
HAL Id: hal-00019145
https://hal.science/hal-00019145v1

Preprint submitted on 16 Feb 2006 (v1), last revised 8 Mar 2006 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended quasimodes within nominally localized
random waveguides

Patrick Sebbah, Bing Hu, Jerome M. Klosner, Azriel Genack

To cite this version:
Patrick Sebbah, Bing Hu, Jerome M. Klosner, Azriel Genack. Extended quasimodes within nominally
localized random waveguides. 2006. �hal-00019145v1�

https://hal.science/hal-00019145v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

19
14

5,
 v

er
si

on
 1

 -
 1

6 
Fe

b 
20

06
Quasimode expansion of spatially extended field distributions within nominally

localized random waveguides

P. Sebbah,1, 2, ∗ B. Hu,1 J. M. Klosner,1 and A. Z. Genack1

1Department of Physics, Queens College of the City University of New York, Flushing, New York 11367
2Laboratoire de Physique de la Matière Condensée, Université de Nice - Sophia Antipolis,

Parc Valrose, 06108, Nice Cedex 02, France

(Dated: February 16, 2006)

We have measured the spatial and spectral dependence of the microwave field inside an open
absorbing waveguide filled with randomly juxtaposed dielectric slabs in the spectral region in which
the average level spacing exceeds the typical level width. Whenever lines overlap in the spectrum,
the field exhibits multiple peaks within the sample. Only then is substantial energy found beyond
the first half of the sample. When the spectrum throughout the sample is decomposed into a
sum of Lorentzian lines plus a broad background, their central frequencies and widths are found
to be essentially independent of position. Thus, this decomposition provides a complete set of
electromagnetic quasimodes underlying the extended field in nominally localized samples.

PACS numbers: 42.25.Dd,41.20.Jb,72.15.Rn,71.55.Jv

The nature of wave propagation in disordered sam-
ples reflects the spatial extent of the wave within the
medium. [1, 2, 3] In part because of the inaccessibility of
the interior of multiply-scattering samples, the problem
of transport in the presence of disorder has been treated
as a scattering problem with the transition from extended
to localized waves charted in terms of characteristics of
conductance and transmission. When gain, loss, and de-
phasing are absent, the nature of transport can be char-
acterized by the degree of level overlap, δ, [2, 3] which is
the ratio of average width and spacing of states of an open
random medium, δ ≡ δν/∆ν. Here δν may be identified
with the spectral width of the field correlation function
[4] and ∆ν with the inverse of the density of states of the
sample. When δ > 1, resonances of the sample overlap
spectrally, the wave spreads throughout the sample and
transport is diffusive. [2] In contrast, when δ < 1, cou-
pling of the wave in different portions of the sample is
impeded. Azbel showed that,when δ < 1, transmission
may occur via resonant coupling to exponentially peaked
localized modes with spectrally isolated Lorentzian lines
with transmission approaching unity when the wave is
localized near the center of the sample. [5, 6] Given the
sharp divide postulated between extended and localized
waves, the nature of propagation when modes occasion-
ally overlap in samples for which δ < 1 is of particular
interest.

Mott argued that interactions between closely clus-
tered levels in a range of energy in which δ < 1 would be
associated with two or more centers of localization within
the sample within the sample. [7] Pendry showed that,
in this case, occasionally overlapping of electronic modes
play an outsized role in transport since electrons may
then flow through the sample via regions of high intensity
which are strung together like beads in a necklace. [8, 9]
Recent pulsed [10] and spectral [10, 11] measurements of
optical transmission in layered samples were consistent

with the excitation of multiple resonances associated with
necklace states. In related work, Lifshits had shown that
the hybridization of overlapping defect states outside the
allowed vibrational bands of the pure material led to the
formation of a band of extended states. [12] Similar im-
purity bands can be created for electrons in the forbidden
gap of semiconductors, photons in photonic band gaps,
and polaritons in the polariton gap [13].

Because an open system with dissipation is not Hermi-
tian, the question arises as to whether the field may be
expanded as a linear superposition of orthogonal decay-
ing quasimodes with widths equal to the rates of leakage
and dissipation. [14, 15, 16, 17, 18] These questions arise
in diverse contexts with regard to the nature of the wave
function of decaying nuclei, atoms and molecules, elec-
tromagnetic waves in microspheres or chaotic cavities,
and gravity waves produced by matter captured by black
holes. [16]

In this Letter, we explore the nature of propagation
in an open dissipative random one-dimensional dielec-
tric medium embedded in a rectangular waveguide. Mea-
surements of the microwave field spectrum are made at
closely spaced points along the entire length of the waveg-
uide over a spectral range in which δ < 1. In all sam-
ples, we find spectrally isolated Lorentzian lines associ-
ated with exponentially localized waves. Whenever peaks
in the field overlap spectrally, they also overlap spatially.
Only then does the field penetrates substantially beyond
the first half of the sample. When the field spectra at
each points within the sample are decomposed into a sum
of Lorentzian lines and a slowly varying background, the
central frequencies and widths of the lines are found to be
independent of position within the sample. This confirms
the validity of the quasimode expansion of the field. The
leakage rate through the boundaries and the absorption
rates are determined independently and compared to the
quasimode linewidth.



