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We consider a real Gaussian process X with unknown smoothness r0 ∈ N0 where
the mean-square derivative X(r0) is supposed to be Hölder continuous in quadratic
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r ≥ 1. We show that the mean-square error of interpolation is a decreasing func-
tion of r but becomes stable as soon as r ≥ r0. Next, from an interpolation-based
empirical criterion, we derive an estimator r̂ of r0 and prove its strong consistency
by giving an exponential inequality for P (r̂ 6= r0). Finally, we prove the strong
consistency of X̃r̂(t) with an almost optimal rate.
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1 Introduction

Let X = {Xt, t ∈ [0, 1]} be a real Gaussian process whose r0-th (r0 ∈ N0)
derivative satisfies a Hölder condition in quadratic mean with exponent β0 ∈
[0, 1[ (r0, β0 both unknown). In this paper, we propose and study an estimator
of r0 based on observations of X at instants T = {t1, . . . , tN} ⊂ [0, 1].

As far as we can judge, this question had not yet been raised in the statistical
literature of stochastic processes. Nevertheless, this topics arises naturally in
several problems of estimation or prediction where processes are supposed to
belong to some regularity class depending on r0. More precisely concerning
prediction, we refer to works of Cuzick (1977), Lindgren (1979) and Bucklew
(1985) where processes have quadratic mean derivatives of specified order. For
statistical inference, such an information is required in e.g. the works of Istas
and Lang (1997), Blanke and Bosq (1997), Sköld and Hössjer (1999), Blanke
and Pumo (2003) and Ditlevsen and Sørensen (2004).

In Section 2, we present our main assumptions as well as various classes of
processes fulfilling them. Note that processes satisfying to the so-called Sacks
and Ylvisaker (SY) conditions of order r0 are included in our examples.
In Section 3, we present some results about piecewise Lagrange polynomial
interpolation. In this context, numerous methods had been proposed and stu-
died under various conditions on processes. Recent works under SY conditions
include for example : Müller-Gronbach (1996) (orthogonal projection, optimal
designs), Müller-Gronbach and Ritter (1997) (linear interpolation, optimal
designs), Müller-Gronbach and Ritter (1998) (linear interpolation, adaptive
designs). Under Hölder type conditions, one may cite e.g. works of Seleznjev
(1996) (linear interpolation) , Seleznjev (2000) (Hermite interpolation splines,
optimal designs), Seleznjev and Buslaev (1998) (best approximation order).
For a more detailed survey, we refer to the book by Ritter (2000).
Our work comes within the general framework considered by Plaskota, Ritter
and Wasilkowski (2002, 2004) but with a different methodology. We present a
slight extension of their results by considering interpolator polynomials X̃r(t)
with arbitrary degree r ≥ 1. We essentially show that the mean-square error
of interpolation is a decreasing function of r but becomes stable as soon as
r ≥ r0. This key point allows us to turn to estimation of r0. In Section 4, we
compute an interpolation-based empirical criterion and derive an estimator
for r0, denoted by r̂. We show that r̂ is strongly consistent and give an expo-
nential bound for P (r̂ 6= r0). Finally, these results allow us to establish the
strong consistency of X̃r̂(t) with an almost optimal rate. Proofs are postponed
to the end of the paper.
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2 The general framework

2.1 Assumptions

Let X = {Xt, t ∈ [0, 1]} be a real measurable Gaussian process, defined on
the probability space (Ω, A, P ). We will say that X ∈ H(r0, β0) if it fulfills
the assumptions A2.1 and A2.2 stated below.

Assumption 2.1 (A2.1)
(i) X has continuous derivatives in quadratic mean up to order r0, r0 ∈ N0,
denoted by X(0), . . . , X(r0),

(ii) E
(
X(r0)(s) − X(r0)(t)

)2 ≤ C2
1 |s − t|2β0 , (s, t) ∈ [0, 1]2, with β0 ∈ [0, 1[,

r0 + β0 > 0 and C1 > 0,
(iii) the mean function of X, µ(t) = E X(t), has a (r0 + 1) bounded derivative
for 0 ≤ t ≤ 1,

(iv) E
(
X(t) − Xa,b(t)

)2 ≥ C2
2

(
(b−t)(t−a)

b−a

)2(r0+β0)
, t ∈ ]a, b[, 0 ≤ a < b ≤ 1

where Xa,b(t) = E
(
X(t)

/
X(s), s 6∈ ]a, b[

)
and C2 > 0 does not depend on the

values a and b.

Let us give some precisions concerning Assumption 2.1. Under A2.1(i),(ii),
the process is said to be mean-square hölderian, such conditions give upper
bounds for approximation. Recall that A2.1(i) implies in particular that µ
is r0-times continuously differentiable with E X(r)(t) = µ(r)(t) and that the
covariance kernel K(s, t) = Cov (X(s), X(t)) is also continuously differen-
tiable with K(r,r)(s, t) = Cov (X(r)(s), X(r)(t)), r = 0, . . . , r0. A2.1(iv) is a
more technical condition which is involved in lower bounds for approxima-
tion. This condition was first introduced in Plaskota, Ritter and Wasilkowski
(2002) where a variety of examples are provided. In the next part, we present
and develop these classes of processes.

Assumption 2.2 (A2.2)

(i) On [0, 1]2
∖
{s = t}, K(r0+1,r0+1)(s, t) exists and satisfies

∣∣∣K(r0+1,r0+1)(s, t)
∣∣∣ ≤

C3 with C3 > 0,
or
(ii) On [0, 1]2

∖
{s = t}, K(r0+1,r0+1)(s, t) exists and satisfies

∣∣∣K(r0+1,r0+1)(s, t)
∣∣∣ ≤

C3 |s − t|−(2−2β0) with C3 > 0.

Note that in the following, we use alternatively A2.2(i) or A2.2(ii) for proving
the convergence of our estimator. The first one (together with A2.1(iii)) was
introduced by Baxter (1956), in the case r0 = 0, to establish a strong limit
theorem for Gaussian processes. His result was next generalized by Gladyshev
(1961) under several conditions including A2.2(ii) (with r0 = 0). Let us notice
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that in both cases, existence of K(r0+1,r0+1)(s, s) is not required, in fact it is
not wanted since then the process would have (r0 +1) derivatives in quadratic
mean. In the sequel, our aim is to estimate the maximal r (denoted by r0)
such that one has X ∈ H(r, β). That’s why we have excluded, in condition
A2.1(ii), the case β0 = 1 to avoid any possible problem of identifiability.

2.2 Examples

We now present and complete the examples given in Plaskota et al. (2002) of
Gaussian processes satisfying to our Assumptions A2.1 and A2.2.

Example 1 r0-fold integrated fractional Brownian motion. Let us define X
by

X(t) =
∫ t

0

∫ sr0

0

∫ sr0−1

0
· · ·

∫ s2

0
Wβ0

(s1) ds1 ds2· · · dsr0
,

in that case X(r0) = Wβ0
, 0 < β0 < 1 is a fractional standard Brown-

ian motion : X is a zero-mean Gaussian process with covariance function
K(r0,r0)(s, t) = 1

2
(s2β0 + t2β0 − |s − t|2β0). It is shown in Plaskota et al. (2002)

that X fulfills conditions A2.1(ii)(iv). Moreover, since one has E (X(r0)(t +
τ) − E X(r0)(t))2 = |τ |2β0 , condition A2.2(ii) is also satisfied (see Gladyshev
(1961)). Finally note that β0 = 1/2 yields the r0-fold integrated standard
Brownian motion and, in this case, one gets (Plaskota et al. (2002)) : C1 = 1
and C2

2 = 1/((2r0 + 1)(r0!)
2).

Example 2 Sacks-Ylvisaker (SY) conditions. We take SY conditions as stated
in Ritter (2000) p. 68 in the case of a zero-mean process. Let Ω+ = {(s, t) ∈
]0, 1[2: s > t}, Ω− = {(s, t) ∈]0, 1[2: s < t} and let cl A the closure of a set A.

(A) K ∈ Cr0,r0([0, 1]2), the partial derivatives of L = K(r0,r0) up to order two
are continuous on Ω+ ∪Ω− and continuously extendible to cl Ω+ as well as
to cl Ω−.

