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Abstract
An analytical method to compute thermodynamic properties of a given Hamiltonian system is proposed. This method
combines ideas of both dynamical systems and ensemble approaches to thermodynamics, providing de facto a possible alternative
to traditional Ensemble methods. Thermodynamic properties are extracted from effective motion equations. These equations
are obtained by introducing a general variational principle applied to an action averaged over a statistical ensemble of paths

defined on the constant energy surface.

The method is applied first to the one dimensional 8-FPU chain and to the two

dimensional lattice p* model. In both cases the method gives a good insight of some of their statistical and dynamical

properties.

The problem raised by Clausius and the second prin-
ciple found its answer with Boltzmann and the rise of
equilibrium statistical physics, . An essential point
in the theory is related to the law of large numbers,
which ensures that fluctuations around mean values of
the thermodynamic quantities are negligible [[3]. The
concept of ensembles is introduced, as for instance the
microcanonical ensemble for isolated systems, and their
associated measures are used to average. Developments
within the Ensemble framework have generalized the use
of various techniques such as perturbation expansions,
mean field approximation, or renormalization group |E]
and greatly improved our understanding of phase tran-
sitions phenomena (see for instance the review [H] and
references therein). However, the computation of ther-
modynamic properties for a given Hamiltonian system
remains in general inextricable.

The purpose of this Letter is to introduce an analyt-
ical approach of the thermodynamic limit and provide
an alternative to classical techniques. This method relies
on the large size limit and the universality of trajectories
(good ergodic and mixing properties are assumed). We
define an ensemble of paths drawn on the energy surface
and compute thermodynamic variables through averaged
equations of motion. This approach applies to systems
at equilibrium, and proves to be very successful in the
chosen examples. Note that, the ensemble averaging im-
plies a large time limit before the large system limit, but
we invert the order of these two limits.

Let us identify a set of trajectories on the hypersurface
defined by the microcanonical measure in the phase-space
by a set of labels ¢, which may be initial conditions for in-
stance. The thermodynamic state does then not depend
on these labels (this property permits the introduction of
the ensemble averaging). In the same spirit, we consider
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FIG. 1: Representation of the constant energy surface. Dif-
ferent labeled paths are drawn on it.

a family of paths q¢(¢) (we noted explicitly the time ¢
and label ¢ dependences) drawn on the constant energy
surface (see Fig. [). To each path we associate a La-
grangian L(qs, ¢¢) where the dot denotes time derivative
and the corresponding action A = [dt L. The basis of
the proposed method relies on the following claim: since
the thermodynamic state is label independent, we can
average the Lagrangian over the labels, and apply the

variational principle on the mean dynamical system:
(0A) = 6(A) = 6/dt (L) =0, (1)

(where (- - -) denotes averaging over the labels). The sec-
ond equality in () is imposed as a compatibility condi-
tion at equilibrium and defines a smooth path as the aver-
age of a flow of paths of the original system. We note that
after the average is performed, trajectories and points re-
lated to the mean dynamical system must already com-
prise some information on the thermodynamic state,
hence we shall refer to the resulting motion equations
as thermodynamic motion equations. Let us now con-
sider Hamiltonian systems of the type H = p%/2+V(q),
namely quadratic in momentum and with separated con-
jugated variables. Microcanonical statistics leads to a
linear relation between the mean kinetic energy MCp?/2
and the temperature T (MC - - - stands for microcanonical
averaging) [E] and predicts that the momentum is Gaus-
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sian with each component p; independent and a vari-
ance proportional to the temperature MCp? ~ T. In
the canonical ensemble this results in a trivial factoriza-
tion of the partition function, all the complexity being
included in the potential V. The present approach uses
this Gaussian property and reverse the usual argument
to pass from time averaging to ensemble averaging: at
thermal equilibrium, we interpret p as being a Gaussian
stochastic process on the labels and get thermodynamic
quantities from the mean dynamical system. We now
propose a possible implementation of these ideas.

We consider a lattice (in dimension D = 1,2) of N
sites with coordinates x;,7 = 1,---,N. At each site i
is placed a particle, in general coupled to its neighbors,
having momentum p; and conjugate coordinate ¢;. We
take units such that the lattice spacing, the Boltzmann
constant, and the mass are equal to one. Since p; is
Gaussian, we choose to represent it as a superposition of
random phased waves:

Nko

pi = g cos(kw; + dr) (2)

k=0

where the wavenumber k is in the reciprocal lattice (an
integer multiple of kg = 27 /N (/D))  the wave amplitude
is &g, and its phase ¢ is uniformly distributed on the
circle. The momentum set is labeled, using (), with
the set of phases £ = {¢r}. This equation can also be
interpreted as a change of variables, from p to «, with
constant Jacobian (the change is linear and we chose an
equal number of modes and particles). Besides, if the
total momentum is conserved, we choose to take &y = 0.
As the variance of p; is fixed, we shall assume that the
&y, are all of the same order (we need a large number
of relevant modes for the center-limit theorem to apply).
Using the relation (p?) = > &2 /2 (we average over the
random phases) and imposing that at equilibrium the
ﬂuctuations are small, we write (p?) ~ T and obtain

