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Francois Denis, Yann Esposito, Amaury Habrard
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Abstract Given a finite set of words)y, . .., w, independently drawn according
to a fixed unknown distribution la# called astochastic languagean usual goal
in Grammatical Inference is to infer an estimatdih some class of probabilistic
models, such aBrobabilistic AutomatgPA). Here, we study the clas$;*’ (X))
of rational stochastic languagesvhich consists in stochastic languages that can
be generated bylultiplicity Automata(MA) and which strictly includes the class
of stochastic languages generated by PA. Rational stachi@asguages have min-
imal normal representation which may be very concise, andseitparameters
can be efficiently estimated from stochastic samples. Wgdes efficient infer-
ence algorithm DEES which aims at building a minimal norneglresentation of
the target. Despite the fact that no recursively enumerabks of MA computes
exactly S**(X), we show that DEES strongly identifie®)**(X) in the limit.
We study the intermediary MA output by DEES and show that tt@mypute ra-
tional series which converge absolutely to one and whichbeansed to provide
stochastic languages which closely estimate the target.

1 Introduction

In probabilistic grammatical inference, it is supposed tteta arise in the form of a fi-
nite set of wordsuy, . . ., w,, built on a predefinite alphabgt, and independently drawn
according to a fixed unknown distribution law & called astochastic languagé&hen,
an usual goal is to try to infer an estimate of this distribatiaw in some class of proba-
bilistic models, such aBrobabilistic AutomatdPA), which have the same expressivity
as Hidden Markov Models (HMM). PA are identifiable in the Itr[ﬁ]. However, to our
knowledge, there exists no efficient inference algorithie &dbdeal with the whole class
of stochastic languages that can be generated from PA. Mdst @revious works use
restricted subclasses of PA such as Probabilistic DetéstitiiAutomata (PDA)|[H,112].
In the other hand, Probabilistic Automata are particulaesafMultiplicity Automata
and stochastic languages which can be generated by meitiidiutomata are special
cases ofational languageghat we callrational stochastic language®A have been
used in grammatical inference in a variant of the exact iegnrmodel of Angluin 2]
but not in probabilistic grammatical inference. Let us dadiyS7#t(X), the class of ra-
tional stochastic languages over the semidiaigWhenK = Q* or K = R, S;44(X)

is exactly the class of stochastic languages generated lwitRAparameters irk(. But,
whenK = Q or K = R, we obtain strictly greater classes which provide sevehzhn-
tages and at least one drawback: elementSgf (2') may have significantly smaller
representation i5}#*(X) which is clearly an advantage from a learning perspective;
elements ofS;4*(X) have a minimal normal representation while such normalerepr
sentations do not exist for PA; parameters of these minigyaiasentations are directly



related to probabilities of some natural events of the fatdt, which can be efficiently
estimated from stochastic samples; lastly, wheis a field, rational series ové¢ form

a vector space and efficient linear algebra techniques caisdxbto deal with rational
stochastic languages. However, the clﬁ§§ (X)) presents a serious drawback : there ex-
ists no recursively enumerable subset of MA which exactlyegates it[[b]. Moreover,
this class of representations is unstable: arbitrarilgelto an MA which generates a
stochastic language, we may find MA whose associated ratenasr takes negative
values and is not absolutely convergent: the global welght. ;.. 7(w) may be un-
bounded or not (absolutely) defined. However, we showSB%’%t(Z) is strongly identi-
fiable in the limit: we design an algorithm DEES such thatdoy targetP € S@‘“(Z)
and given access to an infinite samplerawn according td”, will converge in a finite
but unbounded number of steps to a minimal normal representaf 2. Moreover,
DEES is efficient: it runs within polynomial time in the sizktbe input and it computes
a minimal number of parameters with classical statistiaés of convergence. How-
ever, before converging to the target, DEES output MA whih @ose to the target
but which do not compute stochastic languages. The queistiamhat kind of guar-
antees do we have on these intermediary hypotheses and mowecase them for a
probabilistic inference purpose? We show that, since therdhm aims at building a
minimal normal representation of the target, the intermegdhypotheses output by
DEES have a nice property: they absolutely converge to.I; i€} |, _ v |r(w)| < oo
andy", ., 7(Z*) = 1. As a consequence(X) is defined without ambiguity for any
X € X7, and it can be shown tha¥, = _ . _,[r(u)| tends to O as the learning
proceeds. Given any such seriesve can efficiently compute a stochastic language
which is not rational, but has the property thdt/™ < p,(u)/r(u) < 1 for any wordu
such that-(u > 0). Our conclusion is that, despite the fact that no recurgigalimer-
able class of MA represents the class of rational stochkstguages, MA can be used
efficiently to infer such stochastic languages.

Classical notions on stochastic languages, rationalssexiel multiplicity automata
are recalled in Sectioﬂ 2. We study an example which showisthiearepresentation
of rational stochastic languages by MA with real paramateag be very concise. We
introduce our inference algorithm DEES in Sect[¢n 3 and vensthat S (X)) is
strongly indentifiable in the limit. We study the propert@the MA output by DEES
in Sectionﬂl and we show that they define absolutely convérgéional series which
can be used to compute stochastic languages which are tssgiofahe target.

