
HAL Id: hal-00019163
https://hal.science/hal-00019163v1

Preprint submitted on 17 Feb 2006 (v1), last revised 3 May 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Photo-assisted Andreev reflection as a probe of quantum
noise

Thanh Nguyen Thi Kim, Adeline Crépieux, Viet Nguyen Ai, Thierry Martin

To cite this version:
Thanh Nguyen Thi Kim, Adeline Crépieux, Viet Nguyen Ai, Thierry Martin. Photo-assisted Andreev
reflection as a probe of quantum noise. 2006. �hal-00019163v1�

https://hal.science/hal-00019163v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

19
16

3,
 v

er
si

on
 1

 -
 1

7 
Fe

b 
20

06
Photo-assisted Andreev reflection as a probe of quantum noise

Nguyen Thi Kim Thanh
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Andreev reflection, which corresponds to the tunneling of two electrons from a metallic lead to a
superconductor lead as a Cooper pair (or vice versa), can be exploited to measure high frequency
noise. A detector is proposed, which consists of a normal lead–quantum dot–superconductor circuit,
which is capacitively coupled to a mesoscopic circuit where noise is to be measured. A substantial
DC current can flow in the detector circuit only if an appropriate photon is provided or absorbed by
the mesoscopic circuit, which plays the role of an environment for the dot-superconductor junction.

I. INTRODUCTION

Over the last decades, the measurement of noise has become a widely accepted diagnosis in the study of electronic
quantum transport1,2,3. Indeed, noise provides information on the charge of the carriers in unconventional conductor,
when considering the Fano factor – the ratio of the noise to the average current – in the regime where the carriers
tunnel independently. Away from this Poissonian regime, noise also contains crucial information on the statistics of
the charge carriers4. Experimentally, low frequency “white” noise in the kHz–MHz range is more accessible than high
frequency noise: it can in principle be measured using state of the art time acquisition techniques. For higher frequency
measurements, it is becoming necessary to build a noise detector on chip for a specific range of high frequencies. In this
work we consider a detector circuit which is capacitively coupled to the mesoscopic device. This circuit is composed
of a normal lead, a quantum dot and a superconductor. Transport in this circuit occurs when the electrons tunneling
between the dot and the superconductor are able to gain or to loose energy via photo-assisted Andreev reflections.
The measurement of a DC current in the detector can thus provide information on the absorption and on the emission
component of the current noise correlator.

More recently, theoretical efforts have been made to describe the high frequency noise measurement process5.
This is motivated by the fact that in specific transport setups, high frequency noise detection is required in order
to fully characterize transport. Examples are Bell inequality tests6,7 and the detection of the anomalous charges
in one dimensional correlated systems8,9. The former require information about high frequency noise in order to
establish a correspondence between electron number correlators and current noise correlators. The latter requires
a high frequency noise measurement in order to obtain a non-zero signal when the nanotube is connected to Fermi
liquid leads.

In Ref. 10, a detection circuit, which was capacitively coupled to the mesoscopic circuit to be measured, was
proposed as a high frequency noise detector. This idea was implemented experimentally recently11,12 using a
superconductor-insulator-superconductor (SIS) junction for the detector circuit, and a Josephson junction for the
sample to be measured. It was shown explicitly that the spectral density of noise, corresponding to absorption and
emission between the two circuits, could be extracted from a DC measurement of the quasiparticle tunneling current
in the on-chip measuring circuit. Very recently, the noise of a carbon nanotube/quantum dot was also measured13

using capacitive coupling to an SIS detector, with the detection of Super-Poissonian noise resulting from inelastic
cotunneling processes.

The purpose of the present work is to analyze a similar situation, except that the SIS junction is replaced by a
circuit which transfers two electrons via Andreev reflection. Andreev reflection14 typically assumes a good contact
between a normal metal and a superconductor, but in general it can be applied to tunneling contacts – it can even
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FIG. 1: Schematic description of the set up: the mesoscopic device to be measured is coupled capacitively to the detector
circuit. The latter consists of a normal metal lead–quantum dot–superconductor circuit with a DC bias.

involve tunneling transitions via virtual states. In this work, Andreev reflection process occurs through a quantum
dot, allowing to filter electron energies. Consequently, two successive inelastic electron jumps are required for a current
to pass through the measurement circuit. Indeed, a DC measurement of this Andreev current can only occur if a
“photon” with sufficient energy is emitted from or absorbed by the noise source – the circuit whose noise one wishes
to characterize. The amplitude of the DC current as a function of bias voltage in the measurement circuit provides a
readout of the noise power to be measured.

The detector circuit is depicted in Fig. 1. It consists of a normal metal lead, which is in good contact with a
quantum dot operating in the Coulomb blockade regime. The charging energy of the dot is assumed to be large
enough that double occupancy is prohibited. At the same time, the quantum dot is in tunneling contact with a
superconductor. Below, we refer to this system as the normal metal–dot–superconductor (NDS) detector circuit.
Two capacitors are placed, respectively, between each side of the mesoscopic device and each side of the quantum
dot–superconductor tunnel junction. This means that a current fluctuation in the mesoscopic device generates, via
the capacitors, a voltage fluctuation across the dot–superconductor tunnel junction. In turn, the voltage fluctuations
translate into fluctuations of the phase around the junction. The presence of the neighboring mesoscopic circuit acts
as a specific electromagnetic environment for this tunnel junction, which is described in the context of dynamical
Coulomb blockade15 for this reason.

