes H = (1/2)
∑

i[p
2
i + (qi+1 − qi)

2].
Using the expressions (2) and (3) we 
ompute the av-

eraged Lagrangian L = (1/4)
∑

k[α̇
2
k − ω2

0kα
2
k] where

ω2
0k = 4 sin2 k/2 and extremize the a
tion to obtain the

thermodynami
 motion equations α̈k = −ω2
0kαk. Equi-

librium is imposed by the Jeans 
ondition whi
h gives

α2
k = 2T/Nω2

0k and leads to the thermodynami
 fun
-

tion e(T ) = T .
We 
onsider now the Fermi-Pasta-Ulam problem of a

one-dimensional β-FPU 
hain of os
illators. The ther-

modynami
s of this model has been exa
tly 
omputed

within the 
anoni
al ensemble [9℄. The Hamiltonian

reads H = (1/2)
∑

i[p
2
i + V (qi+1 − qi) + V (qi − qi−1)],

where V (x) = x2/2 + βx4/4. The averaged potential

energy density v = 〈V 〉/N is then

v =
∑

k

(

s2kα
2
k +

3

2
βs4kα

4
k

)

+ 3β
∑

k 6=k′

s2ks
2
k′α2

kα
2
k′ , (4)

where we used the notation sk = sin(k/2). It is worth

noti
ing that by 
onsidering α as the dynami
al vari-

ables of a new system, the intera
tion v is of the mean-

�eld type as the se
ond term in (4) involves intera
tion

between all αk os
illators. The thermodynami
 motion

equations are obtained as before from the Lagrangian

density L(α̇, α) =
∑

k[α̇
2
k/2− v(α)]:

α̈k = −ω2
0k

[

1 +Q− 3βs2kα
2
k

]

αk, Q = 6β
∑

k

s2kα
2
k , (5)

where Q is a mean-�eld (intensive) variable. Its �u
tu-

ations at equilibrium are of order O(1/
√
N). Hen
e we


onsider it in (5) as a 
onstant. This is the large system

limit N → ∞ taken before the t → ∞ limit. In this ap-

proximation (5) des
ribes a set of un
oupled os
illators.

Moreover, as we verify a posteriori, to the same order of

approximation we negle
t the third term in the bra
kets

(it is smaller than the Q term, by a fa
tor O(1/N)). We

then obtain a simple linear wave equation with a disper-

sion relation ω2
k = ω2

0k(1 +Q) [10℄. The Jeans 
ondition
gives α2

kω
2
k ≈ 2T/N , and allows an estimation of the

negle
ted term s2kα
2
k ≈ T/[2N(1 + Q)]. Using now the

dispersion relation, the Jeans 
ondition, and the de�ni-

tion of Q, we obtain Q(1 +Q)/3β = T and the fun
tion

Q = Q(T ). Sin
e v = (2Q + Q2)/12β we �nally get the

thermodynami
 relation

v =
T

4
+

√
1 + 12βT − 1

24β
. (6)

This result is 
ompared with the 
anoni
al one ([9℄) in

Fig. 2. The two results are in very good agreement and

we spe
ulate it is exa
t.

For the last example, we 
onsider a two dimensional

system (D = 2) exhibiting a se
ond order phase transi-

tion, the so 
alled dynami
al latti
e ϕ4
model studied in

2
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FIG. 2: Potential energy versus temperature for β = 0.1, the

dashed line 
orresponds to the result obtained by [9℄, while

the solid line 
orresponds to equation 6.

[11℄. This model is de�ned by the Hamiltonian

H =

N
∑

i=1

(

p2i
2

− m2

2
q2i +

λ

4!
q4i

)

+
J

2

∑

〈i,j〉

(qi − qj)
2 , (7)

where m and λ are real parameters, J = 1 is the 
oupling

onstant, and 〈i, j〉 denotes the summation over the 
lose

neighbors on a square latti
e. In 
ontrast with the other


ases, where the k = 0 mode α0 was a free parameter, in

this example it is relevant and 
orresponds to the aver-

age of q whi
h is proportional to the magnetization of the

system and is independent of time at equilibrium. The


omputation of the averaged potential energy is very sim-

ilar to the β-FPU 
ase:

v =
1

4

∑

k

(

ω2
0k −m2 +

λ

2
α2
0

)

α2
k +

λ

32

∑

k 6=k′

α2
kα

2
k′

+
λ

64

∑

k

α4
k −

m2

2
α2
0 +

λ

4!
α4
0 . (8)

The thermodynami
 motion equations are

0 = α0

(

λ

6
α2
0 +

λ

4
Q−m2

)

(9)

α̈k = −
(

ω2
0k −m2 +

λ

2
α2
0 +

λ

4
Q

)

αk +
λ

8
α3
k , (10)

where ω2
0k = 4(sin2 kx/2+sin2 ky/2) is the free harmoni


frequen
y (k = (kx, ky) is now a ve
tor in the plane), and

Q =
∑

α2
k is an intensive variable.

Equation (9) has multiple solutions in α0 depending

on the temperature through Q = Q(T ). Sin
e α0 = 〈qi〉
is the order parameter, we anti
ipate the existen
e of a

phase transition in the thermodynami
 state. Indeed,

the only solution is α0 = 0 for Q > Q∗ = 4m2/λ but for
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FIG. 3: Solutions of the impli
it equation (14), for m2
=

2 and λ = 0.6. We noti
e that depending on the value of

T up to three di�erent solutions for Q exists giving rise to

three di�erent bran
hes respe
tively labelled Q1, Q2, Q3. The


riti
al temperature Tc is identi�ed.