(B) L
(1,0)
− (s, s)− L

(1,0)
+ (s, s) = 1, 0 ≤ s ≤ 1 where Lj denotes the extension of L

to [0, 1]2 continuous on cl Ωj and on [0, 1]2\cl Ωj with j ∈ {−, +}.
(C) L

(2,0)
+ (s, ·) ∈ H(L) for all 0 ≤ s ≤ 1 and sup

0≤s≤1

∥∥∥L(2,0)
+ (s, ·)

∥∥∥
L

< ∞ where

H(L) is a Hilbert space with reproducing kernel L and norm ‖·‖L.
(D) If r0 ≥ 1, K(r0,k)(·, 0) = 0, k = 0, . . . , r0 − 1.

First note that for r0 ≥ 1, the stationary case is excluded since in this case
(D) becomes contradictory with the others conditions. Next, (A) and (B)
imply that the process has exactly r0 derivatives in the mean-square sense.
Moreover, conditions A2.1(i)(ii) and A2.2(i) are clearly satisfied with β0 = 1/2

and C2
1 = 2 sup

s,t∈Ω+∪Ω−

∣∣∣L(1,0)(s, t)
∣∣∣. Let us turn to condition A2.1(iv) : following
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Plaskota et al. (2002), it is sufficient to get

sup{h2(t) : h ∈ B(K), supp h ⊆ [a, b]} ≥ C2
2

((b − t)(t − a)

b − a

)2(r0+β0)

where B(K) denotes the unit ball in H(K). Next applying results of Proposi-
tion IV.8 of Ritter (2000) p. 78 we successively obtain for 0 ≤ a < b ≤ 1 and
t ∈]a, b[ :

sup
{
h2(t) :h ∈ B(K), supp h ⊆ [a, b]

}
≥ sup

{
‖h‖−2

K · h2(t) : h ∈ H(K) ∩ ∆a,b

}

≥ sup
{
‖h‖−2

K · h2(t) : h ∈ W r0+1
2 ([0, 1]) ∩ ∆a,b

}

≥ sup
{
‖h‖−2

K

∥∥∥h(r0+1)
∥∥∥
2

2
· h2(t) : h ∈ Br0

∩ ∆a,b

}

≥ (1 + c)−2 · 1

(2r0 + 1) · (r0!)2

(
(b − t)(t − a)

b − a

)2r0+1

, (2.1)

for a positive constant c depending only on K and Br0
corresponding to the

unit ball in W r0+1
2 ([0, 1]) where

W r0+1
2 ([0, 1]) =

{
g ∈ Cr0([0, 1]) : g(r0) abs. cont. , g(r0+1) ∈ L2([0, 1])

}

and ∆a,b =
{
h : h(k)(a) = h(k)(b) = 0, k = 0, . . . , r0, supp h = [a, b], h(t) 6=

0 for all t ∈]a, b[
}
.

Note that the solution of the extremal problem given in (2.1) had be obtained
by Speckman (1979) (see also Ritter (2000), p. 94). Thereby, the condition
A2.1(iv) is checked with β0 = 1/2 and C2 = (2r0 + 1)−1 · ((1 + c)r0!)

−2.

Example 3 Stationary processes with spectral density ϕ. Suppose that ϕ sa-
tisfies both for u large enough, ϕ(u) ≤ c1 |u|−2γ with c1 > 0, γ > 1/2, and
for every real u, ϕ(u) ≥ c0(1 + u2)−γ with c0 > 0, then results of Plaskota
et al. (2002) imply that for γ − 1

2
6∈ N the conditions A2.1(ii)(iv) are fulfilled

with r0 =
[
γ − 1

2

]
and β0 = γ − 1

2
− r0. Next, we strengthen the first con-

dition by
∣∣∣ϕ(u) − c1 |u|−2γ

∣∣∣ ≤ c2 |u|−2(γ+1) with c2 > 0, γ > 1/2 and u large

enough. In this case, from K(r0,r0)(s, t) =
∫∞
−∞ u2r0eı(s−t)uϕ(u) du and by adapt-

ing the proof of Gladyshev (1961) to the case r0 ≥ 1, we obtain the required
condition A2.2(ii). For instance, one has K(s, t) = (2θ)−1 exp(−θ |s − t|) and
ϕ(u) = π−2(θ2 + u2)−1 for an Ornstein-Uhlenbeck (O.U.) process, which im-
plies in turn that γ = 1, r0 = 0 and β0 = 1/2.

Example 4 r0-fold integrated stationary processes. Let Y = {Yt, t ∈ [0, 1]} be
a zero-mean stationary Gaussian process with covariance ρ0(|t − s|). Lasinger
(1993) gives conditions under which stationarity is preserved by r0-fold in-
tegration. Namely, one may define recursive stationary processes X(r0−i) =
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{
X

(r0−i)
t , t ∈ [0, 1]

}
by X

(r0−i)
t = X

(r0−i)
0 +

∫ t

0
X(r0−i+1)

s ds, for i = 1, . . . , r0.

Here one has X(r0) := Y , X
(r0−i)
0 are Gaussian random variables with positive

variance σ2
i and ρi(t) := σ2

i −
∫ t

0

∫ u

0
ρi−1(v) dv du represents the covariance

function of X(r0−i). It is shown in Lasinger (1993) that such construction is pos-
sible when the covariance is either linear : ρ0(t) = 1−λ |t| (0 < λ < 2) or expo-
nential : ρ0(t) = (2θ)−1 exp(−θ |t|) (θ > 0) as soon as one choose σ2

i > ‖ρ′
i‖2

ρi−1
,

i = 1, . . . , r0 in each integration step. Moreover from Theorem 4 of Lasinger
(1993), one can evaluate ‖h‖K (here K = ρr0

) for h ∈ H(K) ∩ ∆a,b (see Ex-

ample 2) in the linear case : ‖h‖2
K =

∥∥∥h(r0)
∥∥∥
2

ρ0

= (2λ)−1
∫ 1

0
h(r0+1)(t)2 dt and in

the exponential one : ‖h‖2
K =

∥∥∥h(r0)
∥∥∥
2

ρ0

=
∫ 1

0
h(r0+1)(t)2 dt + θ2

∫ 1

0
h(r0)(t)2 dt.

Then same methodology as in Example 2 (using Lemma IV.4 of Ritter (2000)
p. 73) yields the required condition A2.1(iv) with β0 = 1/2 in both cases. Note
that conditions A2.1(ii), A2.2 are stated on K(r0,r0)(s, t) = ρ0(|s − t|) and con-
sequently are easily checked. Finally, the linear case occurs for example when
X(r0)(t) = W (t + 1) − W (t) whereas the exponential one corresponds to the
O.U. process (see Example 3).

Example 5 Non centered case. It is easy to see that if Zt = Xt + µ(t) where
X = (Xt, t ∈ [0, 1]) is a zero-mean Gaussian process satisfying to conditions
A2.1(i)(ii)(iv) and A2.2 then Z = (Zt, t ∈ [0, 1]) fulfills Assumption A2.1,
A2.2 as soon as µ checks A2.1(iii).

3 Results on piecewise Lagrange interpolation

Suppose that X is observed at the (nr + 1) equally spaced instants sℓ,r,n :=

sℓ,r =
ℓ

r
δn with ℓ = 0, . . . , nr, δn = 1/n and for some r ∈ N. Next we will

use the knots ti,k,n := ti,k = kδn +
i

r
δn with i = 0, . . . , r and k = 0, . . . , n − 1.

Note that some of the ti,k are equal, in particular tr,k = t0,k+1. Actually, one
has ti,k = skr+i,r and for [ℓ/r] 6= ℓ/r, sℓ,r = tℓ−r[ ℓ

r
],[ ℓ

r
] whereas if [ℓ/r] = ℓ/r,

sℓ,r = t0,[ ℓ
r
] = tr,[ ℓ

r
]−1 where [.] denotes the integer part. The approximation

process is then defined by

X̃r(t) =
r∑

i=0

Li,k(t)X(ti,k), (3.1)

for t ∈ Ik := [kδn, (k + 1)δn] and where Li,k(t) is the Lagrange interpolator
polynomial given by

Li,k(t) =
r∏

j=0
j 6=i

(t − tj,k)

(ti,k − tj,k)
. (3.2)
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Recall that for t ∈ Ik, X̃r(t) corresponds, by definition, to the unique polyno-
mial of degree (at most) r which interpolates X(t) at the (r + 1) knots ti,k,
i = 0, . . . , r. Using these polynomials presents several advantages : they are
easy to build and to implement, they give sharp upper bounds for approxi-
mation (see Proposition 3.1 and its following remarks). Moreover conversely
to Hermite polynomials, they do not require observation of derivatives of the
process X. Comparing to splines, one classical drawback is that the derivatives
X̃(ℓ)

r , ℓ = 1, . . . , r, are typically discontinuous at the knots ti,j. Anyway all our
conditions are stated in a mean-square sense so pathwise irregularities are of
no importance in our context.