Fig. 2 discusses several scenarios for Andreev reflection. In the conventional picture of Andreev reflection14,
two electrons tunnel on the normal side with exactly opposite energies with respect to the superconductor chemical
potential (Fig. 2a). This implies that the chemical potential of the normal lead lies above that of the superconductor.
Next, one considers the case where a quantum dot is inserted in the path between the normal metal lead and the
superconductor (Fig. 2b). The quantum dot level is located above the superconductor chemical potential. In the case
where double occupancy is prohibited by the Coulomb blockade, Andreev transport occurs via sequential tunneling of
the two electrons. Yet, because of energy conservation, the same energy requirements as in Fig. 2a have to be satisfied
for the final states (electrons with opposite energies). In T-matrix terminology, for this transition to occur, virtual
states corresponding to the energy of the dot are required, which suppress the Andreev tunneling current because of
large energy denominators in the transition rate. Fig. 2 c, d, e, describe the cases where an environment is coupled
to the same NDS circuit. Provided that this environment can yield some of its energy to the NDS detector, electronic
transitions via the dot can become much more likely. In particular, these transitions can occur even of the chemical
potential of the normal lead exceeds that of the superconductor. As we shall see later on, the bias voltage can act as
a valve for photo-assisted electron transitions. It is precisely these latter situations which will be used to measure the
noise of the measuring circuit (the “environment”).

The paper is organized in the following way: we present the model in Sec. II, the calculation of the photo-assisted
current is given in Sec. III. Next, in Sec. IV, we apply our result in the case of a quantum point contact and discuss
the effects of the detector bias voltage, device bias voltage and dot level position.

II. MODEL HAMILTONIAN

The Hamiltonian which describes the decoupled normal metal lead–dot–superconductor–environment (mesoscopic
circuit) system reads

H0 = H0L
+ H0D

+ H0S
+ Henv , (1)
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FIG. 2: Andreev reflection: emission (a,b,c,d) and absorption (e) of a Cooper pair in a normal metal. a) Case of a normal
metal–superconducting junction. b) Case of an NDS junction operating in the elastic regime. c), d) Case of photo-assisted
Andreev reflection, where a “photon” is provided to or provided by a neighboring environment. e) Case of absorption of a
Cooper pair with photo-assisted Andreev reflection, where a “photon” is provided by a neighboring environment. For case c),
d), e), which require passing through the dot, the tunneling of electrons is sequential.

where

H0L
=

∑

k,σ

ǫkc+
k,σck,σ , (2)

describes the energy states in the lead. The Hamiltonian for the quantum dot reads

H0D
=

∑

σ

ǫDc+
D,σcD,σ + Un↑n↓ , (3)

where U will be assumed to be infinite, assuming a small capacitance of the dot. We consider that the dot possesses
only a single energy level for simplicity. The diagonalized superconductor Hamiltonian takes the form

H0S
− µSNS =

∑

q,σ

Eqγ
+
q,σγq,σ , (4)

where γq,σ, γ+
q,σ are quasiparticle operators, which relate to the Fermi operators cq,σ, c+

q,σ by the Bogoliubov transfor-
mation

c−q,↓ = uqγ−q,↓ − vqγ
+
q,↑ ,

c+
q,↑ = uqγ

+
q,↑ + vqγ−q,↓ , (5)

and Eq =
√

∆2 + ζ2
q is the quasiparticle energy, ζq = ǫq − µS is the normal state single-electron energy counted

from the Fermi level µS , ∆ is the superconducting gap, which will be assumed to be the largest energy scale in these
calculations.
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Here we do not specify the Hamiltonian of the environment because the environment represents an open system:
the mesoscopic circuit which represents the environment will only manifest itself via the phase fluctuations 〈φ(0)φ(t)〉
which are induced in the NDS circuit, at the dot–superconductor junction because of the location of the capacitor
plates. In what follows, we shall assume that the unsymmetrized noise spectral density

S+(ω) =

∫

dt

2π
eiωt〈〈I(0)I(t)〉〉 , (6)

corresponding to emission (for positive frequency), or alternatively S−(ω) ≡ S+(−ω), the spectral density of noise
corresponding to absorption, are both specified by the transport properties of the mesoscopic circuit5,16,17. Here
〈〈. . .〉〉 stands for an irreducible noise correlator, where the product of average currents has been subtracted out.

The tunneling Hamiltonian includes electron transfering between the superconductor and the dot, as well as the
tunneling between the dot and the normal metal lead

HT = (HT1 + HT2) + h.c , (7)

HT1 =
∑

q,σ

TD,qc
+
D,σcq,σe−iφ ,

HT2 =
∑

k,σ

Tk,Dc+
k,σcD,σ ,

the index k, D, q refer to the normal metal lead (L), quantum dot (QD) superconductor (S). We consider the simple
case TD,q = T1, Tk,D = T2, assuming a constant normal metal density of states on both sides of the dot. Note that
HT1 contains a fluctuating phase factor, which represents the coupling to the mesoscopic circuit. Indeed, because of
the capacitive coupling between the sides of the dot-superconductor junction and the mesoscopic circuit, a current
fluctuation translates into a voltage fluctuation across the dot–superconductor junction. They are related via a trans-
impedance10. Next, the voltage fluctuations translate into phase fluctuations across the junction, as the phase is the
canonical conjugate of the charge at the junctions15: the phase is thus considered as a quantum mechanical operator
throughout this paper.

The present system bears similarities with the study of inelastic Andreev reflection in the case where the supercon-
ductor contains phase fluctuations18,19. Such phase fluctuations destroy the symmetry between electrons and holes,
and affect the current voltage characteristics of the NS junction.

