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EXIT FROM A BASIN OF ATTRACTION FOR STOCHASTIC

WEAKLY DAMPED NONLINEAR SCHRÖDINGER EQUATIONS

ERIC GAUTIER1,2

Abstract. We consider weakly damped nonlinear Schrödinger equations per-
turbed by a noise of small amplitude. The small noise is either complex and of
additive type or real and of multiplicative type. It is white in time and colored
in space. Zero is an asymptotically stable equilibrium point of the determin-
istic equations. We study the exit from a neighborhood of zero, invariant by
the flow of the deterministic equation, in L2 or in H1. Due to noise, large
fluctuations off zero occur. Thus, on a sufficiently large time scale, exit from
these domains of attraction occur. A formal characterization of the small noise
asymptotic of both the first exit times and the exit points is given.

2000 Mathematics Subject Classification. 60F10, 60H15, 35Q55.

Key Words: Large deviations, stochastic partial differential equations,
nonlinear Schrödinger equation, exit from a domain.

1. Introduction

The study of the first exit time from a neighborhood of an asymptotically stable
equilibrium point, the exit place determination or the transition between two equi-
librium points in randomly perturbed dynamical systems is important in several
areas of physics among which statistical and quantum mechanics, chemical reac-
tions, the natural sciences, macroeconomics as to model currency crises or escape
in learning models...

For a fixed noise amplitude and for diffusions, the first exit time and the dis-
tribution of the exit points on the boundary of a domain can be characterized
respectively by the Dirichlet and Poisson equations. However, when the dimension
is larger than one, we may seldom solve explicitly these equations and large devi-
ation techniques are precious tools when the noise is assumed to be small; see for
example [11, 14]. The techniques used in the physics literature is often called opti-
mal fluctuations or instanton formalism and are closely related to large deviations.

In that case, an energy generally characterizes the transition between two states
and the exit from a neighborhood of an asymptotically stable equilibrium point
of the deterministic equation. The energy is derived from the rate function of the
sample path large deviation principle (LDP). When a LDP holds, the first order
of the probability of rare events is that of the Boltzman theory and the square of
the amplitude of the small noise acts as the temperature. The deterministic dy-
namics is sometimes interpreted as the evolution at temperature 0 and the small
noise as the small temperature nonequilibrium case. The exit or transition problem
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is then related to a deterministic least-action principle. The paths that minimize
the energy, also called minimum action paths, are the most likely exiting paths or
transitions. When the infimum is unique, the system has a behavior which is al-
most deterministic even though there is noise. Indeed, other possible exiting paths,
points or transitions are exponentially less probable. In the pioneering article [12],
a nonlinear heat equation perturbed by a small noise of additive type is considered.
Transitions in that case prove to be the instantons of quantum mechanics. The
problem is studied again in [15] where a numerical scheme is presented to compute
the optimal paths. In [20], mathematical and numerical predictions for a noisy exit
problem are confirmed experimentally.

In this article, we consider the case of weakly damped nonlinear Schrödinger
(NLS) equations in R

d. These equations are a generic model for the propagation
of the enveloppe of a wave packet in weakly nonlinear and dispersive media. They
appear for example in nonlinear optics, hydrodynamics, biology, field theory, crys-
tals Fermi-Pasta-Ulam chains of atoms. The equations are perturbed by a small
noise. In optics, the noise corresponds to the spontaneous emission noise due to
amplifiers placed along the fiber line in order to compensate for loss, corresponding
to the weak damping, in the fiber. We shall consider here that there remains a small
weak damping term. In the context of crystals or of Fermi-Pasta-Ulam chains of
atoms, the noise accounts for thermal effects. The relevance of the study of the exit
from a domain in nonlinear optics is discussed in [19]. The noise is of additive or
multiplicative type. We define it as the time derivative in the sense of distributions
of a Hilbert space-valued Wiener process (Wt)t≥0. The evolution equation could be
written in Itô form

(1) iduǫ,u0 = (∆uǫ,u0 + λ|uǫ,u0 |2σuǫ,u0 − iαuǫ,u0)dt +
√

ǫdW,

where α and ǫ are positive and u0 is an initial datum in L2 or H1. When the noise
is of multiplicative type, the product is a Stratonovich product and the equation
may be written

(2) iduǫ,u0 = (∆uǫ,u0 + λ|uǫ,u0 |2σuǫ,u0 − iαuǫ,u0)dt +
√

ǫuǫ,u0 ◦ dW.