2 Preliminaries

Formal power series and stochastic languagkst X* be the set of words on the finite
alphabet¥. The empty word is denoted layand the length of a word is denoted by
|u|. For any integek, let X% = {u € X*: |u| = k} andX<F = {u € * : |u| < k}.
We denote by the length-lexicographic order on*. A subsetP of X* is prefixial if
foranyu,v € X*,uv € P = u € P.ForanyS C Y*, letpref(S) ={ue X*:Jv €
X* uv e Standfact(S) = {v e X*: Ju,w € X*, uvw € S}.

Let X' be a finite alphabet anll’ a semiring. Aformal power seriess a mapping-
of X* into K. In this paper, we always suppose tliate {R,Q,R*, Q*}. The set of
all formal power series is denoted By((X)). Let us denote byupp(r) thesupportof
r,i.e. the se{w € X* : r(w) # 0}.



A stochastic languagis a formal seriep which takes its values iR+ and such that
> wes~P(w) = 1. For any languagé C ¥, letus denoté ., p(w) by p(L). The
set of all stochastic languages oveiis denoted byS(X'). For any stochastic language
p and any wordu such thatp(uX*) # 0, we define the stochastic language'p by

utp(w) = pp(fj‘g))- u~1p is called theresidual languagef p wrt . Let us denote by
res(p) the set{u € X* : p(uX*) # 0} and byRes(p) the set{u"1p : u € res(p)}.
We call sampleany finite sequence of words. Létbe a sample. We denote ks
the empirical distribution olt* associated witlh. A complete presentatioof P is an
infinite sequence' of words independently drawn according o We denote bys,,
the sequence composed of thdirst words ofS. We shall make a frequent use of the
Borel-Cantelli Lemma which states that(ifl; )rcn is @ sequence of events such that

> ren Pr(Ax) < oo, then the probability that a finite number df, occurs is 1.

Automata.Let K be a semiring. AKX -multiplicity automaton (MA)s a 5-tuple(X, @,
v, ¢, 7) where@ is a finite set of stateg; : @ x X' x @ — K is the transition function,
L : Q — K is the initialization function and : Q — K is the termination function.
LetQr = {q € Q|u(q) # 0} be the set ofnitial statesandQr = {q € Q|r(q) # 0}
be the set oferminal statesThe supportof an MA A = (X, Q, ¢, ¢, 7) is the NFA
supp(A) = (X, Q,Qr,Qr,0) wherei(q,xz) = {¢’ € Qlp(q,x,q") # 0}. We extend
the transition functiorp to @ x X* x Q by ¢(q, wz,r) = ZseQ o(q,w, s)p(s,z, )
andy(q,e,r) = 1if ¢ = r and0 otherwise, for any;,r € Q, z € ¥ andw € X*. For
any finite subsel. ¢ X* and anyR C @, definep(q, L, R) = Zwememo(q, w,T).

Forany MAA, letr 4 be the series defined by (w) = >~ o t(9)p(q, w,7)7(r).
For anyg € @, we define the seriesy 4 by 74,4(w) = 3 .5 ¢(q,w,7)7(r). A state
q € @ is accessiblgresp.co-accessiblgif there existsyy € Q; (resp.q: € Qr) and
u € X* such thatp(qo, u, q) # 0 (resp.p(q,u, q:) # 0). An MA is trimmedif all its
states are accessible and co-accessible. From now, weamjder trimmed MA.

A Probabilistic Automaton (PAs a trimmed MA(X', Q, ¢, ¢, 7) S.t.t, ¢ andr take
their values in0, 1], such thab_ ., «(¢) = 1 and for any state, 7(q) + (¢, ¥, Q) =
1. Probabilistic automata generate stochastic languag&soBabilistic Deterministic
Automaton (PDAJs a PA whose support is deterministic.

For any clas€” of multiplicity automata ovek,, let us denote by§< (X)) the class
of all stochastic languages which are recognized by an eleai€’.

Rational series and rational stochastic languagé&ational series have several char-
acterization ([1{]4,10]). Here, we shall say that a formaver series ovet is K-
rational iff there exists d¢-multiplicity automatonA such that = r4, whereK €
{R,RT,Q,Q*}. Let us denote by ({3} the set ofK -rational series oveE and
by Si#t(X) = K™((X)) N S(X), the set ofrational stochastic languagesver K.
Rational stochastic languages have been studieﬂi in [7]&tanguage theoretical point
of view. Inclusion relations between classes of ratiomatisastic languages are summa-
rized on Fid[L. It is worth noting tha82' P4 (%) ¢ SP4(X) € S5et(X).

Let P be a rational stochastic language. The MA= (¥, Q, ¢, ¢, 7) is areduced
representatiorof P if (i) P = Pa, (ii) Vg € Q,Pa,q € S(X) and (iii) the set{ P, 4 :
q € Q} islinearly independent. It can be shown tii&ats(P) spans a finite dimensional
vector subspacgRes(P)] of R((X)). Let @p be the smallest subset ofs(P) s.t.
{u='P : u € Qp} spans[Res(P)]. It is a finite prefixial subset of-*. Let A =
(X,Qp,p,t,7) be the MA defined by:



S(®) sy net(e)
SE*H(E) s5%H(2) = sty net (D) )
ST = SEA (D) St (2 nQT ()

Sp34(2) = sTA(D)

sgPA(D) = sEPA () S§PAE) = s7PA(D) = s{PA(E) n((D)

Figurel. Inclusion relations between classes of rational stoah&mstiguages.