III. TUNNELING CURRENT

The tunneling current associated with two electrons is given by the Fermi Golden Rule I = 2eΓi→f , with the
tunneling rate

Γi→f = 2π
∑

f

|〈f |T |i〉|2δ(ǫi − ǫf ) , (8)

where ǫi and ǫf are the tunneling energies of the inital and final states, including the environement, T is the transition
operator, which is expressed as

T = HT + HT

∞
∑

n=1

(

1

iη − H0 + ǫi
HT

)n

, (9)

with η is a positive infinitesimal.
Here one needs to carry out calculations of the matrix element in Eq. (8) to fourth order in the tunneling Hamilto-

nian. Indeed, there are two possibilities: a Cooper pair in the superconductor is transmitted to the normal lead or vice
versa. The first process involves the electron from a Cooper pair tunneling onto the dot, next this electron escapes
in the lead. The other electron from the same Cooper pair undergoes the same two tunneling processes. Similar
transitions, in the opposite direction, are necessary for two electrons from the normal lead to end up as a Cooper pair
in the superconductor. Note that this description of events assumes implicity that S remains in the ground state in
the initial and final states. On the other hand, if L is initially in the ground state (filled Fermi sea), it is left in an
excited state with two electrons having energies above Fermi energy EF in the final state. The extra energy has been
provided by the environment. Typically,

|i〉 = |GL〉 ⊗ |GS〉 ⊗ |0QD〉 ⊗ |R〉 , (10)
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where |G...〉 denotes a ground state, which corresponds to a filled Fermi sea for the normal electrode. |0QD〉 is the
vacuum of the quantum dot, and |R〉 denotes the initial state of the environment. On the other hand our guess for
the final state should read

|f〉 = 2−1/2[c+
k,σc+

k′,−σ − c+
k′,σc+

k,−σ]|GL〉 ⊗ |GS〉 ⊗ |0QD〉 ⊗ |R′〉 , (11)

when a Cooper pair is emitted from S, or

|f〉 = 2−1/2[ck,σck′,−σ − ck′,σck,−σ]|GL〉 ⊗ |GS〉 ⊗ |0QD〉 ⊗ |R′〉 , (12)

when S absorbs a Cooper pair. Here, |R′〉 the final state of the environment. The “guess” of Eqs. (11) and (12)
is an informed one: indeed, the s-wave symmetry of the superconductor imposes that only singlet pairs of electrons
can be emitted or absorpted. This phenomenon has been described in the early work on entanglement in mesoscopic
physics20,21, and the resulting final state can in principle be detected through a violation of Bell inequalities6.

Introducing the closure relation for the eigenstates of the non-connected system {|υi〉}, and using the fact that
〈υ|(ǫi − H0 ± iη)−1|υ〉 = ∓i

∫∞

0
dtei(ǫi−ǫυ±iη)t, one can exponentiate all the energy denominators. Then, by trans-

forming the time dependent phases into a time dependence of the tunneling Hamiltonian, we can integrate out all
final and virtual states. This allows to rewrite the tunneling current in terms of tunneling operators in the interaction
representation, to lowest order O(T 4

1 T 4
2 ).

For the case of two electrons tunnel from S to L, the current reads

I← = 2e

∫ ∞

−∞

dt

∫ ∞

0

dt1

∫ ∞

0

dt2

∫ ∞

0

dt3

∫ ∞

0

dt′1

∫ ∞

0

dt′2

∫ ∞

0

dt′3e
−η(t1+t2+t3+t′

1
+t′

2
+t′

3
)

×e−i(µD−µS)(2t−t′
1
−t′

2
−2t′

3
+t1+t2+2t3)e−i(µL−µD)(2t−t′

2
−t′

3
+t2+t3)

×〈H+
T1(t − t′1 − t′2 − t′3 + t1 + t2 + t3)H

+
T2(t − t′2 − t′3 + t1 + t2 + t3)H

+
T1(t − t′3 + t1 + t2 + t3)H

+
T2(t + t1 + t2 + t3)

×HT2(t1 + t2 + t3)HT1(t1 + t2)HT2(t1)HT1(0)〉 . (13)

For the case of two electrons tunnel from L to S, the current is

I→ = 2e

∫ ∞

−∞

dt

∫ ∞

0

dt1

∫ ∞

0

dt2

∫ ∞

0

dt3

∫ ∞

0

dt′1

∫ ∞

0

dt′2

∫ ∞

0

dt′3e
−η(t1+t2+t3+t′

1
+t′

2
+t′

3
)

×e−i(µD−µL)(2t−t′
1
−t′

2
−2t′

3
+t1+t2+2t3)e−i(µS−µD)(2t−t′

2
−t′

3
+t2+t3)

×〈HT2(t − t′1 − t′2 − t′3 + t1 + t2 + t3)HT1(t − t′2 − t′3 + t1 + t2 + t3)HT2(t − t′3 + t1 + t2 + t3)HT1(t + t1 + t2 + t3)

×H+
T1(t1 + t2 + t3)H

+
T2(t1 + t2)H

+
T1(t1)H

+
T2(0)〉 . (14)