Q < Q∗ other solutions with �nite values of the order

parameter exist:

α2
0 =

6m2

λ
− 3

2
Q =

3

2
(Q∗ −Q) . (11)

To solve (10), we negle
t the α3
k term, as we did for the β-

FPU 
ase (large system limit) and obtain a wave equation

with the dispersion relation: ω2
k = ω2

0k + Ω2(T ). Ω(T ) is
given by,

Ω2 =
λ

2
(Q∗ −Q), Q < Q∗ (12)

Ω2 =
λ

4
(Q −Q∗), Q > Q∗ . (13)

where we used the de�nition of Q∗ and Eq. (11). We no-

ti
e that Ω is the frequen
y 
orresponding to the absent

k = 0 mode.

Given the Jeans 
ondition: α2
k = 2T/(Nω2

k) we noti
e
that as long as Ω 6= 0 (Q 6= Q∗) the α3

k term is a poste-

riori negligible, we 
an therefore expe
t results obtained

with this approximation to be a

urate everywhere but

at (near) the transition. Another 
onsequen
e of this


ondition is that most of the modes have 
omparable

amplitudes for Ω 6= 0, whi
h then implies a Gaussian-

like distribution for q. At the same order of approxima-

tion, in the thermodynami
 limit, we 
an 
ompute Q(T ),
identifying it to a Riemann integral. Using the αk given

by the Jeans spe
trum we obtain the following impli
it

equation for Q(T ),

Q(T ) =
T

π
aK(a), a =

4

4 + Ω2(T )
, (14)

where K(a) is the 
omplete ellipti
 integral of the �rst

kind

∫ π/2

0
dθ/

√

1− a2 sin2 θ.

3



The solutions of (14) has three bran
hes, plotted on

Fig. 3. We 
hoose the same values m2 = 2 and λ = 0.6
as the ones used in [11℄. We �rst noti
e the existen
e of

a spe
ial temperature 
lose to 19.69 lo
alizes the phase

transition temperature. Two bran
hes are below Q∗ =
40/3, and result from the expression (12) used in the

impli
it equation, the third one (on the top of the �gure)


orresponds to the expression (13). The fa
t that the

wave form solutions are not valid for Q = Q∗ translate

in the divergen
e of K(a), sin
e as Q → Q∗, a → 1. The
divergen
e is logarithmi
, and then for su�
iently small

T , a solution around Q∗ of (14) always exists; resulting in

the two upper bran
hes being asymptoti
 to the Q(T ) =
Q∗ 
urve as T goes to 0.
In order to sele
t one bran
h from another we 
ompute

their respe
tive density of energy. A

ording to equations

(8) and (9), we have two di�erent expressions for the

density of energy,

e(T ) =

{

T − 3m4

2λ + 3λ
32Q

2 , Q < Qc

T − λ
32Q

2 , Q > Qc
. (15)

The results are plotted as the temperature versus the

density of energy in Fig. 4 in analogy to the results

presented in [11℄. The physi
al relevant solution is the

one whose energy is the smaller for a given temperature,

whi
h translate in the upper line in the �gure. The tran-

sition is then identi�ed at a density of energy ec = 25.07,
whose 
orresponding temperature is Tc = 19.69. These

results are in good agreement with the one predi
ted by

numeri
al simulations [11℄: respe
tively Tc = 17.65 and

ec = 21.1. Using equation (11), we have also a

ess to

the square of the magnetization and there is also a good

quantitative agreement with the numeri
al results. The

dis
ontinuous behavior of the magnetization at the tran-

sition is although surprising. This behavior was also ob-

served numeri
ally in [11℄, and is explained by noti
ing

that the true order parameter is 〈|q|〉 and not |〈q〉|. In

the present 
ase, we 
an also wonder whether this behav-

ior is due to the N → ∞ limit taken before the t → ∞.

Indeed the negle
ted terms are relevant at the transi-

tion, and only be
ome negligible around the transition

after the N → ∞ limit, whi
h may a�e
t the nature of

the observed transition. However this behavior may also

�nd its origin in the 
hoi
e of writing the momentum as

a superposition of N ′
random phased waves (motivated

by the solutions of the linearized equations of motion)

equal to the number of degrees of freedom N . Writing

the momentum with the number of modes N ′
being a

growing unbounded fun
tion of N is su�
ient to obtain

a Gaussian pro
ess. Another representation may then

be appropriate to ta
kle the transition region and for in-

stan
e in [8℄ a high temperature approa
h was used to


ompute the 
riti
al temperature.

To 
on
lude we point out that the thermodynami
 mo-

tion equations method allowed us to 
ompute the ma
ro-

s
opi
 properties of 
oupled nonlinear os
illator systems

in one and two dimensions. Quantitative agreement with

exa
t or numeri
al results of these quantities is obtained.
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FIG. 4: Temperature versus density of energy for m2
= 2 and

λ = 0.6. The three di�erent bran
hes resulting from the solu-

tions of Q presented in Fig. 3 are represented. The physi
al

line is the upper one. The transition is 
learly identi�ed with

Tc ≈ 19.64 and ǫc ≈ 25.07.

Moreover the phase transition for the ϕ4
model is de-

te
ted and a good estimate of the 
riti
al energy and

temperature are given even though we approximatively

solved the thermodynami
 motion equations. We expe
t

that this method will be su

essful for other systems and

spe
ulate that the a
tual solving of the exa
t thermo-

dynami
s motion equation should lead to an exa
t ther-

modynami
 limit. We believe it may also be possible to

extend the s
ope of the method to systems out of equilib-

rium and des
ribe their ma
ros
opi
 evolution with the

thermodynami
 motion equations.
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