3.1 A preliminary result

For further results, we have to express the function Cr(s, t) := E
(
X(t) −

X̃r(t)
)(

X(s) − X̃r(s)
)

with r ≥ 1, in terms of the covariance K(s, t) and its

partial derivatives for (t, s) ∈ [kδn, (k + 1)δn] × [ℓδn, (ℓ + 1)δn].

Lemma 3.1
Suppose that condition A2.1(i) holds and let r∗ = min(r0, r) be such that
r∗ ≥ 1. If t = kδn + θ1δn, s = ℓδn + θ2δn with 0 ≤ θ1, θ2 ≤ 1, one obtains,

Cr(s, t) =
r∑

i,j=0

Li,k(t)Lj,ℓ(s)(ijδ
2
n)r∗

(rr∗(r∗ − 1)!)2
·
∫∫

[0,1]2

(
(1 − v)(1 − w)

)r∗−1Rδn,i,j(v, w) dv dw

(3.3)

where

Rδn,i,j(v, w) = K(r∗,r∗)(kδn + θ1δnv, ℓδn + θ2δnw) − K(r∗,r∗)(kδn + θ1δnv, ℓδn +
jδn

r
w)

− K(r∗,r∗)(kδn +
iδn

r
v, ℓδn + θ2δnw) + K(r∗,r∗)(kδn +

iδn

r
v, ℓδn +

jδn

r
w)

+ µ(r∗)(kδn + θ1δnv)µ(r∗)(ℓδn + θ2δnw) − µ(r∗)(kδn + θ1δnv)µ(r∗)(ℓδn +
jδn

r
w)

− µ(r∗)(kδn +
iδn

r
v)µ(r∗)(ℓδn + θ2δnw) + µ(r∗)(kδn +

iδn

r
v)µ(r∗)(ℓδn +

jδn

r
w).

(3.4)
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Remarks : (i) In the case r0 = 0, one may easily obtain

Cr(s, t) =
r∑

i,j=0

Li,k(t)Lj,ℓ(s) ·
{
K(t, s) − K(t, ℓδn +

jδn

r
) − K(kδn +

iδn

r
, s)

+ K(kδn +
iδn

r
, ℓδn +

jδn

r
) + µ(t)µ(s) − µ(t)µ(ℓδn +

jδn

r
)

− µ(kδn +
iδn

r
)µ(s) + µ(kδn +

iδn

r
)µ(ℓδn +

jδn

r
)
}
. (3.5)

In fact, note that for (t, s) ∈ [kδn, (k + 1)δn] × [ℓδn, (ℓ + 1)δn] :

Cr(s, t) = E X(t)X(s) +
r∑

i,j=0

Li,k(t)Lj,ℓ(s)E X(
iδn

r
+ kδn)X(

jδn

r
+ ℓδn)

−
r∑

j=0

Lj,ℓ(s)E X(t)X(
jδn

r
+ ℓδn) −

r∑

i=0

Li,k(t)E X(
iδn

r
+ kδn)Xs

and the result follows since uniqueness of Lagrange polynomials implies in
particular

∑r
i=0 Li,k(t) =

∑r
j=0 Lj,ℓ(s) = 1.

(ii) In the stationary case where µ(t) ≡ µ, the term Rδn,i,j, given by (3.4),
simply reduces to

Rδn,i,j(v, w) = K(r∗,r∗)(kδn +θ1δnv, ℓδn+θ2δnw)−K(r∗,r∗)(kδn +θ1δnv, ℓδn+
jδn

r
w)

− K(r∗,r∗)(kδn +
iδn

r
v, ℓδn + θ2δnw) + K(r∗,r∗)(kδn +

iδn

r
v, ℓδn +

jδn

r
w).

(3.6)

3.2 Upper and lower bounds for the error of interpolation

Using properties of reproducing kernel Hilbert spaces, Plaskota et al. (2002)
give error estimates for piecewise Lagrange interpolation of order r ≥ r0. Our
lemma 3.1 allows us to generalize their result to any order r ≥ 1. Recall that
here and in all the following, δn = n−1.

Proposition 3.1
(a) Under conditions A2.1(i)(ii), we obtain for any r ≥ 1,

sup
t∈[0,1]

E
(
X(t) − X̃r(t)

)2 ≤ A2
1(r)δ

2(r∗+β∗)
n , (3.7)

with r∗ = min(r, r0), β∗ =





1 if r < r0

β0 if r ≥ r0,
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and A2
1(r) =





A2
1(r, sup

s,t∈[0,1]2

∣∣∣K(r+1,r+1)(s, t)
∣∣∣) if r < r0

A2
1(r, C1) if r ≥ r0.

(b) Under condition A2.1(iii), one has for any r ≥ 1,

sup
t∈[0,1]

∣∣∣E
(
X(t) − X̃r(t)

)∣∣∣ ≤ A2(r, ‖µ(r∗+1)‖∞)δr∗+1
n . (3.8)

Remarks

• As our upper bounds only involve the covariance kernel of the process X,
they hold also for non Gaussian processes satisfying to assumptions A2.1.

• In the stationary case where µ(t) ≡ µ, it is easy to see that, the approxi-

mation is unbiased : E
(
X(t) − X̃r(t)

)
= 0, t ∈ [0, 1].

• For r ≥ r0, the rate of approximation n−(r0+β0) appearing in (3.7) is optimal
in several senses for the Hölder class H(r0, β0) : see Seleznjev and Buslaev
(1998).

Now, let us turn to a lower bound of approximation.

Proposition 3.2
Let ṡk,r be the middle of [sk,r, sk+1,r] (with sk,r = k

r
δn, k = 0, . . . , nr), then the

condition A2.1(iv) implies for any r ≥ 1 :

E
(
X(ṡk,r) − X̃r(ṡk,r)

)2 ≥ A2
3(r, C2) δ2(r0+β0)

n .

Note that a similar result for
∫ 1

0
E
(
X(t)−AX(t)

)2
dt is obtained in Plaskota

et al. (2002) for any algorithm A using the knots sk,r.

4 Estimation of the parameter r0

4.1 The estimator

Let us assume that (Xt, t ∈ [0, 1]) is observed at points sk,r = kr
n

(with
r = 1, . . . , pn and k = 0, . . . , nr) and at points ṡk,r = 1

2
(sk,r + sk+1,r) (with

r = 1, . . . , pn and k = 0, . . . , nr−1), which means that the process is observed
at N := npn(pn+1)+pn points. In the following we will choose pn = loga(n) :=
ln ln · · · ln︸ ︷︷ ︸n

a times

with a ≥ 2, chosen arbitrary large.
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We define the estimator of the parameter r0 as

r̂ = min
{
r ∈ {1, . . . , pn} :

1

nr

nr−1∑

j=0

(X(ṡj,r) − X̃r(ṡj,r))
2 ≥ n−2rhn

}
− 1

and in case of having an empty set, we will set r̂ to an arbitrary value l0.

The threshold hn is chosen such that hnn
2β0−2 → 0 and hnn

2β0 → ∞, for all
β0 ∈ [0, 1[. For example, an omnibus choice is e.g. hn = ln n.

Remark 4.1 We may notice that as the sequence pn tends to infinity with n,
there exists an integer n0 such that r0 ∈ {0, . . . , pn} for all n ≥ n0. Furthermore
if an upper bound B is known for r0, one can choose pn = B + 1.

4.2 Consistency of the estimator

We now present the main result of our paper, namely an exponential upper
bound for the probability of the event {r̂ 6= r0}.

Theorem 4.1
(i) Let us assume the hypothesis A2.1 and A2.2(i),

P (r̂ 6= r0) = O
(

exp
(
−D1 min

(
n, δ−(2−2β0)

n

)))
;

where D1 is a positive constant.