~ O[(T/N)] (we call this relation the Jeans condition
[ﬁ We shall see in the examples that for this scaling
in N for & and the short range interaction, the mean
dynamical system becomes a set of oscillators with mean-
field type interactions and a kind of Jeans spectrum. The
coordinate variables associated with the representation of
momenta (f) are

Nko

g = ag + Z ay cos(kx; + o) - (3)
k=ko

Note that this equation supposes true the relation p; =
G;- The equilibrium state is constructed from the av-
eraged Lagrangian £ = (L)/N, the condition that the
paths belong to the energy surface e(T) = E/N =
(H)/N, and the Jeans condition which fixes the tempera-
ture from the averaged kinetic energy. We in fact applied
a version of this method to the Kosterlitz-Thouless phase
transition in the XY model [f.

We shall start to test this approach with the generic
case of a chain of coupled harmonic oscillators. The
Hamiltonian writes H = (1/2)>".[p? + (qi+1 — @)?]-
Using the expressions (B) and &: we compute the av-
eraged Lagrangian £ = (1/4)),[¢7 — wi,a?] where
w, = 4sin® k/2 and extremize the action to obtain the
thermodynamic motion equations dy = —w2, ag. Equi-
librium is imposed by the Jeans condition which gives
a? = 2T/Nwj, and leads to the thermodynamic func-
tion e(T) =T.

We consider now the Fermi-Pasta-Ulam problem of a
one-dimensional S-FPU chain of oscillators. The ther-
modynamics of this model has been exactly computed
within the canonical ensemble |H] The Hamiltonian
reads H = (1/2) 3,[p} + V(gi+1 — @) + V(g — gi-1)],
where V(z) = x2/2 + Bx*/4. The averaged potential
energy density v = (V)/N is then

v= Z (skak + Bskak> + 35 Z sisnacas, ,  (4)

k kK

where we used the notation s = sin(k/2). It is worth
noticing that by considering « as the dynamical vari-
ables of a new system, the interaction v is of the mean-
field type as the second term in () involves interaction
between all aj oscillators. The thermodynamic motion
equations are obtained as before from the Lagrangian
density L(&, o) = >, [d2/2 — v(a)]:

Q=68 siaj,
k

where ) is a mean-field (intensive) variable. Its fluctu-
ations at equilibrium are of order O(1/v/N). Hence we
consider it in (f]) as a constant. This is the large system
limit N — oo taken before the ¢ — oo limit. In this ap-
proximation (ﬁ) describes a set of uncoupled oscillators.
Moreover, as we verify a posteriori, to the same order of
approximation we neglect the third term in the brackets
(it is smaller than the @ term, by a factor O(1/N)). We
then obtain a simple linear wave equation with a disper-
sion relation w? = w2, (1 + Q) [Ld]. The Jeans condition
gives ajw? =~ 2T/N and allows an estimation of the
neglected term sia? ~ T/[2N(1 + Q)]. Using now the
dispersion relation, the Jeans condition, and the defini-
tion of Q, we obtain Ql+Q)/38=T and the function
Q = Q(T). Since v = (2Q + Q?)/12f we finally get the
thermodynamic relation

T JTFI128T -1
=1t e ©

Gk = —wiy [1+Q — 38siaq] o,

This result is compared with the canonical one [E] in
Fig. I The two results are in very good agreement and
we speculate it is exact.

For the last example, we consider a two dimensional
system (D = 2) exhibiting a second order phase transi-
tion, the so called dynamical lattice * model studied in
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FIG. 2: Potential energy versus temperature for 8 = 0.1, the
dashed line corresponds to the result obtained by [E], while
the solid line corresponds to equation f.

[@] This model is defined by the Hamiltonian

N 2 2
pi o omT oo Ay JZ 2
H = — — —q; —q° — i — ,

where m and A are real parameters, J = 1 is the coupling
constant, and (i, j) denotes the summation over the close
neighbors on a square lattice. In contrast with the other
cases, where the k = 0 mode o was a free parameter, in
this example it is relevant and corresponds to the aver-
age of ¢ which is proportional to the magnetization of the
system and is independent of time at equilibrium. The
computation of the averaged potential energy is very sim-
ilar to the S-FPU case:

1 A A
v o= ZZ (w%k—m2+§ag> ozi—kﬁ Z aiai,
k k#£k!
A m? A
+6—42ai—7ag+zag. (8)
- !

The thermodynamic motion equations are
A A
0 = Qp <gag =+ ZQ — m2> (9)

, A A A
dp = — (wgk —m?+ 504(2) + ZQ> oy + gai , (10)

where w2, = 4(sin® k, /2 +sin® k, /2) is the free harmonic
frequency (k = (ks, ky) is now a vector in the plane), and
Q =Y o7 is an intensive variable.