First, we caculate I←. The same method is applied to calculate I→. The problem is thus reduced to the calculation
of correlators of the tunneling Hamiltonian in the ground state. Using Wick’s theorem, these can be expressed in terms
of single particle Green’s function because the Hamiltonian of the isolated components is quadratic (except, maybe
for the environement, which is dealt separately). These cumbersome calculations are presented in the Appendix A:
the correlators contains averages of fermion operators, as well as averages of exponentiated phases eiφ(t). The latter
can be computed easily if all times in the exponential are ordered, for instance as it was achieved in Ref. 22 for noise
correlations in Luttinger liquids. For definition purposes, it is convenient to introduce the correlation of the phase
operators

J(t) = 〈[φ(t) − φ(0)]φ(0)〉 , (15)

where the phase operator is related to the voltage by the relation

φ(t) = e

∫ t

−∞

dt′V (t′) . (16)

Given a specific circuit (capacitors, resistances,...) the trans-impedance relates the voltage fluctuations across the
superconductor-quantum dot junction to the current fluctuation of the mesoscopic circuit to be measured: V (ω) =
Z(ω)I(ω). The phase correlator is therefore expressed in terms of the trans-impedance of the circuit and the spectral
density of noise10

J(t) =
2π

RK

∫ ∞

−∞

dω
|Z(ω)|2

ω2
SI(ω)(e−iωt − 1) , (17)
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where RK = 2π/e2 is the quantum of resistance and SI(ω) = S+(−ω).
We can now write the tunneling current as a function of the normal (and anomalous) Green’s functions of the

normal metal lead, GLσ(t), the quantum dot, GDσ(t), and the superconductor, Fσ(t) (see Appendix A)

I← = 2eT 4
1 T 4

2

∫ ∞

−∞

dt

∫ ∞

0

dt1

∫ ∞

0

dt2

∫ ∞

0

dt3

∫ ∞

0

dt′1

∫ ∞

0

dt′2

∫ ∞

0

dt′3e
−η(t1+t2+t3+t′

1
+t′

2
+t′

3
)

×e−i(µD−µS)(2t−t′
1
−t′

2
−2t′

3
+t1+t2+2t3)e−i(µL−µD)(2t−t′

2
−t′

3
+t2+t3)

×
∑

σ

[

− F ∗σ (t′1 + t′2)F−σ(t1 + t2)GLσ(t − t′2 − t′3)GL−σ(t + t2 + t3)GDσ(−t′1)GD−σ(−t′3)GDσ(t3)GD−σ(t1)

+F ∗σ (t′1 + t′2)Fσ(t1 + t2)GLσ(t − t′2 − t′3 + t2 + t3)GL−σ(t)GDσ(−t′1)GD−σ(−t′3)GD−σ(t3)GDσ(t1)
]

×eJ(t−t′
1
−t′

2
−t′

3
+t1+t2+t3)+J(t−t′

3
+t1+t2+t3)+J(t−t′

1
−t′

2
−t′

3
+t3)+J(t−t′

3
+t3)−J(−t′

1
−t′

2
)−J(t1+t2) . (18)

Using the assumption µS = 0, we further assume that J(t) ≪ 1, which means a low trans-impedance approximation
together with the fact that J(t) is well behaved at large times. This allows to expand the exponential of phase
correlators.

The result for the current contains both an elastic and an inelastic contribution as in Ref. 10. Since ǫk, ǫk′ ⊂
[eV, +∞), with eV > 0, only an inelastic current is allowed

I← ≃ 16π2e

RK
N 4

NT 4
1 T 4

2

∫ ∞

eV

dǫ

∫ ∞

eV

dǫ′
∫ ∞

∆

dE

∫ ∞

∆

dE′
∆2

√
E2 − ∆2

√

E′2 − ∆2

|Z(−(ǫ + ǫ′))|2
(ǫ + ǫ′)2

SI(−(ǫ + ǫ′))

Dinel
, (19)

where Dinel is the denominator product attributed to the inelastic current, which is defined in Eq. (35) of Appendix
B.

In the same way, we calculate I→, with the condition ǫk, ǫk′ ⊂ (−∞, eV ], eV > 0. This time, the current has both
an elastic and an inelastic contribution

I→ = Iel
→ + Iinel

→ , (20)

where the elastic contribution is

Iel
→ ≃ 8πeN 4

NT 4
1 T 4

2

∫ eV

−eV

dǫ

∫ ∞

∆

dE

∫ ∞

∆

dE′
∆2

√
E2 − ∆2

√

E′2 − ∆2

{[

1 − 4π

RK

∫ +∞

−∞

dω
|Z(ω)|2
(ω)2

SI(ω)
] 1

D0

− 2π

RK

∫ +∞

−∞

dω
|Z(ω)|2
(ω)2

SI(ω)

Del

}

, (21)

with D0 is the original denominator which is not affected by the environment, which is defined by Eq. (33) and Del

is the denominator product affected by the environment (see Eq. (34) of Appendix B). The inelastic contribution to
I→ is

Iinel
→ ≃ 16π2e

RK
N 4

NT 4
1 T 4

2

∫ eV

−∞

dǫ

∫ eV

−∞

dǫ′
∫ ∞

∆

dE

∫ ∞

∆

dE′
∆2

√
E2 − ∆2

√

E′2 − ∆2

|Z(ǫ + ǫ′)|2
(ǫ + ǫ′)2

SI(ǫ + ǫ′)

Dinel
. (22)

The Iel
→ term describes the elastic current while environment affects to the detector system or not. If ω ≪ E, E′, both

of them reduce to the case there is no effect of the environment in the elastic part. Later on, with our study, we do not
consider this term in our calculations. All contributions to the current contain denominators where the infinitesimal η
(adiabatic switching parameter) is included in order to avoid divergencies. In fact, it has been shown in Ref. 20,23,24
that a proper resummation of the perturbation series, including all round trips from the dot to the normal leads, has
the simple effect of replacing η by π|T 2

2 |NN . In what follows, for simplicity we keep η in our expressions, bearing in
mind that it represents the line width associated with the normal lead. For numerical purposes, it will be sufficient to
assume that η is kept very small compared to the superconducting gap, as well as all the relevant level spacings (dot
level position, bias voltages, etc...). The total current for tunneling of electrons through the NDS junction is therefore

I = I→ − I← .