(ii) Let us assume the hypothesis A2.1 and A2.2(ii),

P (r̂ 6= r0) = O
(

exp
(
−D2 min

( n

ln n
, δ−(2−2β0)

n

)))

where D2 is a positive constant.

Remarks

• Let us note that more explicit bounds are established along the proof, see
the relations (5.6)-(5.7).

• In both cases, the rate of convergence is exponential and depends on β0 : as
expected, the case β0 = 1 turns to be degenerate.

Since N = npn(pn + 1) + pn, we obtain the following immediate corollary.
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Corollary 4.1 Under Assumptions A2.1 and A2.2, one has

(i) if β0 ∈ [0, 1
2
],

P (r̂ 6= r0) = O
(

exp
(
−D3

N

(lnN)(loga N)2

))
,

(ii) if β0 ∈]1
2
, 1[,

P (r̂ 6= r0) = O
(

exp
(
−D4

( N

(loga N)2

)2−2β0

))
,

where D3 and D4 are positive constants.

To establish Theorem 4.1, we need the following proposition concerning be-
havior of Er(k, ℓ) defined by

Er(k, ℓ) = E
[(

X(ṡk,r) − X̃r(ṡk,r)
)(

X(ṡℓ,r) − X̃r(ṡℓ,r)
)]

,

for k, ℓ ∈ {0, . . . , nr − 1} and r = 1, . . . , r0 + 1.

Proposition 4.1 Let us assume the hypothesis A2.1 with µ(t) ≡ µ, then

(a) if r = 1, . . . , r0 − 1 (in the case, r0 ≥ 2) :

max
0≤k≤nr−1

δ−2r
n

n

nr−1∑

ℓ=0

|Er(k, ℓ)| ≤ C1δ
2
n. (4.1)

(b) if r = r0 (in the case, r0 ≥ 1) or r = r0 + 1, condition A2.2(i) yields

max
0≤k≤nr−1

δ−2(r0+β0)
n

n

nr−1∑

ℓ=0

|Er(k, ℓ)| ≤ C2 max
(
δ2(1−β0)
n ,

1

n

)
, (4.2)

whereas under A2.2(ii),

max
0≤k≤nr−1

δ−2(r0+β0)
n

n

nr−1∑

ℓ=0

|Er(k, ℓ)| ≤ C3 max

(
δ2(1−β0)
n ,

ln n

n

)
, (4.3)

Since in our case δn = n−1, it follows that, if r = r0, r0 + 1, one gets an upper
bound not exceeding ln n/n for β0 ≤ 1/2 and n−2(1−β0) if β0 > 1/2.

Finally, Theorem 4.1 allows us to study the pointwise almost sure conver-
gence of X̃r̃(t) toward X(t), where we have set r̃ = max(r̂, 1).
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Theorem 4.2 Under Assumptions A2.1 and A2.2,

(i) r̂ = r0 almost surely for N large enough,

(ii) for all t ∈ [0, 1], one gets for all positive ε,

N (r0+β0)

(ln N)1/2+ε

∣∣∣X(t) − X̃r̃(t)
∣∣∣ a.s.−−−→

N→∞
0.

Comparing this last result to the upper bound obtained in Proposition 3.1(a),
we see that our rate is not far from the optimal rate of approximation of X(t)
by X̃r0

(t) (see Seleznjev and Buslaev, 1998).

5 Proofs

5.1 Proof of Lemma 3.1

(a) Suppose first that µ(t) ≡ µ. Recall that the condition A2.1(i) holds iff
K ∈ Cr0,r0([0, 1]2), in other words, K has continuous partial derivatives K(p,m)

on [0, 1]2 for all integers p, m ≤ r0. From (3.5), we apply a Taylor series
expansion (with integral remainder) of order r∗ = min(r, r0) :

K(t, s) =
r∗−1∑

p=0

(θ1δn)p

p!
K(p,0)(kδn, s)+

∫ 1

0

(θ1δn)r∗

(r∗ − 1)!
(1−v)r∗−1K(r∗,0)(kδn+θ1δnv, s) dv,

but one has also,

K(p,0)(kδn, s) =
r∗−1∑

m=0

(θ2δn)m

m!
K(p,m)(kδn, ℓδn)

+
∫ 1

0

(θ2δn)r∗

(r∗ − 1)!
(1 − w)r∗−1K(p,r∗)(kδn, ℓδn + θ2δnw) dw

and

K(r∗,0)(kδn + θ1δnv, s) =
r∗−1∑

m=0

(θ2δn)m

m!
K(r∗,m)(kδn + θ1δn, ℓδn)

+
∫ 1

0

(θ2δn)r∗

(r∗ − 1)!
(1 − w)r∗−1K(r∗,r∗)(kδn + θ1δnv, ℓδn + θ2δnw) dw

Now similar expansions hold for K(t, ℓδn + jδn

r
), K(kδn + iδn

r
, s) and K(kδn +

iδn

r
, ℓδn + jδn

r
) (with θ1δn, θ2δn respectively replaced by iδn/r, jδn/r). This
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yields : Cr(t, s) = A1 + A2 + A3 + A4 where the Ai are respectively defined by

A1 =
r∗−1∑

p,m=0

K(p,m)(kδn, ℓδn)

p!m!

r∑

i,j=0

Li,k(t)Lj,ℓ(s)
{
(θ1δn)p(θ2δn)m−(θ1δn)p(jδn/r)

m

− (iδn/r)p(θ2δn)m + (iδn/r)p(jδn/r)
m
}
,

A2 =
r∗−1∑

p=0

r∑

i,j=0

Li,k(t)Lj,ℓ(s)

(r∗ − 1)!p!
·
∫ 1

0
(1 − w)r∗−1

{
(θ2δn)r∗K(p,r∗)(kδn, ℓδn + θ2δnw)

− (jδn/r)r∗K(p,r∗)(kδn, ℓδn +
jδn

r
)
}

dw ·
{
(θ1δn)p − (iδn/r)

p
}
,

A3 =
r∗−1∑

m=0

r∑

i,j=0

Li,k(t)Lj,ℓ(s)

(r∗ − 1)!m!
·
∫ 1

0
(1 − v)r∗−1

{
(θ1δn)r∗K(r∗,m)(kδn + θ1δnv, ℓδn)

− (iδn/r)r∗K(r∗,m)(kδn +
iδn

r
, ℓδn)

}
dv ·

{
(θ2δn)m − (jδn/r)

m
}
,

A4 =
r∑

i,j=0

Li,k(t)Lj,ℓ(s)

(r∗ − 1)!2
·
∫∫

[0,1]2

{
(θ1δn)r∗(θ2δn)r∗K(r∗,r∗)(kδn + θ1δnv, ℓδn + θ2δnw)

− (θ1δn)r∗(jδn/r)r∗K(r∗,r∗)(kδn + θ1δnv, ℓδn +
jδn

r
w)

− (iδn/r)r∗(θ2δn)r∗K(r∗,r∗)(kδn +
iδn

r
v, ℓδn + θ2δnw)

+(iδn/r)r∗(jδn/r)
r∗K(r∗,r∗)(kδn+

iδn

r
v, ℓδn+

jδn

r
w)
}(

(1−v)(1−w)
)r∗−1

dv dw.

Now, one may easily obtain A1 = A2 = A3 = 0. Consider for example the

term
r∑

j=0

Lj,ℓ(s)(jδn/r)
m : it corresponds to the unique polynomial of degree

at most r which interpolates the function taking values (jδn/r)
m at points

ℓδn + j
r
δn with j = 0, . . . , r. Then (x− ℓδn)m (with m = 0, . . . , r∗ − 1 ≤ r − 1)

is adequate and
r∑

j=0

Lj,ℓ(s)(jδn/r)m = (s− ℓδn)m = (θ2δn)m. By the same way,

r∑

i=0

Li,k(t)(iδn/r)p = (θ1δn)p. This implies in turn that summations over (i, j)

in A1, over i in A2 and j in A3 respectively vanish.