— 1(e) =1, t(u) = 0 otherwise;(u) = u1P(e),

— o(u,z,ur) = utP(@X*) if u,ur € Qp andx € X,

- o(u,z,v) = uu ' P(xX*)if v € X, uz € (QpX\Qp)Nres(P) and(uz) 1P =
> veor a,v P,

It can be shown thatl is a reduced representation®f A is called theprefixial reduced
representatiorof P. Note that the parameters dfcorrespond to natural components of
the residual ofP? and can be estimated by using sample# of

We give below an example of a rational stochastic languagehadannot be gen-
erated by a PA. Moreover, for any integ¥rthere exists a rational stochastic language
which can be generated by a multiplicity automaton with 3estaand such that the
smallest PA which generates it h&sstates. That is, considering rational stochastic lan-
guage makes it possible to deal with stochastic languagehwhnnot be generated by
PA; it also permits to significantly decrease the size ofrtregiresentation.

Proposition 1. For any a € R, let A, be the MA described on Fi] 2. L&, =
{0, A1, X2) € R :ry. € S(2)}. If a/(27) = p/q € Q wherep and q are rel-
atively prime,S,, is the convex hull of a polygon withvertices which are the residual
languages of any one of themdf (27) ¢ Q, S, is the convex hull of an ellipse, any
point of which, is a stochastic language which cannot be adatpby a PA.

Proof (sketch).
Letr,,, rq, andry, be the series associated with the stated ofWe have

" cos na — sinno n cos na + sin na " 1
rgo(a") = ———F———7q, (a") = ———F——— andr,, (") = .

2 2 2
Thesums | 7q(a"), > cnTq (a™)andy ] 7q, (a™) convergesince,, (a™)| =
O(27")fori=0,1,2. Letus denote; = 7, (a")fori=0,1,2. Check that

4 —2cosa — 2sin« 4 —2cosa+ 2sin«
o0 = , 01 = and02:2
5 —4cosa 5 —4cosa

Consider the 3-dimensional vector subspiagf R((X")) generated by,,, r,, and
rq, @ndletr = Xory, +A17q, +A2rg, be ageneric element®f We haved | r(a") =
Aoog + A1o1 + Aaoo. The equation\gog + A1o1 + Aooo = 1 defines a plang{ in V.

Consider the constraint§a™) > 0 for anyn > 0. The elements of H which
satisfies all the constraintga™) > 0 are exactly the stochastic language®in



If a/(27) = k/h € Q wherek andh are relatively prime, the set of constraints
{r(a™) > 0} is finite: it delimites a convex regular polygdnin the planeH. Letp be
a vertex of P. It can be shown that its residual languages are exactly thegtices ofP
and any PA generatingmust have at leagt states.

If o/(27) ¢ Q, the constraints delimite an ellipde Letp be an element oF. It
can be shown, by using techniques developeﬁ in [7], thasislual languages are dense
in £ and that no PA can generate O

Matrices. We consider the Euclidan norm &¥: ||(z1, ..., z,)|| = (2 +...+22)Y/2.
For anyR > 0, let us denote byB(0, R) the set{x € R" : |z|| < R}. The in-
duced norm on the set of x n square matriced/ overR is defined by:| M| =
sup{||Mz| : = € R™ with ||z|| = 1}. Some properties of the induced norjfd/ x| <
1M - ||| forall M € R™*™ o € R™; |MN| < ||M| - ||N| forall M,N € R"*™,
limy, o || M¥||/* = p(M) wherep(M) is the spectral radius d¥/, i.e. the maximum
magnitude of the eigen values df (Gelfand’s Formula).

Figure2. When), = Ay = 1 and\; = 0, the MA A, ; defines a stochastic language
P whose prefixed reduced representation is the BMAwith approximate values on
transitions). In fact” can be computed by a PDA and the smallest PA computing it is
C.

3 Identifying Sg**(X) in the limit.

Let S be a non empty finite sample &f, let Q be prefixial subset gfref(S), letv €
pref(S)\ Q, and lete > 0. We denote by (Q, v, S, €) the following set of inequations
over the set of variablege, |u € Q}:

I1(Q,v, S, ¢) = {jv ' Ps(wX™) — Z zyu ' Ps(wE™)| < e|lw € fact(S)} U {Z Ty =1}
ueEQ ueqQ

Let DEES be the following algorithm:

I nput: a sanple S

Output: a prefixial reduced MA A= (X Q,p,t,T)
Q—{e}, we)=1, 7(e) = Ps(e), F — XnNpref(S)
while F#0 do {




v =ux = MinF whereu € X* andz € X, F — F \ {v}
if 1(Q,v,S,|S|~'/) has no solutiont hen{
Q—QU{v}, uv)=0, 7(v) = Ps(v)/Ps(vL"),
p(u,z,v) = Ps(vX")/Ps(uX™), F — FU{vx € res(Ps)|z € X}}
el se{
let (aw)weo be a solution of I(Q,v,S,|S|/?)
o(u, z,w) = @ Ps(vX*) for any we Q}}

Lemma 1. Let P be a stochastic language and les, u1,...,u, € Res(P) be such
that {uy ' P,u; ' P,...,u, ' P} is linearly independent. Then, with probability one, for
any complete presentatiot of P, there exist a positive numberand an integerM
such that/ ({us, ..., u,}, uo, Sm, €) has no solution for eveny, > M.