The above expressions constitute the central result of this work: one understands now how the current fluctuations
in the neighboring mesoscopic circuit give rise to inelastic and elastic contributions in the current.
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IV. QUANTUM POINT CONTACT AS A SOURCE OF NOISE

In this section, we illustrate the present results with a simple example. We consider for this purpose a quantum
point contact, which is a device whose noise spectral density is well characterized

S+(ω) =

{

2e2

π T (1 − T )(eVd − h̄ω)θ(eVd − h̄ω) , if ω ≥ 0,
2e2

π [−2T 2h̄ω − T (1 − T )(eVd + h̄ω)θ(−eVd − h̄ω) + T (1 − T )(eVd − h̄ω)] , if ω < 0 ,
(23)

where θ(x) is the Heaviside function and T is the transmission probability.
We can calculate directly the PAT current using this spectral density of noise. However, experimentally12 it is

difficult to distinguish unambiguously between symmetrized and non-symmetrized noise, partly because what is often
measured is the excess noise, i.e. the difference between current fluctuations at a given bias and zero bias. We thus
consider the measurement of excess noise from the mesoscopic device and with the detection scheme described here:
we can show the interplay of absoption and emission processes between the two circuits. The spectral density of excess
noise bears most of its weight near zero frequencies, but the noise decreases linearly to zero over a range [0,±eVd] for
positive and negative frequencies

S+
excess(ω) = (2e2/π)T (1 − T )(eVd − |h̄ω|)θ(eVd − |h̄ω|) , (24)

In this work, we thus measure the photon assisted tunneling (PAT) current through the detector due to the high
frequency current fluctuations of the device, as a function of detector bias voltage

IPAT (eV ) = I(eVd 6= 0, eV ) − I(eVd = 0, eV ) . (25)

If we consider eVd < ∆/2, ǫD, eV ≪ ∆ then, like in Ref. 25, we can approximate the quasiparticle energies in the
denominators as follows [E′ + ǫx + iη]−1 ≃ E′−1, [E + ǫx − iη]−1 ≃ E−1, where ǫx = ǫD, ±ǫ′, ±ǫ, or ǫD − (ǫ + ǫ′).

Considering the circuit in Fig. 1, at ω = 0, device and detector are not coupled. The transimpedance is predicted
to have a constant behavior at large frequency. We therefore choose the following form for transimpedence

|Z(ω)|2 =
(Rω)2

ω2
0 + ω2

, (26)

where R is the typical high frequency impedance and ω0 is estimated from the experimental data of Ref. 12, choosing
a finite ω0 means that at low frequencies ω < ω0, the mesoscopic circuit has no influence on the detector circuit
because low frequencies do not propagate through a capacitor.

The PAT current is thus computed in units of (2)7πe3T (1 − T )N 4
NT 4

1 T 4
2 R2/∆2RK ,

IPAT ≃
∫ 0

−eVd

dǫ

∫ 0

−eVd

dǫ′
eVd + ǫ + ǫ′

ω2
0 + (ǫ + ǫ′)2

θ(−ǫ − ǫ′)θ(eVd + ǫ + ǫ′)
1

ǫ − ǫD − iη

[ 1

ǫ − ǫD + iη
+

1

ǫ′ − ǫD + iη

]

+

∫ eV

0

dǫ

∫ eV

0

dǫ′
eVd − ǫ − ǫ′

ω2
0 + (ǫ + ǫ′)2

θ(ǫ + ǫ′)θ(eVd − ǫ − ǫ′)
1

ǫ − ǫD − iη

[ 1

ǫ − ǫD + iη
+

1

ǫ′ − ǫD + iη

]

−
∫ eVd−eV

eV

dǫ

∫ eVd−eV

eV

dǫ′
eVd − ǫ − ǫ′

ω2
0 + (ǫ + ǫ′)2

θ(eVd − ǫ − ǫ′)
1

ǫ − ǫD − iη

[ 1

ǫ − ǫD + iη
+

1

ǫ′ − ǫD + iη

]

. (27)

The first two terms describe the tunneling of a Cooper pair from the normal lead to the superconductor via the
quantum dot. The electrons can absorb energy (first term, corresponding to the Iabsorb

→ contribution in photo-assisted
current) or emit energy (second term, corresponding to the Iemit

→ contribution). The last term describes the inverse
tunneling process: a Cooper pair absorbing energy from the neighboring device, its constituent electrons then tunneling
from the superconductor to the normal lead (corresponding to the I← contribution). Our calculation applies to the
zero temperature case. The energy scale is fixed by the superconductor gap (∆ = 1), the appropriate parameters are
chosen fixed: ω0 = 0.01, η = 0.001.