2

FIG. 1: Spectra of the field amplitude at each point along
a typical random sample normalized to the amplitude of the
incident field. The arrow points to the input direction. Inset:
Description of the experimental set up and schematic of the
ceramic structure element.

Field spectra are taken along the length of a slotted W-
42 microwave waveguide using a vector network analyzer.
The field is weakly coupled to a cable without a protrud-
ing antenna inside a copper enclosure. A 2 mm-diameter
hole in the enclosure is pressed against the slot, which is
otherwise covered by copper bars attached to both sides
of the enclosure (inset Fig. 1). The entire detector as-
sembly is translated in 1 mm steps by a stepping motor.
Measurements are made in one hundred random sample
realizations each composed of randomly juxtaposed di-
electric elements. Ceramic blocks are milled to form a
binary element of length a = 7.74 ± 0.04 mm. The first
half of the block is solid and the second half is two pro-
jecting thin walls on either side of the air space, as shown
in the inset of Fig. 1. The orientation of the solid ele-
ment towards or away from the front of the waveguide is
randomly selected. This structure introduces states into
the band gap of the corresponding periodic structure [19]
close to the band edges. In order to produce states in the
middle of the band gap, ceramic slabs of thickness a/2,
corresponding to the solid half of the binary elements, or
Styrofoam slabs, with refractive index close to unity, are
inserted randomly. The samples are composed of 31 bi-
nary elements, 5 single ceramic elements and 5 Styrofoam
elements with a total length of 28.8 cm.

Spectra of the field amplitude at equally spaced points
along a typical random sample configuration normalized
to the amplitude of the incident field amplitude are shown
in Fig. 1. A few isolated exponential peaks correspond-
ing to localized modes are seen below 18.7 GHz, with
different Lorentzian linewidths. Between 18.7 GHz and
19.92 GHz, lines generally overlap so that δ > 1 and the
wave is extended. The field amplitude within the sample
over a narrower frequency range in a different random
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FIG. 2: (a) Spectra of the field amplitude at each point along
a random sample with spectrally overlapping peaks normal-
ized to the amplitude of the incident field. (b) The top view
of Fig. 2a in logarithmic presentation.

configuration, in which spectrally overlapping peaks are
observed, is shown in two projections in Fig. 2. In order
to exhibit the progression of the phase within the sample,
a top view of the logarithm of the amplitude of the data
plotted in Fig. 2a is presented in Fig. 2b. In the periodic
binary structure, the same projection as in Fig. 2b, shows
parallel ridges corresponding to maxima of the field am-
plitude separated by a. Thus half the wavelength equals
a throughout the band gap, or λ = 2a. When the fre-
quency is tuned through a Lorentzian line, which corre-
sponds to a localized state (e.g. ν = 15.3 GHz), the phase
through the sample increases by π rad and an additional
peak in the amplitude variation across the sample is in-
troduced. In the frequency interval between 15.6 and
15.8 GHz where multiple peaks are observed in the field
distribution, the number of ridges is increased by 3. This
suggests that the radiation is tuned through the central
frequency of three successive resonances. This is tested
by fitting the field spectrum to a sum N of Lorentzian
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FIG. 3: Comparison of the measured field magnitude (dots)
to Eq. 1 (full line) at four different locations. The Lorentzian
lines and the polynomial in Eq. 1 are represented in dotted
lines.

lines, as follows,

E(ν, x) =

N∑

n=1

An(x)

Γn(x) + i(ν − νn(x))
+

2∑

m=0

Cm(x)(ν − ν0)
m

(1)
where An(x) and Cn(x) are complex coefficients. The
slowly varying polynomial of the second degree centered
at ν0 represents the sum of the evanescent wave and the
tail of the response of distant lines. Here, ν0 = 15.66
GHz, which is the center of the frequency interval con-
sidered. We choose N = 5 to include the two “satellite”
lines at 15.3 GHz and 16.06 GHz. An iterative double
least-squares fit procedure is applied independently at
each position x within the sample as follows: a first guess
for the central frequencies, νn, and linewidths Γn is used
to fit the data versus frequency to Eq. 1 at each position
x, with the amplitude coefficients An(x), and Cn(x) as
fitting parameters. These values are used in a second step
in which, only the νn(x), and Γn(x) are fitting parame-
ters within a bounded spectral range. This double fitting
procedure can be repeated to improve the fit. The quality
of the fit can be seen in Fig. 3. Indeed, the χ2 normalized
by the product of the integrated spectrum and the degree
of freedom (the number of point minus the number of free
parameters), stays below 2×10−3 over 90% of the sample
length. The noise is higher near the sample output where
the signal is generally close to the noise level. The cen-
tral frequencies, νn(x), and linewidths Γn(x), found in
the fit are shown in Fig. 4. A plot of the complex square
of each term in Eq. 1 is shown in Fig. 5. Fluctuations
in νn(x) and Γn(x) are large only at positions for which
the peak magnitude of the terms for the nth mode are
low, as can be seen in Fig. 4. In the domain in which
fluctuations in the central frequencies and linewidths for
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FIG. 4: Spatial dependence of central frequency and linewidth
for the five modes shown in Fig. 5