Proof. Let S be a complete presentation Bf Suppose that for every> 0 and every
integer M, there existsn > M such thatl ({u1, ..., un}, uo, Sm,€) has a solution.
Then, for any integek, there existsn;, > k such that/ ({u1, ..., un}, ug, Sm,, 1/k)

has a solutiofiay i, . . ., am k). Letpr, = Max{1,|oa k- .., |on.kl} Y00 = 1/pr and
ik = —a;k/px for 1 <i < n.Foreveryk, Maz{|vi x| : 0 <i <n} = 1. Check that

= 1 1
VEk >0 o TP Yl < — < =,
— ? ;’yvkuz Smk ('LU ) — Pkk — k
There exists a subsequeneg 4y, - - - , n g(k)) Of (1 k, - ., an i) SUCh that
(Y0,6(k)> - - -+ Yn,6(k)) CONVErges tdyo, . .., v,). We show below that we should have

S o viu; P P(wX*) = 0 for every wordw, which is contradictory with the indepen-
dance assumption sinédax{vy; : 0 <i <n} =1.

Letw € fact(supp(P)). With probability 1, there exists an integks such that
w € fact(S,,,) foranyk > k. For such &, we can write

viug P = (yiu; 'P —yu; ' Ps,, )+ (% — Yigk)i  Ps,, + Vistou; Ps,,,

and therefore

n

_ . - 1
< lu NP = Po, YwE )+ Y i — Yiem | + Z
1=0 1=0

Z yiu; PP(wX*)
=0

which converges to 0 whehtends to infinity. O

Let P be a stochastic language overlet.A = (A4;);c; be a family of subsets of*,
let S be a finite sample drawn according &y and letPs be the empirical distribution
associated witlf. It can be shown[[}§]9] that for any confidence paramétevith a
probability greater thah — ¢, for anyi € I,

VC(A)—log &
|Ps(A;) — P(Ay)] < o/ Yo oes (1)

whereVC(A) is the dimension of Vapnik-Chervonenkis.dfandc is a constant.
When A = ({wX*})yes+, VC(A) < 2. Indeed, letr,s,t € X* and letY =
{r, s, t}. Letu,, (resp.u.+, us:) be the longest prefix shared byands (resp.r andt, s



andt). One of these 3 words is a prefix of the two other ones. Suppase. . is a prefix
of u,+ andus:. Then, there exists no word such thatwX* N'Y = {r, s}. Therefore,
no subset containing more than two elements can be shabgrdd

Let¥ (e, o) = 2—2(2 —log 9).

Lemma 2. Let P € S(X) and letS be a complete presentation Bf For any precision
parametere, any confidence parametéranyn > ¥ (e, ), with a probability greater
thanl — ¢, |P,(wX*) — P(wX*)| < eforall w € X*.

Proof. Use inequality[(1). i

Check that for anyy such that-1/2 < a < 0 and anyg < —1, if we define
er = k* andsy, = &k, there existss such that for alk > K, we havek > ¥ (e, 6).
For such choices af andg, we havdimy_,. e, = 0 andzk21 O < 00.

Lemma 3. LetP € S(X), uo, u1,...,u, € res(P)anday,...,a, € R be such that
ug'P = >"  au; ' P. Then, with probablllty one, for any complete presentaton
ofP there existss s.t. I({uy,...,un},uo, Sk, k~/3) has a solution for every > K.

Proof. Let S be a complete presentation Bf Letay = 1 and letR = Max{|a;] :
0 < i < n}. With probability one, there exist&; s.t. Vk > K;,Vi = 0,...,n
lu; 'Sy > (kY3 (n+ )R]~ [(n + 1)k%1). Letk > K. For anyX C ¥,

lug ' Ps, (X Za it Psy (X)| < ug ' Ps, (X)—ug 'P(X)|+)_ |aillu; ' Ps, (X)—u; " P(X)].
i=1
From Lemmaﬂz with probability greater than— 1/k2, for anyi = 0,...,n and
any wordw, |u; ' Ps, (wEX*) — u; 'P(wX*)| < [kY3(n + 1)R]7! and therefore,
lug ' Ps, (wE*) = 327 ajuy ' Ps, (wx™)| < k=13,
Forany integek > K, let A, be the evenq.uglPSk (wX*)=>"" | au;t Ps, (wE*)] >
k=1/3. SincePr(Ay) < 1/k2, the probability that a finite number of;, occurs is 1.
Therefore, with probability 1, there exists an intedérsuch that for anys > K,
I({uy, ..., un},uo, Sk, k~'/3) has a solution. i

Lemma4. Let P € S(X), letug, u, ..., u, € res(P) such that{u; ' P, ..., u,; ' P}
is linearly independent and lety, ..., a, € R be such thauo‘lP =>r, aiui_lP.
Then, with probability one, for any complete presentatioaf P, there exists an inte-
ger K such thatvk > K, any solutionay, ..., a, of I({uy,...,u,}, ug, Sk, k=/3)
satisfie§a; — a;| < O(k=/3) for1 <i < n.