We easily see that the Iabsorb
→ contribution does not depend on the detector bias voltage eV , the Iemit

→ contribution
depends on eV if eV < eVd, while the I← contribution is nonzero if eVd > 2eV . At eV ≪ ǫD, only the I← contributes
to the current (that means we do not take a constant Iabsorb

→ ). Increasing eV , but keeping eV still smaller than ǫD,
there is a competition between the two current Iemit

→ and I←. Then, when eV > ǫD, only the Iemit
→ contributes to the

current. These effects are shown in the plots.
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FIG. 3: PAT current (panel above), I←, and I→ (panel lower) depending on bias voltage of detector with some values of dot
energy level: 0.1 (dashed line), 0.15 (continuous line), and eVd = 0.3.

Fig. 3 displays the PAT current as a function of bias voltage for different values of the dot position (panel above).
The voltage imposed on the mesoscopic circuit is larger than the dot level position, which implies that photo-assisted
transitions of electrons are possible. Understandingly, the current rises from negative values at eV = 0, but next it
reaches a step, which height depends crucially on the dot level position: the step occurs when eV = ǫD. When this
step is reached, inelastic transitions from the normal lead to the superconductor are favored: the electrons no longer
need to go through virtual states far in energy, in order to reach the superconductor, as they use the resonant level
ǫD. Nevertheless, pairs of such electrons need to loose an energy of the order 2ǫD in order to form a Cooper pair. For
illustrative purposes, we have plotted the absolute magnitude of I→ and I← on the lower panel. When considering
electrons emitted from the superconductor to the normal lead, when ǫD < eVd/2, we also notice a step in this current.
This time electrons from the superconductor need to gain energy from the environment in order to reach the dot and
lead. However, such a transition can not occur if the final electron states are already occupied. This explains why the
current becomes noticeable when eV < ǫD.

Fig. 4 provides more details of the current curves and displays the case ǫD < eVd/2 (left panel), as well as
the case ǫD > eVd/2 (right panel). Notice from Fig. 4 that the PAT current contribution for electrons tunneling
from the normal lead to the superconductor by absorbing energy from the device circuit (process of Fig. 2d) is
independent of eV ; it is a (small) constant and it can be neglected in front of the other (emission) contribution
(process of Fig. 2c) when eV > ǫD. So, the shape of I→ is determined by the PAT current contribution of electron
tunneling from the normal lead to the superconductor by emitting energy to the mesoscopic device. In the left panel,
the steps of both I← and Iemit

→ happen at eV = ǫD, but in the right panel, I← does not display any significant
step, this current part approaches zero before eV = ǫD, while the step of I→ still happens at eV = ǫD. The
current-voltage characteristic demonstrates well the photo-assisted electron tunneling processes, from these curves
we “detect” quantitatively the current fluctuations in the device system, specially we recognize the absorption and
emission processes of the mesoscopic device. Note also that the scales for the currents in the two panels are quite
different: the lower the dot energy level, the more electron transitions are favored because less energy needs to be
supplied or extracted by the mesoscopic device.

Fig. 5 depicts the PAT current as a function of detector bias voltage for a fixed dot energy level position, but for
different values of the device bias eVd. We find that when the bias of the mesoscopic device increases, the current
fluctuations increase, energy emitted or absorbed also increases, which in turn increases the PAT current (both the
step at eV = ǫD and the amplitude of current at eV close to 0, increase with eVd). From eVd = ǫD, if we decrease eVd,
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FIG. 4: Contribution of I→ for which energy is absorbed from the environment (dotted line), contribution of I→ for which
energy is emitted to the environment (dashed line), I← (continuous line), as a function of bias voltage. The PAT current is
plotted in the insert. Here, we choose the device bias eVd = 0.3 and ǫD = 0.05 (left panel), ǫD = 0.2 (right panel).
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FIG. 5: PAT current plotted as a function of detector bias voltage for some values of the device bias voltage eVd from 0.1 to
0.2 (see legend), with ǫD = 0.1.

the PAT current is reduced, approaching 0 and the step disappears hereafter. This is realized at the point when the
spectral density of noise of the mesoscopic device (point contact) contains a singularity in its derivative, ǫD ≥ eVd,
there is not more available noise: there is no energy emitted to or absorpted by the NDS junction.

In Fig. 6 we plot the dependence of the PAT current on the dot energy level for several values of the bias voltage
of the detector circuit, which is chosen smaller than the (fixed) device bias voltage eVd = 0.2, specifying eV > eVd/2.
By choosing this range of eV , only I→ contributes to the current, according to Eq. (27). In this case, the shape of
the current as a function of eV is determined by the Iemit

→ contribution. The PAT current has a natural tendency to
decrease when the dot level is raised, however, it displays a step at ǫD = eV , provided that eV < eVd. At the step
location, the PAT current drops fast, then it decreases more slowly and saturates. The current for large ǫD can be
thought as a negligible elastic current coming from virtual processes. For eV > eVd/2, if we increase eV , the step
height decreases and eventually vanishes when eV = eVd. Hereafter, if one continues to increase eV , the PAT current
is still the same as it with eV = eVd because the energy emission to the mesoscopic device reaches saturation.



10

0.12 0.14 0.16 0.18 0.2 0.22
ε

D

0

100

200

300

400

500

600

I PA
T

eV=0.14
eV=0.16
eV=0.18
eV=0.2

FIG. 6: PAT current depends on dot level ǫD with some values of detector bias voltage eV : 0.14, 0.16, 0.18, 0.2 (see legend)
at eVd = 0.2.

From this result, we expect that by controlling the detector circuit (varying eV and ǫD), we can make a mapping
of the spectral density of noise. Here the frequency ω = eVd corresponds to the point where the excess noise of the
point contact contains a singularity in its derivative. This constitutes an encouraging scenario for detecting specific
features in the noise spectrum.