a particular quasimode are low, these quantities are rela-
tively independent of position and the field amplitude is
given to good accuracy by substituting the average val-
ues of νn(x) = νn and Γn(x) = Γn in Eq. 1. The drift
is greatest in mode 2, where it is less than 20% of the
linewidth.

With νn and Γn specified, each of the Lorentzian terms
in Eq. 1 corresponds to a quasimode. The Fourier trans-
form of each term gives the response to an incident pulse
in which the temporal and spatial variation factorize,
fn(x, t) = fn(x)exp(−i(2πνn − iΓn)t). Between the two
“satellite modes”, “mode 1” (ν1 ≃ 15.56 GHz, Γ1 ≃ 0.67
GHz) is broad as a result of its closeness to the input.
“Mode 2” (ν2 ≃ 15.70 GHz, Γ2 ≃ 0.051 GHz) and “mode
3” (ν3 ≃ 15.73 GHz, Γ3 ≃ 0.07 GHz) are spatially ex-
tended and multi-peaked in a spectral range in which
quasimodes are otherwise strongly localized. In fact, the
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FIG. 5: Field magnitude for five quasimodes and slowly vary-
ing polynomial term in Eq. 1.

”satellite modes” are neither that isolated and extend
beyond the expected localization length due to non neg-
ligible overlap with other modes.” The limited variation
of the frequencies and linewidths with position indicates
that, even for overlapping modes in an open dissipative
sample, the states we have identified are part of complete
orthogonal set.

Because of dissipation within and leakage from the
random sample, the system is not Hermitian, but it re-
mains symmetric since reciprocity is preserved. A non-
Hermitian but symmetric Hamiltonian has complex or-
thogonal eigenvalues when the appropriate inner product
is used. [16, 20] If the amplitudes found in the fit and
shown in Fig. 5 are orthogonal, the linewidths of quasi-
modes would equal the sum of the absorption rate, Γa

and the leakage rates for specific modes, Γln, for the nth
quasimode. The sample dissipation rate is given by the
ratio of the net flux into the sample, which is the dif-
ference between the incident flux and the sum of the re-
flected and transmitted fluxes, and the steady-state elec-
tromagnetic energy in the sample, which is proportional

to
∫ L

0
ǫ(x)E2dx, where ǫ(x) is the effective relative per-

mittivity determined from a model of waveguide disper-
sion and measurements in the periodic structure. Γln is

determined from the ratio of flux away from the sample
for a given quasimode to the energy in the sample for this
quasimode for steady-state excitation. The leakage from
the sample for a given quasimode is obtained by decom-
posing the scattered wave in the empty waveguide before
and after the random sample into a sum of Lorentzian
lines as given in the first sum on the right hand side of
Eq. (1) . The flux is then proportional to the product of
the square of the amplitude of this field component and
the group velocity in the waveguide. Within experimen-
tal uncertainty of 25%, we find that the mode linewidths
are equal to the sum of the absorption and leakage rates.
This supports the conclusion that quasimodes found are
orthogonal.

In conclusion, we have shown that the field inside an
open dissipative random single-mode waveguide can be
decomposed into a complete set of quasimodes, even
when the mode spacing is of the order or smaller than
the linewidths. We find a multi-peaked extended field
distribution whenever quasimodes overlap, and a single
peaked field distribution in the rare cases of spectrally
isolated modes. Because absorption suppresses long-
lived, single-peaked states more strongly than short-lived
multiply peaked states, the wave penetrates into the sec-
ond half of the sample and transmission is substantial
only when a number of closely spaced quasimodes are
excited. Though waves may extend through the sample
when quasimodes overlap in a spectral range in which
δ < 1, their envelope still falls exponentially near each
peak representing a center of localization and the nature
of transport may still be differentiated from diffusive re-
gions for which δ > 1. The demonstration that quasi-
modes are well-defined when the spacing between their
central frequencies is comparable to their linewidth, sug-
gests that a quasimode description may also be appro-
priate for diffusing waves in samples with δ > 1.
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