Proof. Let wy,...,w, € X* be such that the square matriX defined byM[i, j] =
u;lP(wiE*) forl <i,j < nisinversible.Letd = (a1, ..., a,)!, Uy = (uglp(wlz*),
Sug PP(w, X))t We haveM A = Uy. Let S be a complete presentation Bf let
k € N and letay,...,a, be a solution ofl ({u,...,u,}, o, Sk, k~1/3). Let M;,
be the square matrix defined byy[i, j] = uj_lPsk (w; X*) for 1 < i,5 < n, let

Ay = (a1,...,am) andUy & = (ug ' Ps, (w1 X*), ..., uy * Ps, (w, 2*))*. We have

n

M Ax = Uosll> = ug " Ps, (w; 2* Z%J&Mhngmwi

i=1

Check that



A— A, = M_l(MA —Upg+ Uy — U07k + U07k — M A, + M Ay, — MAk)
and therefore, forany <i <n
o — @i < | A= Agl < |M7Y[(1Uo — Uokll + 02k~ 4 | My — M| Ag]l.

Now, by using Lemmﬂz and Borel-Cantelli Lemma as in the pcddfemma[]S, with
probability 1, there existdy such that for allk > K, ||Uy — Upx| < O(k~1/3)
and||M;, — M| < O(k~'/3). Therefore, for allk > K, any solutionay, ..., a, of
I({uy,...,un},uo, Sk, k=1/3) satisfiega; — a;| < O(k=1/3) for1 <i < n. 0

Theorem 1. Let P € S;*(X) and A be the prefixial reduced representation Bf
Then, with probability one, for any complete presentattonf P, there exists an in-
teger K such that for anyk > K, DEES(Sy) returns a multiplicity automatom,
whose support is the same A%. Moreover, there exists a constafitsuch that for any
parameterx of A, the corresponding parametey, in A, satisfie§a — ay| < Ck=1/3,

Proof. Let Qp be the set of states of, i.e. the smallest prefixial subset ofs(P)
such that{u=!'P : u € Qp} spans the same vector spaceas(P). Letu € Qp, let
Qu={veQplv<u}andletxr € X.

— If {v='Pv € Q,U{uz}} islinearly independent, from Lemnfja 1, with probability
1, there exists,,, and K, such that for anyt > K., I(Q., ux, Sk, €4,) has no
solution.

— If there exists(av, ) veq, Such thatiuz)™'P = Y ., a,v~!P, from Lemma[p,
with probability 1, there exists an integkt, . such that for any > K., [(Qu, uz, Sk, k~/3)
has a solution.

Therefore, with probability one, there exists an integesuch that for anyc > K,
DEES(Sy) returns a multiplicity automator,, whose set of states is equal @pp.
Use Lemma$]2 ar{d 4 to check the last part of the proposition. O

When the target is iS@at(L‘), DEES can be used to exactly identify it. The proofis
based on the representation of real numbers by continuacisdn. See[]8] for a survey
on continuous fraction an]|[6] for a similar application.

Let(e,,) be a sequence of non negative real numbers which convergdste € Q,
let (y,,) be a sequence of elements®&uch thatx — y,,| < ¢, for all but finitely many
n. It can be shown that there exists an integésuch that, for any, > N, z is the

unique rational numbeg which satisfies{yn — %’ <e, < q% Moreover, the unique

solution of these inequations can be computed fggm
LetP e S@at(z), let.S be a complete presentation Bfand letA; the MA output

by DEES on inpufS;.. Let A;, be the MA derived fromd;, by replacing every parameter
ay, with a solution? of ‘a —LI< k14 < q%

Theorem 2. Let P € 3@“(2) and A be the prefixial reduced representation Bf
Then, with probability one, for any complete presentatioof P, there exists an integer
K suchthatvk > K, DEES(S}) returns an MAA,, such thatd,, = A.

Proof. From previous theorem, for every parameteof A, the corresponding param-
eteray in A satisfies|a — ay| < Ck=1/3 for some constant. Therefore, ifk is
sufficiently large, we havéx — ay| < k~'/* and there exists an integéf such that

a = p/q s the unique solution (#oz — g‘ <kt < &z 0



4 Learning rational stochastic languages

We have seen tha;* (X)) is identifiable in the limit. Moreover, DEES runs in poly-
nomial time and aims at computing a representation of tlgetarhich is minimal and
whose parameters depends only on the target to be learndts B&mputes estimates
which are proved to converge reasonably fast to these péeené&hat is, DEES com-
pute functions which are likely to be close to the target. Bu#se functions are not
stochastic languages and it remains to study how they carsé@ in a grammatical
inference perspective.

Any rational stochastic languade defines a vector subspace®{(X’)) in which
the stochastic languages form a compact convex subset.

Proposition 2. Letp;, ..., p, ben independent stochastic languages. Thers {@ =
(1,...,0p) ER™: 37" | ayp; € S(X)} is a compact convex subsetit.

Proof. First, check that for anyy, ﬁ € A and anyy € [0, 1], the series """, [ya; +
(1 — v)Bi]p; is a stochastic language. Henekis convex.

For every wordw, the mappinga’ — Y7, a;p;(w) defined fromR" into R is
linear; and so is the mapping — i, ;. Ais closed since these mappings are
continuous and since

A= {E) cR": Zaipi(w) > 0 for every wordw andz o = 1} .

i=1

Now, let us show thatl is bounded. Suppose that for any integetthere exists
o € Asuchthat| @’ > k. Sincea@ k/|| k|l belongsto the unit sphereRr*, which
is compact there exists a subsequenqm) such thata’ ¢(k)/|| a (k|| converges to
somed’ satisfying||@|| = 1. Letq, = ZZ 1 Qi kDi andr =>" | o p;.