One can also study (not shown) the dependence of the PAT current on the device bias voltage for several values
of the detector bias voltage (chosen smaller than ǫD in Fig. 5). When eVd ≪ ǫD, one gets a current which is
independent of eV . This current is identified as a residual elastic current. When eVd

>∼ ǫD the PAT current displays
a broad maximum, and beyond this the dependence of the PAT current with respect to the detector bias voltage is
reversed: the PAT current changes sign. The maximum corresponds to the intensity of noise where the right and the
left currents have the same derivative.

V. CONCLUSION

In conclusion, we have considered inelastic Andreev transport in an normal lead/dot/superconductor junction as a
probe of high frequency noise. The inelastic contribution to the current flowing in the detector circuit can be thought
as a dynamical Coulomb blockade effect where the phase of the junction is related to voltage fluctuations across the
dot-superconductor junction. Such voltage fluctuations originate from the current fluctuations in a nearby mesoscopic
device. The two types of fluctuations are related by a trans-impedance. This general philosophy was initially proposed
in Ref. 10, using a single electron transition. However, here, because of the nature of Andreev transport, two electrons
transitions (elastic or inelastic) are required for a current to flow in the detector, which is a novelty of this work.

The tunneling rate is computed in the T-matrix formalism keeping higher order tunneling processes in order to
include the Andreev transitions. As the dot level position can be adjusted to filter specific energies, the detector has
been shown to isolate noise contributions from both absorption and emission processes. By varying eV or ǫD or both,
we obtain the signature of noise via the measurement of a DC current in the detector circuit. In particular, we have
shown that it is possible to identify the location of the noise derivative singularity with this scheme, by changing the
dot level position.

The present proposal has been tested using a quantum point contact as a noise source, because the spectral density
of excess noise is well characterized and because it has a simple form. It would be useful to test the present model
to situations where the noise spectrum exhibits cusps or singularities. Cusps are know to occur in the high frequency
(close to the gap) noise of normal superconducting junctions. Singularities in the noise are know to occur in chiral
Luttinger liquid, tested in the context of the fractional quantum Hall effect. Such singularities or cusp should be easy
to recognized in the measurement of the photo-assisted current.
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VI. APPENDIX A

In this Appendix, we compute the tunneling Hamiltonian operators in the (initial) ground state, which is used in
calculations of I←.

〈H+
T1(t − t′1 − t′2 − t′3 + t1 + t2 + t3)H

+
T2(t − t′2 − t′3 + t1 + t2 + t3)H

+
T1(t − t′3 + t1 + t2 + t3)H

+
T2(t + t1 + t2 + t3)

×HT2(t1 + t2 + t3)HT1(t1 + t2)HT2(t1)HT1(0)〉
= T 4

1 T 4
2

∑

k1..k4,q1..q4,σ1..σ8

〈c+
q1σ1

(t − t′1 − t′2 − t′3 + t1 + t2 + t3)c
+
q2σ3

(t − t′3 + t1 + t2 + t3)cq3σ6
(t1 + t2)cq4σ8

(0)〉

×〈ck1σ2
(t − t′2 − t′3 + t1 + t2 + t3)ck2σ4

(t + t1 + t2 + t3)c
+
k3σ5

(t1 + t2 + t3)c
+
k4σ7

(t1)〉
×〈cDσ1

(t − t′1 − t′2 − t′3 + t1 + t2 + t3)c
+
Dσ2

(t − t′2 − t′3 + t1 + t2 + t3)cDσ3
(t − t′3 + t1 + t2 + t3)c

+
Dσ4

(t + t1 + t2 + t3)

×cDσ5
(t1 + t2 + t3)c

+
Dσ6

(t1 + t2)cDσ7
(t1)c

+
Dσ8

(0)〉
×〈eiφ(t−t′

1
−t′

2
−t′

3
+t1+t2+t3)eiφ(t−t′

3
+t1+t2+t3)e−iφ(t1+t2)e−iφ(0)〉 . (28)

Simplifications occur because the quantum dot has a singly occupied level with energy ǫD. As in Ref. 20, the first
electron is transfered to the lead before the second hops on the quantum dot. Therefore,

〈cDσ1
(t − t′1 − t′2 − t′3 + t1 + t2 + t3)c

+
Dσ2

(t − t′2 − t′3 + t1 + t2 + t3)cDσ3
(t − t′3 + t1 + t2 + t3)c

+
Dσ4

(t + t1 + t2 + t3)

×cDσ5
(t1 + t2 + t3)c

+
Dσ6

(t1 + t2)cDσ7
(t1)c

+
Dσ8

(0)〉
= 〈cDσ1

(t − t′1 − t′2 − t′3 + t1 + t2 + t3)c
+
Dσ2

(t − t′2 − t′3 + t1 + t2 + t3)〉〈cDσ3
(t − t′3 + t1 + t2 + t3))c

+
Dσ4

(t + t1 + t2 + t3)〉
×〈cDσ5

(t1 + t2 + t3)c
+
Dσ6

(t1 + t2)〉〈cDσ7
(t1)c

+
Dσ8

(0)〉
= GDσ1

(−t′1)δσ1σ2
GDσ3

(−t′3)δσ3σ4
GDσ5

(t3)δσ5σ6
GDσ7

(t1)δσ7σ8
, (29)

with GDσ ≡ 〈cDσ(t)c+
Dσ(0)〉 = e−i(ǫD−µD)t is the Green’s function of QD.