Contrary to the Heat equation the linear part has no smoothing effects. In our
case, it defines a linear group which is an isometry on the L2 based Sobolev spaces.
Thus, we cannot treat spatially rough noises and consider colored in space Wiener
processes. This latter property is required to obtain bona-fide Wiener processes in
infinite dimensions. The white noise often considered in Physics seems to give rise
to ill-posed problems.

Results on local and global well-posedness and on the effect of a noise on the
blow-up phenomenon are proved in [5, 6, 7, 8] in the case α = 0. Mixing property
and convergence to equilibrium is studied for weakly damped cubic one dimensional
equations on a bounded domain in [10]. We consider these equations in the whole
space R

d and assume that the power of the nonlinearity σ satisfies σ < 2/d. We
may check that the above result still hold with the damping term and that for such
powers of the nonlinearity the solutions do not exhibit blow-up.

In [16] and [17], we have proved sample paths LDPs for the two types of noises
but without damping and deduced the asymptotic of the tails of the blow-up times.
In [16], we also deduced the tails of the mass, defined later, of the pulse at the end of
a fiber optical line. We have thus evaluated the error probabilities in optical soliton
transmission when the receiver records the signal on an infinite time interval. In
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[9] we have applied the LDPs to the problem of the diffusion in position of the
soliton and studied the tails of the random arrival time of a pulse in optical soliton
transmission for noises of additive and multiplicative types.

The flow defined by the above equations can be decomposed in a Hamiltonian,
a gradient and a random component. The mass

N (u) =

∫

Rd

|u|2 dx

characterizes the gradient component. The Hamiltonian denoted by H(u), defined
for functions in H1, has a kinetic and a potential term, it may be written

H (u) = (1/2)

∫

Rd

|∇u|2 dx − (λ/(2σ + 2))

∫

Rd

|u|2σ+2 dx.

Note that the vector fields associated to the mass and Hamiltonian are orthogonal.
We could rewrite, for example equation (1), as

duǫ,u0 =

(

δH (uǫ,u0)

δuǫ,u0
− (α/2)

δN (uǫ,u0)

δuǫ,u0

)

dt − i
√

ǫdW.

Also, the mass and Hamiltonian are invariant quantities of the equation without
noise and damping. Other quantities like the linear or angular momentum are also
invariant for nonlinear Schrödinger equations.

Without noise, solutions are uniformly attracted to zero in L2 and in H1. In this
article we study the classical problem of exit from a bounded domain containing
zero in its interior and invariant by the deterministic evolution. We prove that the
behavior of the random evolution is completely different from the deterministic
evolution. Though for finite times the probabilities of large excursions off neigh-
borhoods of zero go to zero exponentially fast with ǫ, if we wait long enough - the
time scale is exponential - such large fluctuations occur and exit from a domain
takes place. We give two types of results depending on the topology we consider,
L2 or H1. The L2-setting is less involved than the H1-setting. This is due to the
structure of the NLS equation and the fact that the L2 norm is conserved for de-
terministic non damped equations. We have chosen to also work in H1 because it is
the mathematical framework to study perturbations of solitons; a problem we hope
to address in future research.

We give a formal characterization of the small noise asymptotic of the first exit
time and exit points. The main tool is a uniform large deviation principle at the
level of the paths of the solutions. The behavior of the process is proved to be
exponentially equivalent to that of the process starting from a little ball around
zero. Thus, if a multiplicative noise and the L2 topology is considered such balls
are invariant by the stochastic evolution as well and the exit problem is not inter-
esting. In infinite dimensions we are faced with two major difficulties. Primarily,
the domains under consideration are not relatively compact. In bounded domains of
R

d, it is sometimes possible to use compact embedding and the regularizing prop-
erties of the semi-group. In [13] where the case of the Heat semi-group and a space
variable in a unidimensional torus is treated, these properties are at hand. Also, in
[2], the neighborhood is defined for a strong topology of β-Hölder functions and is
relatively compact for a weaker topology, the space variable is again in a bounded
subset of R

d. We are not able to use the above properties here since the Schrödinger
linear group is an isometry on every Sobolev space based on L2 and we work on
the whole space R

d. Another difficulty in infinite dimensions and with unbounded
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linear operators is that, unlike ODEs, continuity of the linear flow with respect to
the initial data holds in a weak sense. The semi-group is strongly continuous and
not in general uniformly continuous. We see that we may use other arguments than
those used in the finite dimensional setting, some of which are taken from [3], and
that the expected results still hold. We are also faced with particular difficulties
arising from the nonlinear Schrödinger equation among which the fact that the
nonlinearity is locally Lipschitz only in H1 for d = 1. In this purpose, we use the
hyper contractivity governed by the Strichartz inequalities which is related to the
dispersive properties of the equation.