Forany0 < A < [[@g|, p1 + A%=EL Lb = (1— ”a PP+ = Ha =k is @ stochastic
language sincé (X)) is convex; for every\ > 0, p; + A2 converges tg; + Ar

Xk
whenl — oo, which is a stochastic language sintés cIoHsed::i.)'l"‘herefore, forany> 0,
p1 + Ar is a stochastic language. Sinegw) + Ar(w) € [0, 1] for every wordw, we
must haver = 0, i.e.«; = 0 foranyl < i < n since the languages, ..., p, are
independent, which is impossible sinte@’ || = 1. Therefore/ is bounded. O

The MA A output by DEES generally do not compute stochastic languadew-
ever, we wish that the series, they compute share some properties with them. Next
proposition gives sufficient conditions which guarantytthg, ., 7 (X*) = 1.

Proposition3. Let A = (X, Q ={q1,...,q.},9,t,7) be an MA and letM be the
square matrix defined by/[4, j] = [p(q:, X, qj)]lgingn. Suppose that the spectral ra-
dius of M satisfiep(M) < 1.Let7 = (t(q1), ..., lgn)) and™ = (7(q1), - .., 7(qn))".

1. Then, the matrix/ — M) is inversible and _, .., MP* convergest@l — M)~}

2.Yq;i € QYK >0, 5 g 7a,q,(2F) convergest(MKZ (I = M), 4] (g5)
and>", - 74 (X*) converges tor’ MK (I — M)~1

3. Vg € Q,7(q) + ¢(q, ¥, Q) = 1, thenVq € Q, Tqu(leo X*) = 1. If moreover
quQ u(q) =1, thenr(Zkzo YRy =1.



Proof. 1. Sincep(M) < 1,1 is notan eigen value dff andl — M is inversible. From
Gelfand’s formulalimy,_., || M*|| = 0. Since for any integek, (I — M) (I + M +
oo+ MF) =T — M the sumy_, ., M* converges t¢] — M)~

2. Sincera,q (2%) = Y0 MMl jIm(a), Yis i raq (ZF) = MRS (1 -
M)~ i, j]7(q;) and 3ops g ra(ZF) = 0y w(qi)rag (Z=5) = TME(I -
M)~17.

3. Lets; =714, (X*) forl <i<mnands = (s1,...,s,)". We have(l — M)s =
7. Sincel — M is inversible, there exists one and only erech that7 —M)s =
7. Butsincer(q) + (¢, ¥, Q) = 1 for any statey, the vector(1, ..., 1)t is clearly
a solution. Therefores; = 1 forl1 < i < n. If quQ t(q) = 1, thenr(X*) =
quQ Ug)ra, (27) =1 0

Proposition 4. Let A = (¥, Q, p,t,7) be a reduced representation of a stochastic
languageP. Let@ = {q1, ..., g, } and letM be the square matrix defined By|i, j|] =
[e(qis £, 4j)],<; j<n- Then the spectral radius dff satisfiesp(M) < 1.

Proof. From Prop[[, letk be such tha{@ € R” : > a;Pa, € S(X)} C
B(0, R). For everyu € res(P4) and everyl < i < n, we have

uilpA o Zlgjgn @(Qi, u, Qj)PAﬂlj )
o Paq, (UE*)

Therefore, for every word and everyk, we havelp(g;, u, ¢;)| < R - Pa g, (uX*) and

lo(gi, %, 05)] < D 10(giru, q)| < R+ Pa g, (525).
ueXk

Now, let A be an eigen value af/ associated with the eigen vectoand let; be an
index such thafv;| = Maz{|v,| : j = 1,...,n}. For every integek, we have

MF = Mep and [ Mevg| = |5 o(gi, ¥, ;)05 < nR - Pa g, (525)ug]
j=1

which implies thaf)\| < 1 sinceP, 4, (X¥=*) converges to 0 wheh — oc. 0
If the spectral radius of a matrix is 1, the power ofM decrease exponentially fast.

Lemmab5. Let M € R™*™ be such thap(M) < 1. Then, there exist6’ € R and
p € [0, 1] such that for any integet > 0, || M*|| < Cp*.

Proof. Let p €]p(M), 1[. From Gelfand’s formula, there exists an integéisuch that
foranyk > K, | M*||V/* < p. LetC = Max{||M"||/p" : h < K}.Letk € N and let
a,b € N be suchthat = aK + b andb < K. We have

[22°]]

IMF]| = [[MeEF < Mt < pt M) < o P o

Proposition 5. Let P € S;* (). There exists a consta6tandp € [0, 1] such that for
any integerk, P(X2F) < Cpk.



Proof. LetA = (¥, Q, ¢, :, 7) be areduced representationfofind letM be the square
matrix defined byM i, j] = [¢(qi, X2, qj)]1<i7j<n. From Prop[|4, the spectral radius of
M is i1. From Lemmd]5, there exist& andp € [0, 1] such that|M*|| < Cyp" for
every integek. Letis = («(q1),---,t(qn)) and7a = (7(q1), - .-, 7(gs))'. We have

P(£24) < [luall - [MM] - (2 = A0~ - I < €t
with & = Cyla |l - (11— M)~ |- |74 .