Equation (E) has multiple solutions in ay depending
on the temperature through Q = Q(T'). Since g = {(g;)
is the order parameter, we anticipate the existence of a
phase transition in the thermodynamic state. Indeed,
the only solution is ag = 0 for @ > Q. = 4m?/\ but for
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FIG. 3: Solutions of the implicit equation )7 for m? =
2 and A = 0.6. We notice that depending on the value of
T up to three different solutions for @) exists giving rise to
three different branches respectively labelled Q1, Q2, Q3. The
critical temperature 7. is identified.

@ < Q. other solutions with finite values of the order
parameter exist:

6m? 3 3
2
=2 _2Q=2(Q.-Q). 11

@0 b\ 2Q 2 (@« — Q) (11)
To solve ([L]), we neglect the o} term, as we did for the 8-
FPU case (large system limit) and obtain a wave equation
with the dispersion relation: w? = w2, + Q?(T). Q(T) is
given by,

Q2 = (Q* - Q)7

(Q - Q*)v

Q< Q. (12)

0% = Q> Q.. (13)

> N >

where we used the definition of Q. and Eq. ([1)). We no-
tice that Q is the frequency corresponding to the absent
k = 0 mode.

Given the Jeans condition: o} = 27/(Nw3?) we notice
that as long as Q # 0 (Q # Q.) the o} term is a poste-
riori negligible, we can therefore expect results obtained
with this approximation to be accurate everywhere but
at (near) the transition. Another consequence of this
condition is that most of the modes have comparable
amplitudes for 2 # 0, which then implies a Gaussian-
like distribution for q. At the same order of approxima-
tion, in the thermodynamic limit, we can compute Q(7),
identifying it to a Riemann integral. Using the «j given
by the Jeans spectrum we obtain the following implicit
equation for Q(T),

4

Q(T) = %aK(a), a = m N (14)

where K (a) is the complete elliptic integral of the first

kind fow/2 df/\/1 — a?sin’ 6.



The solutions of ([14) has three branches, plotted on
Fig. B We choose the same values m2 = 2 and A = 0.6
as the ones used in [[L]]. We first notice the existence of
a special temperature close to 19.69 localizes the phase
transition temperature. Two branches are below Q. =
40/3, and result from the expression ([lJ) used in the
implicit equation, the third one (on the top of the figure)
corresponds to the expression (E) The fact that the
wave form solutions are not valid for Q = Q. translate
in the divergence of K(a), since as @ — Q., a — 1. The
divergence is logarithmic, and then for sufficiently small
T, a solution around Q. of () always exists; resulting in
the two upper branches being asymptotic to the Q(T) =
Q. curve as T goes to 0.

In order to select one branch from another we compute
their respective density of energy. According to equations
(B) and ({), we have two different expressions for the
density of energy,

_fT-E R Q<q,
e(T)—{T_B_;Q2 32 CO0so. (15)

The results are plotted as the temperature versus the
density of energy in Fig. E in analogy to the results
presented in | The physical relevant solution is the
one whose energy is the smaller for a given temperature,
which translate in the upper line in the figure. The tran-
sition is then identified at a density of energy e, = 25.07,
whose corresponding temperature is 7, = 19.69. These
results are in good agreement with the one predicted by
numerical simulations [[L]: respectively T. = 17.65 and
e. = 21.1. Using equation ([L), we have also access to
the square of the magnetization and there is also a good
quantitative agreement with the numerical results. The
discontinuous behavior of the magnetization at the tran-
sition is although surprising. This behavior was also ob-
served numerically in , and is explained by noticing
that the true order parameter is (|¢|) and not |{g)|. In
the present case, we can also wonder whether this behav-
ior is due to the N — oo limit taken before the ¢ — oc.
Indeed the neglected terms are relevant at the transi-
tion, and only become negligible around the transition
after the NV — oo limit, which may affect the nature of
the observed transition. However this behavior may also
find its origin in the choice of writing the momentum as
a superposition of N’ random phased waves (motivated
by the solutions of the linearized equations of motion)
equal to the number of degrees of freedom N. Writing
the momentum with the number of modes N’ being a

growing unbounded function of N is sufficient to obtain
a Gaussian process. Another representation may then
be appropriate to tackle the transition region and for in-
stance in [E] a high temperature approach was used to
compute the critical temperature.

To conclude we point out that the thermodynamic mo-
tion equations method allowed us to compute the macro-
scopic properties of coupled nonlinear oscillator systems
in one and two dimensions. Quantitative agreement with
exact or numerical results of these quantities is obtained.
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FIG. 4: Temperature versus density of energy for m* = 2 and
A = 0.6. The three different branches resulting from the solu-
tions of () presented in Fig. E are represented. The physical
line is the upper one. The transition is clearly identified with
T. ~ 19.64 and €. ~ 25.07.

Moreover the phase transition for the ¢* model is de-
tected and a good estimate of the critical energy and
temperature are given even though we approximatively
solved the thermodynamic motion equations. We expect
that this method will be successful for other systems and
speculate that the actual solving of the exact thermo-
dynamics motion equation should lead to an exact ther-
modynamic limit. We believe it may also be possible to
extend the scope of the method to systems out of equilib-
rium and describe their macroscopic evolution with the
thermodynamic motion equations.
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