In this article, we do not address the control problems for the controlled deter-
ministic PDE. We could expect that the upper and lower bound on the expected
first exit time are equal and could be written in terms of the usual quasi-potential.
The exit points could be related to solitary waves. These issues will be studied in
future works.

The article is organized as follows. In the first section, we introduce the main
notations and tools, the proof of the uniform large deviation principle is given in
the annex. In the next section, we consider the exit off a domain in L2 for equations
with additive noise while in the last section we consider the exit off domains in H1

for equations with an additive or multiplicative noise.

2. Preliminaries

Throughout the paper the following notations are used.
The set of positive integers and positive real numbers are denoted by N

∗ and
R

∗
+. For p ∈ N

∗, Lp is the Lebesgue space of complex valued functions. For k in N
∗,

Wk,p is the Sobolev space of Lp functions with partial derivatives up to level k, in
the sense of distributions, in Lp. For p = 2 and s in R

∗
+, Hs is the Sobolev space of

tempered distributions v of Fourier transform v̂ such that (1 + |ξ|2)s/2v̂ belongs to

L2. We denote the spaces by Lp
R
, Wk,p

R
and Hs

R
when the functions are real-valued.

The space L2 is endowed with the inner product (u, v)L2 = Re
∫

Rd u(x)v(x)dx. If I
is an interval of R, (E, ‖ ·‖E) a Banach space and r belongs to [1,∞], then Lr(I; E)
is the space of strongly Lebesgue measurable functions f from I into E such that
t → ‖f(t)‖E is in Lr(I).

The space of linear continuous operators from B into B̃, where B and B̃ are

Banach spaces is Lc

(

B, B̃
)

. When B = H and B̃ = H̃ are Hilbert spaces, such an

operator is Hilbert-Schmidt when
∑

j∈N
‖ΦeH

j ‖2
H̃

< ∞ for every (ej)j∈N
complete

orthonormal system of H . The set of such operators is denoted by L2(H, H̃), or

Ls,r
2 when H = Hs and H̃ = Hr. When H = Hs

R
and H̃ = Hr

R
, we denote it by Ls,r

2,R.

When s = 0 or r = 0 the Hilbert space is L2 or L2
R
.

We also denote by B0
ρ and S0

ρ respectively the open ball and the sphere centered

at 0 of radius ρ in L2. We denote these by B1
ρ and S1

ρ in H1. We write N 0 (A, ρ)

for the ρ−neighborhood of a set A in L2 and N 1 (A, ρ) the neighborhood in H1. In
the following we impose that compact sets satisfy the Hausdorff property.

We use in Lemma 3.6 below the integrability of the Schrödinger linear group
which is related to the dispersive property. Recall that (r(p), p) is an admissible
pair if p is such that 2 ≤ p < 2d/(d − 2) when d > 2 (2 ≤ p < ∞ when d = 2 and
2 ≤ p ≤ ∞ when d = 1) and r(p) satisfies 2/r(p) = d (1/2 − 1/p).
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For every (r(p), p) admissible pair and T positive, we define the Banach spaces

Y (T,p) = C
(

[0, T ]; L2
)

∩ Lr(p) (0, T ; Lp) ,

and

X(T,p) = C
(

[0, T ]; H1
)

∩ Lr(p)
(

0, T ; W1,p
)

,

where the norms are the maximum of the norms in the two intersected Banach
spaces. The Schrödinger linear group is denoted by (U(t))t≥0; it is defined on L2 or

on H1. Let us recall the Strichartz inequalities, see [1],

(i) There exists C positive such that for u0 in L2, T positive and
(r(p), p) admissible pair,

‖U(t)u0‖Y (T,p) ≤ C ‖u0‖L2 ,

(ii) For every T positive, (r(p), p) and (r(q), q) admissible pairs, s and ρ
such that 1/s + 1/r(q) = 1 and 1/ρ + 1/q = 1, there exists C positive such
that for f in Ls (0, T ; Lρ),

∥

∥

∫ ·

0 U(· − s)f(s)ds
∥

∥

Y (T,p) ≤ C‖f‖Ls(0,T ;Lρ).