It is not difficult to design an MAA which generates a stochastic langud@geand
such thatp(q, u, ¢') is unbounded when € X*. However, the next proposition proves
that this situation never happens whéiis a reduced representationBf

Proposition 6. Let P € S;*(X) and letA = (¥, Q, ¢, ¢, 7) be a reduced representa-
tion of P. Then, there exists a constafitand p € [0, 1] such that for any integet and

any pair of SIate@a qlv ZuGEk‘ |(,0(q7 U, q/)| < Cpk

Proof. Let k be an integer and let ¢’ € Q. Let P, = {u € X* : p(q,u,q") > 0} and
Ny, = $k\ P.

Py q(uX™)
PA7q(u2*)

> uep, P@,u,q")
q”GQ Zuepk PA;‘](uZ*)

71PA7q = Pagr

PPy, = Z =

U€E Py u€ Py

is a stochastic language which is a linear combination ofitldependent stochastic
languages, . From prop|]2, there exists a constahtvhich depends only oA s.t.

> elg,uq)

u€ Py

= Z Qp(q’uvq/) S R Z PA-,Q(UE*)'

ue Py, ue Py

Similarly, we havey" v, (¢, 1, ¢')| = X uen, [0(a,1.0)] < RS ey, Paq(us®).
Let C andp €]0, 1] be such thaf’s ,(X=%) < C)p* for any state; and any integek:.
We have
> lelqu,d) <R DY Pag(us®) < RCpF.
ue Xk weSk
O

MA representation of rational stochastic languages areabies(see Figﬂ 3). Arbi-
trarily close to an MAA which generates a stochastic language, we can find anBVIA
such that the sury_ . 5.. 73 (w) converges to any real number or even diverges. How-
ever, the next theorem shows that whéns a reduced representation of a stochastic
language, any MAB sufficiently close tod defines a series which is absolutely conver-
gent. Moreover, simple syntactical conditions ensurethéf.*) = 1

Theorem 3. Let P € S (X)) and letA = (X, Q, ¢a,ta,74) be areduced represen-
tation of P. LetC4 andp 4 €]0, 1] be such that for any integérand any pair of states
44" D yexk loalg,u,q')| < Caph. Then, for any > p4, there exist€” anda > 0
such that forany MAB = (¥, Q, v, L5, T5) satisfying

Va,q' € Q,Vx € X, |palq,x,q") — ¢B(q,2,¢)| < « 2)



Figure3. These MA compute a series such thaty .. r.(w) = 1if ¢ # 0 and
> wes+To(w) = 2/5. Note that wher = 0, the series 4, andro 4, are dependent.

we havey", . i los(q,u, ¢')| < Cp* for any pair of stateg, ¢’ and any integek. As
a consequence, the series is absolutely convergent. MoreoverHfsatisfies also

Vg € Q,75(q) + ¢5(g, ¥, Q) =1and Y ip(q) =1 (3)
q€Q

then,a can be chosen such thaﬂ (2) implies that,(X*) = 1 for any stateq and
TB(Z*> =1.

Proof. Let k be such that2nC)'/* < p/p4 wheren = |Q|. There existsx > 0 such
that for any MAB = (X, Q, v, 5, ) satisfying [R), we have
qu ql € Q7 Z |¢B(q7ua q/> - @A(Qa u, ql)| < CApiZ
ue Xk

Since}", o v [pa(q,u,¢')| < Caph, we must have also

k
P
> lenlgu,q) < 2Caph < —
ue Xk

Let Oy = Max{}_ cx<xleB(q,u,q)| : ¢, € Q}. Letl,a,b € N such that
| =ak+bandb < k. Letu € X' and letu = ug . .. u, Where|u;| = kfor0 <i < a
and|u,| = b. For any pair of stateg, ¢.+1, we have

a
¢5(q0, U, Gat1) = Z H@B(%W#ﬁﬂ)

q1,--,9a €Q =0

and

Z ©B(q0, U Gat1) Z Z Z H@B(Qi,ui,%ﬂ)

ue X! UQ ey Uhq—1EXF ug €X0 q1,...,q0 €Q =0

Z Z Z H@B(Qiaui,qz'ﬂ)

415,90 €Q ug,...,uq—1EXF u, e Xt i=0

a—1
Z H ZsoB(qi,u,qu) Z@B(qa,ui,qaﬂ)

q1,--,9a €Q i=0 \ueXk uext



C1
EoT -

a
Hence,) . v [0B(q0, U, gmy1)| < n®- (%k) - Oy < Cp! whereC =
Now, let us prove thatg is absolutely convergent.

Dolrs@) <> D ws@es(gud)Ta(d) < C

weX* keNueX* q,q'€Q

p

whereC’ = Cn?Max{|t(q)5(¢")| : ¢, € Q}/(1 — p).

Lastly, letMp be the square matrix defined By (i, j] = ¢5(¢:, X, ¢;). Since the
spectral radius of a matrix depends continuously on itsfmierfits and sincel is a re-
duced representation of a stochastic language, any MAfysiags(E) with « sufficiently
small must have a spectral radius i1 (Pdp. 4). Therefore sétisfies [[8) and]2) with
« sufficiently small, the Prog}] 3 entails the conclusion. O

It remains to show how a series which converges absolutely ¢can be used to
approximate a stochastic language.