The same trick (since r∗ ≤ r and
r∑

i=0

Li,k(t) =
r∑

j=0

Lj,ℓ(s) = 1) leads to

A4 =
r∑

i,j=0

Li,k(t)Lj,ℓ(s)(ijδ
2
n)r∗

r2r∗(r∗ − 1)!2
·
∫∫

[0,1]2

(
(1 − v)(1 − w)

)r∗−1Rδn,i,j(v, w) dv dw

with Rδn,i,j given by (3.6).
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(b) Under the general condition A2.1(i), it is sufficient to notice that in
(3.5), the terms in µ(·) have a similar structure as those in K(·, ·). By this
way, the previous proof can be exactly repeated, using the ‘virtual’ kernel
K(s, t) = µ(s)µ(t).

5.2 Proof of Proposition 3.1

(a) One may write

sup
t∈[0,1]

E
(
X(t) − X̃r(t)

)2
= max

k=0,...,n−1
sup

t∈[kδn,(k+1)δn]
Cr(t, t).

• Case r0 ≥ 1.

We apply the results of Lemma 3.1 with the choices k = ℓ, θ1 = θ2 = θ ∈ [0, 1] :

Cr(t, t) =
r∑

i,j=0

Li,k(t)Lj,k(t)
(ijδ2

n)r∗

r2r∗(r∗ − 1)!2

∫∫

[0,1]2

(
(1 − v)(1 − w)

)r∗−1

{
E X(r∗)(kδn +θδnv)X(r∗)(kδn +θδnw)−E X(r∗)(kδn +θδnv)X(r∗)(kδn +

jδn

r
w)

−E X(r∗)(kδn+
iδn

r
v)X(r∗)(kδn+θδnw)+EX(r∗)(kδn+

iδn

r
v)X(r∗)(kδn+

jδn

r
w)
}

dv dw.

(i) Consider first the case r∗ = r0 (r ≥ r0). Condition A2.1(ii) may be
equivalently written as :

E X(r0)2(s) + E X(r0)
2

(t) − 2E X(r0)(s)X(r0)(t) ≤ C2
1 |s − t|2β0 (5.1)

and we can also decompose the term
{
·
}

into :

E X(r0)(kδn+θδnv)X(r0)(kδn+θδnw)−1

2
E X(r0)

2

(kδn+θδnv)−1

2
E X(r0)

2

(kδn+θδnw)

−E X(r0)(kδn+θδnv)X(r0)(kδn+
jδn

r
w)+

1

2
E X(r0)2(kδn+θδnv)+

1

2
E X(r0)

2

(kδn+
jδn

r
w)

−E X(r0)(kδn+
iδn

r
v)X(r0)(kδn+θδnw)+

1

2
E X(r0)2(kδn+

iδn

r
v)+

1

2
E X(r0)2(kδn+θδnw)

+E X(r0)(kδn+
iδn

r
v)X(r0)(kδn+

jδn

r
w)−1

2
E X(r0)2(kδn+

iδn

r
v)−1

2
E X(r0)2(kδn+

jδn

r
w)

which leads to

Cr(t, t) ≤ δ2(r0+β0)
n ·2 C2

1

r∑

i,j=0

|Li,k(t)Lj,k(t)|
(ij)r0

r2r0(r0 − 1)!2

∫∫

[0,1]2

(
(1−v)(1−w)

)r0−1

{
θ2β0 |v − w|2β0 +

∣∣∣∣θv − jw

r

∣∣∣∣
2β0

+
∣∣∣∣
iv

r
− θw

∣∣∣∣
2β0

+

∣∣∣∣∣
iv

r
− jw

r

2β0

∣∣∣∣∣
}

dv dw.
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Finally, for t = kδn + θδn,

|Li,k(t)| =
r∏

p=0
p 6=i

∣∣∣∣∣
t − kδn − p δn

r

(i − p) δn

r

∣∣∣∣∣ =
r∏

p=0
p 6=i

∣∣∣∣∣
θr − p

i − p

∣∣∣∣∣ ≤ rr (5.2)

where the last upper bound does not depend on t and k, so we get the required
result :

sup
t∈[0,1]

Cr(t, t) ≤ A2
1(r, C1)δ

2(r0+β0)
n .

(ii) Now if r∗ = r (i.e. r ≤ r0 − 1), one may write

Cr(t, t) = δ2r
n

r∑

i,j=0

Li,k(t)Lj,k(t)
∫∫

[0,1]2

(
(1 − v)r−1(1 − w)

)r−1 (ij)r

r2r(r − 1)!2

∫ kδn+θδnw

kδn+ jδn
r

w

∫ kδn+θδnv

kδn+ iδn
r

v
K(r+1,r+1)(y, z) dy dz

and the result follows from (5.2) and continuity of K(r+1,r+1) :

sup
t∈[0,1]

Cr(t, t) ≤ A2
1

(
r, sup

(s,t)∈[0,1]2

∣∣∣K(r+1,r+1)(s, t)
∣∣∣
)
δ2(r0+1)
n .

• Case r0 = 0. Condition (5.1) together with relation (3.5) (t = s, k = ℓ)
yields to the required result (3.7), namely with r∗ = 0 and β∗ = β0.

(b) Similar to (a) by using the condition A2.1(iii) and Taylor expansion.

5.3 Proof of Proposition 3.2

Since ṡk,r = (k
r

+ 1
2r

)δn and k
r
−
[

k
r

]
= α

r
with α = 0, . . . , r − 1, one has

ṡk,r ∈
[[

k
r

]
δn, (

[
k
r

]
+ 1)δn

]
. Then X̃r(ṡk,r) is a linear combination of variables

{
X(
[

k
r

]
δn + j

r
δn), j = 0, . . . , r

}
and no points of ]sk,r, sk+1,r[ are involved in

this interpolation. Consequently, using condition A2.1(iv) with a = sk,r and
b = sk+1,r, we obtain

E
(
X(ṡk,r) − X̃r(ṡk,r)

)2 ≥ E
(
X(ṡk,r) − Xsk,r,sk+1,r

(ṡk,r)
)2

≥ C2
2

(4r)2(r0+β0)
δ2(r0+β0)
n .
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5.4 Proof of Theorem 4.1

We study P (r̂ 6= r0) for n sufficiently large to ensure that r0 ∈ {0, . . . , pn}.

Let us define N =



∀r ∈ {1, . . . , pn} : δ−2r

n

1

nr

nr−1∑

j=0

(X(ṡj,r) − X̃r(ṡj,r))
2 < hn



,

the set corresponding to the case of setting r̂ = l0 and let remark that

N c =
pn⋃

r=1



δ−2r

n

1

nr

nr−1∑

j=0

(X(ṡj,r) − X̃r(ṡj,r))
2 ≥ hn



.

We start from {r̂ = r0} ⊃ {r̂ = r0} ∩ N c where

• if r0 ≥ 1, one has {r̂ = r0} ∩ N c = A(r0) ∩ B(r0) with

A(r0)=



δ−2(r0+1)

n

1

n(r0 + 1)

n(r0+1)−1∑

j=0

(X(ṡj,r0+1) − X̃r0+1(ṡj,r0+1))
2 ≥ hn





B(r0)=
r0⋂

r=1



δ−2r

n

1

nr

nr−1∑

j=0

(X(ṡj,r) − X̃r(ṡj,r))
2 < hn





• if r0 = 0, {r̂ = 0} ∩ N c =



n−1δ−2

n

n−1∑

j=0

(X(ṡj,r) − X̃1(ṡj,r))
2 ≥ hn



 = A(0).

Next for all r0 ≥ 0,

P (r̂ 6= r0) ≤ P (r̂ 6= r0 ∪ N ) ≤ A(r0) + B(r0), (5.3)

where B(0) := 0 and A(r0) (with r0 ≥ 0), B(r0) (with r0 ≥ 1) are respectively
defined by

A(r0) := P


δ−2(r0+1)

n

1

n(r0 + 1)

n(r0+1)−1∑

j=0

(X(ṡj,r0+1) − X̃r0+1(ṡj,r0+1))
2 < hn




(5.4)

B(r0) :=
r0∑

r=1

P


δ−2r

n

1

nr

nr−1∑

j=0

(X(ṡj,r) − X̃r(ṡj,r))
2 ≥ hn


 . (5.5)

The following two lemmas (whose proofs are postponed to the end of this
section) allow us to get exponential upper bounds for A(r0) and B(r0).
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Lemma 5.1 Let us assume the hypothesis A2.1,

(i) if the condition A2.2(i) is fulfilled, we have for all n ≥ N(A3, r0, β0),

A(r0) ≤ 3 exp
(
−D1 min

(
n, δ−(2−2β0)

n

))
;

(ii) under the condition A2.2(ii), we have for all n ≥ N(A3, r0, β0)

A(r0) ≤ 3 exp
(
−D2 min

( n

ln n
, δ−(2−2β0)

n

))

where D1, D2 are positive constants.