Describing the Andreev process, we assume
∑

q1..q4

〈c+
q1σ1

(t − t′1 − t′2 − t′3 + t1 + t2 + t3)c
+
q2σ3

(t − t′3 + t1 + t2 + t3)cq3σ6
(t1 + t2)cq4σ8

(0)〉

=
∑

q1..q4

〈c+
q1σ1

(t − t′1 − t′2 − t′3 + t1 + t2 + t3)c
+
q2σ3

(t − t′3 + t1 + t2 + t3)〉〈cq3σ6
(t1 + t2)cq4σ8

(0)〉

= F ∗σ1
(t′1 + t′2)δσ3,−σ1

Fσ8
(t1 + t2)δσ6,−σ8

, (30)

where Fσ(t) ≡ 〈∑qq′ cq,−σ(t)cq′,σ(0)〉 =
∑

q sgn(σ)uqvqe
−iEqt is the Green’s function of the superconductor with the

only notice of Andreev process.
For the correlation of operators in lead, using the Wick’s theorem we obtain

∑

k1..k4

〈ck1σ2
(t − t′2 − t′3 + t1 + t2 + t3)ck2σ4

(t + t1 + t2 + t3)c
+
k3σ5

(t1 + t2 + t3)c
+
k4σ7

(t1)〉

=
∑

k1..k4

[−〈ck1σ2
(t − t′2 − t′3 + t1 + t2 + t3)c

+
k3σ5

(t1 + t2 + t3)〉〈ck2σ4
(t + t1 + t2 + t3)c

+
k4σ7

(t1)〉

+〈ck1σ2
(t − t′2 − t′3 + t1 + t2 + t3)c

+
k4σ7

(t1)〉〈ck2σ4
(t + t1 + t2 + t3)c

+
k3σ5

(t1 + t2 + t3)〉]
= −GLσ2

(t − t′2 − t′3)δσ2,σ5
GLσ4

(t + t2 + t3)δσ4,σ7

+GLσ2
(t − t′2 − t′3 + t2 + t3)δσ2,σ7

GLσ4
(t)δσ4,σ5

, (31)

with GLσ(t) ≡ 〈∑k,k′ ckσ(t)c+
k′σ(0)〉 =

∑

k e−i(ǫk−µL)t is the Green’s function of the normal metal lead.
Concerning the phase fluctuations, the four-point correlator which is implicit in the expression of the tunneling

current is first written as a time ordered product, then computed using the generalized Wick’s theorem. Once
ordered, the product of the exponential gives the exponential of the sum of all pairings between phase operators22.
As a result, with the definition of Eq. (15), one gets

〈eiφ(t−t′
1
−t′

2
−t′

3
+t1+t2+t3)eiφ(t−t′

3
+t1+t2+t3)e−iφ(t1+t2)e−iφ(0)〉

=
eJ(t−t′

1
−t′

2
−t′

3
+t1+t2+t3)+J(t−t′

3
+t1+t2+t3)+J(t−t′

1
−t′

2
−t′

3
+t3)+J(t−t′

3
+t3)

eJ(−t′
1
−t′

2
)+J(t1+t2)

. (32)

The calculation of this for I→ goes along the same lines. We will omit it here.
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VII. APPENDIX B

In this Appendix, we present the denominator products which appear in the tunneling current. Such denominators
come from the energy denominators of the transition operator T.

D0 is the original denominator which is not affected by the environment

D0 =
{ 1

(ǫ − ǫD − iη)(ǫ − E′ − iη)(ǫD + E′ + iη)

×
[ 1

(ǫ − ǫD + iη)(ǫ − E + iη)
+

1

(−ǫ − ǫD + iη)(−ǫ − E + iη)

] 1

(ǫD + E − iη)

}−1

. (33)

Del is the denominator product in the Iel
→ which is affected by the environment

Del =
{ 1

(ǫ − ǫD − iη)(ǫ − E′ − ω − iη)(ǫD + E′ + ω + iη)

×
[ 1

(ǫ − ǫD + iη)(ǫ − E + iη)
+

1

(−ǫ − ǫD + iη)(−ǫ − E + iη)

] 1

(ǫD + E − iη)

+
1

(ǫ − ǫD − iη)(ǫ − E′ − iη)(ǫD + E′ + iη)

×
[ 1

(ǫ − ǫD + iη)(ǫ − E − ω + iη)
+

1

(−ǫ − ǫD + iη)(−ǫ − E − ω + iη)

] 1

(ǫD + E + ω − iη)

}−1

. (34)

Dinel is the denominator product attributed to the inelastic current (affected by environment) and it is defined as

Dinel =
{ 1

(ǫD − ǫ + iη)(ǫD − ǫ − iη)

[ 1

(E′ + ǫD − ǫ − ǫ′ + iη)(E′ − ǫ + iη)
+

1

(E′ + ǫD + iη)(E′ + ǫ′ + iη)

]

×
[ 1

(E + ǫD − ǫ − ǫ′ − iη)(E − ǫ − iη)
+

1

(E + ǫD − iη)(E + ǫ′ − iη)

]

+
1

(ǫD − ǫ + iη)(ǫD − ǫ′ − iη)

[ 1

(E′ + ǫD − ǫ − ǫ′ + iη)(E′ − ǫ + iη)
+

1

(E′ + ǫD + iη)(E′ + ǫ′ + iη)

]

×
[ 1

(E + ǫD − ǫ − ǫ′ − iη)(E − ǫ′ − iη)
+

1

(E + ǫD − iη)(E + ǫ − iη)

]}−1

. (35)
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