Letr be aseries oveY suchthad . .. 7(w) converges absolutely to 1. Therefore,
r(X) = Y .ex r(u) is defined without ambiguity for every’ C £* andr(X) is
bounded by = >_ . [r(u)|. LetS be the smallest subset &f such that

g€ Sandvu € X* Vo € X u € Sandr(uzX™) > 0= ux € S.

S is a prefixial subset o£2* andvVu € S,r(uX*) > 0. For every wordu € S, let
us defineN (u) = U{uzX* : z € X, r(uaX*) < 0} U {u: if r(u) < 0} andN =
U{N(u) : uw € X*}. Then, for everyu € S, let us define\,, by:

r(uxX*)

Ae = (L=r(N(E) ™ andAue = A oo = N )

Lemma 6. For every wordu € S, e"(N)/7 <\, < 1.

Proof. First, check that(N(u)) < 0 for everyu € S. Therefore),, < 1. Now, check
that if u,uv € Sthenv = ¢ or N(u) N N(uwv) = 0. Letu = z1...x, € X* where

Z1,...,x, € X andletuyg = e andu; = u,—1x; for 1 <i < n. We have
- r(u; 2°) ¥ (N (ui)\ ™
)\u = —_ 1 NN
E)T(uiﬂ*) —r(N(u;)) E) < r(u X%)
and

log)\u:—;log (1—%) ZZ%

=0

Sincer(u; X*) < T, logA, > Z?:o r(N(u;))/T = r(UoN(u;))/T > r(N)/T.
Therefore )\, > e"(N)/T, O

Let p, be the series defined by, (u) = 0if u € N andp,(u) = A\,r(u) otherwise.
We show thapr is a stochastic language.

Lemma7. —p.(e)+ XD cgnn (@) =1,



— Foranyu € Y* and anyz € X, if uxz € S then

pr(ux) + Az Z r(uzyX™) = Ayr(uzX™).
{yeXuzyeS}

Proof. First, check that for every € S,
pr(u) + Ay Z r(urX™) = A (r(uX™) — r(N(u)).
zeEu—1SNY
Then,p,(e) + A D, cgny T(@X*) = A(1 —r(N(e))) = 1. Now, letu € X* and

v € Ystur € 5, pr(ux) + Mz D (yesupyes) "y X”) = Aue(r(uzl™) —
r(N(ux))) = Ayr(uzX*). O

Lemma 8. Let@ be a prefixial finite subset & * and letQs = (QX \ @) N S. Then
pr(@Q)=1-— Z At (uzX™).

Ur€EQ s, xeX

Proof. By induction on@. When@ = {¢}, the relation comes directly from Lemrfja 7.
Now, suppose that the relation is true for a prefixial sugsetetuy € Q" andzy € X
such thatugzy € Q' and letQ = Q' U {uozo }. We have

pr(Q) = pr(@) +prluoro) = 1= > Aur(uaX™) + pr(uowo)
ur€Ql,xeX
where@’, = (Q"X'\ Q') N S, from inductive hypothesis.
If upzo & S, check thatp, (upzo) = 0 and thatQ), = Q.. Thereforep,.(Q) =
1-— ZquQS,IEE Ay (uzX*).
If ugzg € 5, thenQ, = Q/S \ {’U,Omo} U (UQ$02 n S) Therefore,

pr(Q) =1~ Z A (uz ™) + pr(uozo)

ur€Q,xeX

=1- Z Aur(uxX™) — Ay r(ugzo X™)
ur€EQRs,x€X

+ )‘uozo Z T(U0$0$2*) +pr(u0$0)
uororES,x€X

=1- > Aur(uaX*)from Lemmaf. 0
ur€EQRs,x€X

Proposition 7. Letr be a formal series oveE' such thaty | ... 7(w) converges ab-
solutely to 1. Thery, is a stochastic language such that for everg Y*\ N,

(1 +7(N)/F)r(u) < e"™M/Tr(w) < pp(u) < ru).

Proof. From Lemma[l6, the only thing that remains to be proved isphé a stochastic
language. Clearly,,.(u) € [0, 1] for every wordu. From Lemmd]g, for any integé
L=p(ZH) < Y rEZ) <r(&7h)
ueXk+ting

which tends to 0 since is absolutely convergent. O



To sum up, DEES computes MA whose structure is equal to the structure of the
target from some steps, and whose parameters tends rebsfasalo the true param-
eters. From some steps, they define absolutely ration&sseyiwhich converge abso-
lutely to 1. By using these MA, itis possible to efficientlymputep,., (u) or p,., (uX*)
for any wordu. Moreover, since 4 converges absolutely and sinddends to the target,
the weightr 4 (V) of the negative values tends to O gng converges to the target.

5 Conclusion

We have defined an inference algorithme DEES designed to hagional stochastic
languages which strictly contains the class of stochaatiguages computable by PA
(or HMM). We have shown that the class of rational stochdstiguages ove® is
strongly identifiable in the limit. Moreover, DEES is an eiffiat inference algorithm
which can be used in practical cases of grammatical infexeFtee experiments we have
already carried out confirm the theoretical results of thiggy: the fact that DEES aims
at building a natural and minimal representation of thedapgovides a very significant
improvement of the results obtained by classical probsthilinference algorithms.
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