Lemma 5.2 Let us assume hypothesis A2.1,

(i) if the condition A2.2(i) is fulfilled, we have for all n ≥ N(A1, r0, β0)

B(r0) ≤ 3r0 exp
(
−D′

1hnδ
−2β0

n min
(
n, δ−(2−2β0)

n

))

(ii) under the condition A2.2(ii), we have for all n ≥ N(A1, r0, β0)

B(r0) ≤ 3r0 exp
(
−D′

2hnδ−2β0

n min
( n

ln n
, δ−(2−2β0)

n

))

where D′
1 and D′

2 are positive constants and hnδ−2β0

n → ∞ as n → ∞.

So with (5.3), we may deduce that for n large enough :

(i) under Assumptions A2.1 and A2.2(i),

P (r̂ 6= r0) ≤ 3 exp
(
−D1 min

(
n, δ−(2−2β0)

n

))

+ 3r0 exp
(
−D′

1hnδ
−2β0

n min
(
n, δ−(2−2β0)

n

))
, (5.6)

(ii) under Assumptions A2.1 and A2.2(ii),

P (r̂ 6= r0) ≤ 3(1 + r0) exp
(
−D2 min

( n

ln n
, δ−(2−2β0)

n

))

+ 3r0 exp
(
−D′

2hnδ−2β0

n min
( n

ln n
, δ−(2−2β0)

n

))
. (5.7)

�
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5.5 Proof of Proposition 4.1

(a) Case r = 1, . . . , r0 − 1 (r0 ≥ 2).

We are in position to apply the result of Lemma 3.1 (see also relation (3.6))
in the case µ(t) ≡ µ. Using the euclidian division of k (respectively ℓ) by r :
k = p1r+q1 (resp. ℓ = p2r+q2), with pi ∈ {0, . . . , n−1} and qi ∈ {0, . . . , r−1}
for i = 1, 2, we may write ṡk,r = k δn

r
+ δn

2r
= p1δn + (q1 + 0.5) δn

r
and the

expression of interest becomes

max
0≤k≤nr−1

nr−1∑

ℓ=0

|Er(k, ℓ)| = max
p1,q1

n−1∑

p2=0

r−1∑

q2=0

|Er(p1r + q1, p2r + q2)|

First since r ≤ r0 − 1, Lemma 3.1 implies

Er(p1r + q1, p2r + q2) =
r∑

i=0

r∑

j=0

Li,p1
(ṡp1r+q1,r)Lj,p2

(ṡp2r+q2,r)
( i

r
δn)r( j

r
δn)r

(r − 1)!2

×
∫ 1

0

∫ 1

0
(1 − v)r−1(1 − w)r−1Rδn,i,j(v, w) dv dw

with

Rδn,i,j(v, w) = K(r,r)
(
p1δn + (q1 +

1

2
)
δn

r
v, p2δn + (q2 +

1

2
)
δn

r
w
)

+K(r,r)
(
p1δn + i

δn

r
v, p2δn + j

δn

r
w
)
−K(r,r)

(
p1δn + i

δn

r
v, p2δn +(q2 +

1

2
)
δn

r
w
)

− K(r,r)
(
p1δn + (q1 +

1

2
)
δn

r
v, p2δn + j

δn

r
w
)

what can be rewritten :

Rδn,i,j =
∫ p2δn+(q2+1/2) δn

r
w

p2δn+ jδn
r

w

∫ p1δn+(q1+1/2) δn
r

v

p1δn+i δn
r

v
K(r+1,r+1)(s, t) ds dt

≤ cδ2
n

where, here and in all the following , c denotes a generic positive constant
(independent of n, p1, p2) whose value may vary from line to line. Now, using
the independence of Li,p1

(ṡp1r+q1,r) and Li,p2
(ṡp2r+q2,r) from p1, p2 and n, see

(5.2), we obtain
|Er(p1r + q1, p2r + q2)| ≤ c δ2r+2

n .

Here constant c depends on q1, q2 which are bounded by r0, so we conclude
with

max
k=0,...,nr−1

δ−2r
n

n

nr−1∑

ℓ=0

|Er(k, ℓ)| ≤ C1 δ2
n.
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(b) Case r = r0 (r0 ≥ 1) or r = r0 + 1.

Now, we write

max
0≤k≤nr−1

nr−1∑

ℓ=0

|Er(k, ℓ)| = max
p1,q1

n−1∑

p2=0
|p2−p1|≥2

r−1∑

q2=0

|Er(p1r + q1, p2r + q2)|

+ max
p1,q1

p1+1∑

p2=p1−1

r−1∑

q2=0

|Er(p1r + q1, p2r + q2)|

This decomposition is compulsory as the conditions A2.2(i) or A2.2(ii) on
K(r0+1,r0+1) cannot be used on the diagonal.

Case 1 : Order of Er(p1r + q1, p2r + q2) when |p2 − p1| ≥ 2 and A2.2(i) is
fulfilled.

Lemma 3.1 implies

Er(p1r + q1, p2r + q2) =
r∑

i=0

r∑

j=0

Li,p1
(ṡp1r+q1,r)Lj,p2

(ṡp2r+q2,r)
( i

r
δn)r0( j

r
δn)r0

(r0 − 1)!2

×
∫ 1

0

∫ 1

0
(1 − v)r0−1(1 − w)r0−1Rδn,i,j(v, w) dv dw (5.8)

with

Rδn,i,j(v, w) = K(r0,r0)
(
p1δn + (q1 +

1

2
)
δn

r
v, p2δn + (q2 +

1

2
)
δn

r
w
)

+K(r0,r0)
(
p1δn+i

δn

r
v, p2δn+j

δn

r
w
)
−K(r0,r0)

(
p1δn+i

δn

r
v, p2δn+(q2+

1

2
)
δn

r
w
)

− K(r0,r0)
(
p1δn + (q1 +

1

2
)
δn

r
v, p2δn + j

δn

r
w
)
. (5.9)

what can be rewritten (since |p2 − p1| ≥ 2)

Rδn,i,j =
∫ p2δn+(q2+1/2) δn

r
w

p2δn+ jδn
r

w

(∫ p1δn+(q1+1/2) δn
r

v

p1δn+i δn
r

v
K(r0+1,r0+1)(s, t) ds

)
dt

=
∫

Sδn,i,j

K(r0+1,r0+1)(s, t) ds dt, (5.10)

Here the strip Sδn,i,j does not contain the diagonal. Moreover the quantity

|Sδn,i,j| =
(

δn

r

)2
v|q1 + 1

2
− i|w|q2 + 1

2
− j| never vanishes and is independent

of p1 and p2. So, condition A2.2(i) implies |Rδn,i,j(v, w)| ≤ cδ2
n. Now, using

the independence of Li,p1
(ṡp1r+q1,r) and Li,p2

(ṡp2r+q2,r) about p1, p2 and n, see
(5.2), we obtain

|Er(p1r + q1, p2r + q2)| ≤ c δ2r0+2
n .

Note that here the constant c depends of q1, q2 which are bounded by r0.
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Finally,

δ−2(r0+β0)
n

n
max
p1,q1

n−1∑

p2=0
|p2−p1|≥2

r−1∑

q2=0

|Er(p1r + q1, p2r + q2)| ≤ c δ2(1−β0)
n (5.11)

Case 2 : Order of Er(p1r + q1, p2r + q2) when |p2 − p1| ≥ 2 and A2.2(ii) is
fulfilled.

We start from the equations (5.8)-(5.10), for e.g. p2 ≥ p1 + 2, j ≤ q2 and
i ≤ q1. If (t, s) ∈ Sδn,i,j,

|s − t| ≥
∣∣∣∣∣p1δn + (q1 +

1

2
)
δn

r
− p2δn

∣∣∣∣∣ ≥ δn(p2 − p1 − 1)

since q1 + 1
2
≤ r. Note that this bound is the same in the cases (j ≤ q2, i > q1),

(j > q2, i ≤ q1) or (j > q2, i ≤ q1). Then

|Rδn,i,j| ≤ cδ2β0

n

1

(p2 − p1 − 1)2−2β0

which implies in turn

δ−2(r0+β0)
n

n

∑

p2≥p1+2

r−1∑

q2=0

|Er(p1r + q1, p2r + q2)| ≤
c

n

n∑

t=1

1

t2−2β0

≤ c

n

(
1 +

∫ n

1

1

u2−2β0
du
)

• If β0 = 1/2, then

δ−2(r0+β0)
n

n

∑

p2≥p1+2

r−1∑

q2=0

|Er(p1r + q1, p2r + q2)| ≤ c
ln(n)

n
.

• If β0 > 1/2,
δ−2(r0+β0)
n

n

∑

p2≥p1+2

r−1∑

q2=0

|Er(p1r + q1, p2r + q2)| ≤ cn2(β0−1),

• If β0 < 1/2,
δ−2(r0+β0)
n

n

∑

p2≥p1+2

r−1∑

q2=0

|Er(p1r + q1, p2r + q2)| ≤ c
1

n

We can do the same for
δ−2(r0+β0)
n

n

∑

p1≥p2+2

r−1∑

q2=0

|Er(p1r+q1, p2r+q2)|, minimizing
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|t − s| by p1 − p2 − 1. Then under the assumption A2.2(ii), we obtain

δ−2(r0+β0)
n

n
max
p1,q1

n−1∑

p2=0
|p2−p1|≥2

r−1∑

q2=0

|Er(p1r + q1, p2r + q2)| ≤ c max
(

ln n

n
, δ2(1−β0)

n

)
.

(5.12)

Case 3: Order of Er(p1r + q1, p2r + q2) with p2 ∈ {p1 − 1, p1, p1 + 1}.

Let us start with p2 = p1 : from (5.8) and (5.9), condition A2.1(i) yields to

|Rδn,i,j(v, w)| ≤ C1

r
δ2β0

n

(∣∣∣q1v − q2w +
v − w

2

∣∣∣
2β0

+
∣∣∣q2w +

w

2
− iv

∣∣∣
2β0

+
∣∣∣q1v +

v

2
− jw

∣∣∣
2β0

+
∣∣∣jw − iv

∣∣∣
2β0

)
=: M(q1, q2, v, w, i, j)δ2β0

n

Now, using the fact that Li,p1
(·) is bounded by rr, see equation (5.2), one may

deduce that

|Er(p1r + q1, p1r + q2)|

≤ δ2β0+2r0

n

r∑

i=0

r∑

j=0

|Li,p1
(ṡp1r+q1,r)Lj,p1

(ṡp1r+q1,r)|
(ij)r0

r2r0(r0 − 1)!2

×
∣∣∣∣
∫ 1

0

∫ 1

0
(1 − v)r0−1(1 − w)r0−1M(q1, q2, v, w, i, j) dv dw

∣∣∣∣

≤ cδ2β0+2r0

n . (5.13)

Finally, the two other terms Er(p1r + q1, (p1 + 1)r + q2) and Er(p1r + q1, (p1 −
1)r + q2) are bounded using the same methodology.

To conclude the proof, one obtains with relations (5.11), (5.13) :

max
k=0,...,nr−1

δ−2(r0+β0)
n

n

nr−1∑

ℓ=0

|Er(k, ℓ)| ≤ c max
(
δ2(1−β0)
n ,

1

n

)

under the condition A2.2(i), whereas under condition A2.2(ii), (5.12)-(5.13)
yield

max
k=0,...,nr−1

δ−2(r0+β0)
n

n

nr−1∑

ℓ=0

|Er(k, ℓ)| ≤ c max

(
δ2(1−β0)
n ,

ln n

n

)
.

5.6 Proof of Theorem 4.2

(i) Clear from Corollary 4.1 and Borel-Cantelli lemma.
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(ii) If r̃ = max(r̂, 1), one may write

P
(∣∣∣X(t) − X̃r̃(t)

∣∣∣ ≥ εn

)

= P
(∣∣∣X(t) − X̃r̃(t)

∣∣∣ ≥ εn, r̂ = r0

)
+ P

(∣∣∣X(t) − X̃r̃(t)
∣∣∣ ≥ εn, r̂ 6= r0

)

≤ P
(∣∣∣X(t) − X̃r(t)

∣∣∣ ≥ εn

)
+ P

(
r̂ 6= r0

)
(5.14)

where we have set r = max(r0, 1). Now since,

∣∣∣X(t) − X̃r(t)
∣∣∣ ≤

∣∣∣X(t) − X̃r(t) − E (X(t) − X̃r(t))
∣∣∣+

∣∣∣E (X(t) − X̃r(t))
∣∣∣,

we get :

P
(∣∣∣X(t) − X̃r(t)

∣∣∣ ≥ εn

)

≤ P
(∣∣∣∣X(t) − X̃r(t) − E (X(t) − X̃r(t))

∣∣∣∣ ≥ εn −
∣∣∣E (X(t) − X̃r(t))

∣∣∣
)
.

The choice εn = η
√

ln n δr0+β0

n and (3.8) in Proposition 3.1 imply :

εn −
∣∣∣E (X(t) − X̃r(t))

∣∣∣ ≥ η
√

lnn δr0+β0

n

(
1 − A2

δ1−β0

n

η
√

ln n

)

so that, εn −
∣∣∣E (X(t) − X̃r(t))

∣∣∣ ≥ η
√

ln n δr0+β0

n αn, with αn −−−→
n→∞

1.

Moreover, Var
(
X(t)−X̃r(t)

)
≤ E

(
X(t)−X̃r(t)

)2

≤ A2
1δ

2(r0+β0)
n , so we finally

have

P
(∣∣∣X(t) − X̃r(t) − E (X(t) − X̃r(t))

∣∣∣ ≥ εn −
∣∣∣E (X(t) − X̃r(t))

∣∣∣
)

≤ 2 exp
(
−η2α2

n ln n

2A2
1

)

as a consequence of the well-known following lemma :

Lemma 5.3 If X ∼ N (0, σ2), σ > 0, then for all ε > 0,

P
(
|X| ≥ ε

)
≤ 2 exp

(
− ε2

2σ2

)
.

Next, from (5.14) and Theorem 4.1,

∑

n

P
(∣∣∣X(t) − X̃r̃(t)

∣∣∣ ≥ η
√

lnn δr0+β0

n

)
< ∞
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for all η >
√

2 |A1|. Borel-Cantelli lemma implies that almost surely,

lim sup
n→∞

δ−(r0+β0)
n√

ln n

∣∣∣X(t) − X̃r̃(t)
∣∣∣ ≤

√
2 |A1| .

Now, the required result follows since one has (loga n)2(r0+β0)(ln N)−ε → 0 as
n → ∞ for all positive ε and a ≥ 2.

5.7 Proof of Lemma 5.1

Let us set κ = r0 + 1, we introduce the quantity

Zκ :=
δ−2(r0+β0)
n

nκ

nκ−1∑

j=0

(X(ṡj,κ) − X̃κ(ṡj,κ))
2. (5.15)

From (5.4), we can write

A(r0)= P
(
Zκ < hnδ

−2β0+2
n

)

= P
(
E(Zκ) − Zκ > E(Zκ) − hnδ

−2β0+2
n

)
,

where E(Zκ) =
δ−2(r0+β0)
n

nκ

nκ−1∑

j=0

E(X(ṡj,κ) − X̃κ(ṡj,κ))
2. Using Propositions 3.1

and 3.2, we can deduce that E(Zκ) is bounded and belongs to the interval
[A2

3(r0, C2), A
2
1(r0, C1)]. Since hn is chosen such that hnδ−2β0+2

n → 0 for all
β0 ∈ [0, 1[, one has ηn = EZκ − hnδ

−2β0+2
n > 0 for large enough n and ηn 6→ 0.

Thus we need an asymptotic bound for P (|E(Zκ) − Zκ| > ηn). We define the
vector Z = (Z(0), . . . , Z(nκ−1))⊤ with

Z(j) =
δ−(r0+β0)
n√

nκ
(X(ṡj,κ) − X̃κ(ṡj,κ)). (5.16)

One may write :

Zκ−E Zκ =
nκ−1∑

j=0

{
(Z(j)−E Z(j))2−E (Z(j)−E Z(j))2

}
+2

nκ−1∑

j=0

E Z(j)(Z(j)−E Z(j)),

so that

P (|E(Zκ) − Zκ| > ηn) ≤ S1 + S2 (5.17)
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with

S1 := P
(∣∣∣∣

nκ−1∑

j=0

{
(Z(j) − E Z(j))2 − E (Z(j) − E Z(j))2

}∣∣∣∣ ≥
ηn

2

)
(5.18)

S2 := P
(∣∣∣∣

nκ−1∑

j=0

(Z(j) − E Z(j))E Z(j)

∣∣∣∣ ≥
ηn

4

)
. (5.19)

(a) Study of the term S1

We consider an orthogaussian basis {Yi}, Yi i.i.d. N (0, 1), of the subspace of
L2 spanned by {Z(j) − E Z(j)}j=0,...,nκ−1. Let denote the size of the basis by

dn. Then we can write Z(j) − E Z(j) =
∑dn

i=1 Cov
(
Z(j), Yi

)
Yi :=

∑dn

i=1 bj,iYi .

Next, if Y = (Y1, . . . , Ydn
)⊤, we obtain

nκ−1∑

j=0

(Z(j) − E Z(j))2 =
dn∑

k,ℓ=1

ck,ℓYkYℓ = Y ⊤CY

where ck,ℓ =
nκ−1∑

j=0

Cov (Z(j), Yk)Cov (Z(j), Yℓ) and C = B⊤ B, where C =

(
ck,ℓ

)
k,ℓ=1,...,dn

and B =
(
bk,ℓ

)
k=0,...,nκ−1, ℓ=1,...,dn

. The matrix C is real and sym-

metric, so there exists an orthogonal matrix P such that diag(λ1, . . . , λdn
) =

P⊤CP , where the quantities λi are the eigenvalues of the matrix C. Then we
can transform the quadratic form

nκ−1∑

j=0

(Z(j) − E Z(j))2 =
dn∑

j=1

λj(P
⊤Y )2

j

where (P⊤Y )j denotes the j-th component of the (dn × 1) vector P⊤Y . As
E(P⊤Y )2

j = 1, we arrive at

S1 = P
(∣∣∣

dn∑

k=1

λk

(
(P⊤Y )2

k − 1
)∣∣∣∣ ≥

ηn

2

)
.

Now, using the exponential bound of Hanson and Wright (1971), one gets

S1 ≤ exp
(
−min

( D1ηn

2 maxi=1,...,dn
λi

,
D2η

2
n

4
∑

λ2
i

))
.

For n large enough, easy calculation implies

S1 ≤ exp

(
− D3ηn

maxi=1,...,dn
λi

)
,
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where D3 is a positive constant. Next, since B⊤B and BB⊤ have the same
non zero eigenvalues, we can write

max
i=1,...,dn

λi ≤ max
0≤k≤nκ−1

nκ−1∑

ℓ=0

∣∣∣E
(
Z(k) − E (Z(k))

)(
Z(ℓ) − E (Z(ℓ))

)∣∣∣

Remark that the zero-mean variables Z(k) − E Z(k) do satisfy conditions of
Proposition 4.1 (with µ = 0) as soon as X satisfies A2.1 and A2.2 (see the
Example 5). Therefore the condition A2.2(i) and (4.2) yields

max
0≤k≤nκ−1

nκ−1∑

ℓ=0

∣∣∣E
(
Z(k) − E (Z(k))

)(
Z(ℓ) − E (Z(ℓ))

)∣∣∣ ≤ c max
(

1

n
, δ2−2β0

n

)
,

so that,

S1 ≤ exp
(
− c ηn

max
(

1
n
, δ2−2β0

n

)
)
.

Therefore, since hnδ−2β0+2
n → 0, one gets for all n large enough that ηn ≥ A2

3/2
and

S1 ≤ exp
(
−c min

(
n, δ−2(1−β0)

n

))
. (5.20)

Now, assuming A2.2(ii), we get with (4.3)

max
0≤k≤nκ−1

nκ−1∑

ℓ=0

∣∣∣E
(
Z(k) − E (Z(k))

)(
Z(ℓ) − E (Z(ℓ))

)∣∣∣ ≤ c max

(
ln n

n
, δ2−2β0

n

)
.

which implies in turn,

S1 ≤ exp
(
− c ηn

max
(

ln n
n

, δ2−2β0
n

)
)

S1 ≤ exp
(
−c min

( n

ln n
, δ−2(1−β0)

n

))
(5.21)

for n large enough.

(b) Study of the term S2

Recall that S2, defined in (5.19), is given by :

S2 = P
(∣∣∣∣

nκ−1∑

j=0

(Z(j) − E Z(j))E Z(j)
∣∣∣∣ ≥

ηn

4

)
.

Since X is a Gaussian process, one may apply Lemma 5.3 to the zero-mean

Gaussian random variable
nκ−1∑

j=0

(Z(j) − E Z(j))E Z(j) (see definition of Zj’s in

(5.16)). We get

S2 ≤ 2 exp
(
− η2

n

32σ2
n

)
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where σ2
n := Var

nκ−1∑

j=0

(Z(j) − E Z(j))E Z(j). Moreover, using results (3.7)-(3.8)

of Proposition 3.1, one may successively obtain

σ2
n =

nκ−1∑

j,k=0

(
E Z(j)

)(
E Z(k)

)
Cov

(
Z(j), Z(k)

)

≤ κ2n2
(

max
j=0,...,nκ−1

∣∣∣E Z(j)
∣∣∣
)2

max
j=0,...,nκ−1

E (Z(j))2

≤ A2
1A

2
3 δ2(1−β0)

n .

Finally, for n large enough we get

S2 ≤ 2 exp
(
−c δ−2(1−β0)

n

)
. (5.22)

In conclusion, by collecting results from (5.17), (5.20)-(5.22), the claimed result
is proved. �

5.8 Proof of Lemma 5.2

Recall that the term B(r0), defined in (5.5), occurs only when r0 ≥ 1. We
introduce the quantity

Tr :=
δ−2r
n

nr

nr−1∑

j=0

(X(ṡj,r) − X̃r(ṡj,r))
2, for r = 1, . . . , r0,

so that B(r0) =
r0∑

r=1

P (Tr − ETr ≥ νn(r)) where νn(r) = hn − E Tr.

• Suppose that r = r0, in that case with (5.15), one has Tr0
= δ2β0

n Zr0
. Propo-

sitions 3.1 and 3.2 lead to

A2
3(r0)δ

2β0

n ≤ E(Tr0
) ≤ A2

1(r0)δ
2β0

n

Now using the same bounding method as in Lemma 5.1, with ηn replaced by
δ−2β0

n νn(r0), we obtain, under the condition A2.2(i) and for n large enough,
that νn(r0) ≥ 0 and

P
((

Tr0
− E(Tr0

)
)
≥ νn(r0)

)
≤ 3 exp


− cδ−2β0

n νn(r0)

max( 1
n
, δ2−2β0

n )




≤ 3 exp
(
−c hnδ−2β0

n min
(
n, δ2β0−2

n

))

where hnδ
−2β0

n → ∞. Whereas under A2.2(ii), one obtains

P
((

Tr0
− E(Tr0

)
)
≥ νn(r0)

)
≤ 3 exp

(
−c hnδ

−2β0

n min
( n

ln n
, δ2β0−2

n

))
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for n large enough.

• Suppose that r = 1, . . . , r0 − 1 (this case occurs only if r0 ≥ 2). The propo-
sitions 3.1 and 3.2 imply that

A2
3(r)δ

2(r0+β0−r)
n ≤ E(Tr) ≤ A2

1(r)δ
2
n

In this case, νn(r)δ−2
n = (hn − E T (r))δ−2

n ≥ hnδ
−2
n − A2

1 → ∞. Now, one may
repeat proof of the Lemma 5.1 with r0 + β0 replaced by r + 1, ηn by νn(r)δ−2

n

and with the help of (4.1) :

P (Tr − E(Tr) ≥ νn(r)) ≤ 3 exp
(
−c hnδ

−2
n

)

for n large enough and where hnδ
−2
n → ∞. Finally, collecting all the results,

one obtains the claimed upper bound for B(r0). We can notice that in both
cases, the convergence is faster than for A(r0). �
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hölder index of a Gaussian process, Ann. Inst. H. Poincaré, Probab. Statist.
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