Similar inequalities hold when the group is acting on H1, replacing L2 by H1, Y (T,p)

by X(T,p) and Ls (0, T ; Lρ) by Ls
(

0, T ; W1,ρ
)

.
It is known that, in the Hilbert space setting, only direct images of uncorre-

lated space wise Wiener processes by Hilbert-Schmidt operators are well defined.
However, when the semi-group has regularizing properties, the semi-group may act
as a Hilbert-Schmidt operator and a white in space noise may be considered. It is
not possible here since the Schrödinger group is an isometry on the Sobolev spaces
based on L2. The Wiener process W is thus defined as ΦWc, where Wc is a cylin-
drical Wiener process on L2 and Φ is Hilbert-Schmidt. Then ΦΦ∗ is the correlation
operator of W (1), it has finite trace.

We consider the following Cauchy problems

(3)

{

iduǫ,u0 = (∆uǫ,u0 + λ|uǫ,u0 |2σuǫ,u0 − iαuǫ,u0)dt +
√

ǫdW,
uǫ,u0(0) = u0

with u0 in L2 and Φ in L0,0
2 or u0 in H1 and Φ in L0,1

2 , and

(4)

{

iduǫ,u0 = (∆uǫ,u0 + λ|uǫ,u0 |2σuǫ,u0 − iαuǫ,u0)dt +
√

ǫuǫ,u0 ◦ dW,
uǫ,u0(0) = u0

with u0 in H1 and Φ in L0,s
2,R where s > d/2+ 1. When the noise is of multiplicative

type, we may write the equation in terms of a Itô product,

iduǫ,u0 = (∆uǫ,u0 + λ|uǫ,u0 |2σuǫ,u0 − iαuǫ,u0 − (iǫ/2)uǫ,u0FΦ)dt +
√

ǫuǫ,u0dW,

where FΦ(x) =
∑

j∈N
(Φej(x))2 for x in R

d and (ej)j∈N
a complete orthonormal

system of L2. We consider mild solutions; for example the mild solution of (3)
satisfy

uǫ,u0(t) = U(t)u0 − iλ
∫ t

0 U(t − s)(|uǫ,u0(s)|2σuǫ,u0(s) − iαuǫ,u0(s))ds

−i
√

ǫ
∫ t

0 U(t − s)dW (s), t > 0.
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The Cauchy problems are globally well posed in L2 and H1 with the same arguments
as in [6].

The main tools in this article are the sample paths LDPs for the solutions of the
three Cauchy problems. They are uniform in the initial data. Unlike in [9, 16, 17],
we use a Freidlin-Wentzell type formulation of the upper and lower bounds of the
LDPs. Indeed, it seems that the restriction that initial data be in compact sets in
[17] is a real limitation for stochastic NLS equations. The linear Schrödinger group
is not compact due to the lack of smoothing effect and to the fact that we work
on the whole space R

d. This limitation disappears when we work with the Freidlin-
Wentzell type formulation; we may now obtain bounds for initial data in balls of
L2 or H1 for ǫ small enough. It is well known that in metric spaces and for non
uniform LDPs the two formulations are equivalent. A proof is given in the Annex
and we stress, in the multiplicative case, on the slight differences with the proof of
the result in [17].

We denote by S(u0, h) the skeleton of equation (3) or (4), i.e. the mild solution
of the controlled equation

{

i
(

du
dt + αu

)

= ∆u + λ|u|2σu + Φh,
u(0) = u0

where u0 belongs to L2 or H1 in the additive case and the mild solution of
{

i
(

du
dt + αu

)

= ∆u + λ|u|2σu + uΦh,
u(0) = u0

where u0 belongs to H1 in the multiplicative case.
The rate functions of the LDPs are always defined as

Iu0

T (w) = (1/2) inf
h∈L2(0,T ;L2): S(u0,h)=w

∫ T

0

‖h(s)‖2
L2ds.

We denote for T and a positive by Ku0

T (a) = (Iu0

T )
−1

([0, a]) the sets

Ku0

T (a) =

{

w ∈ C
(

[0, T ]; L2
)

: w = S(u0, h), (1/2)

∫ T

0

‖h(s)‖2
L2ds ≤ a

}

.

We also denote by dC([0,T ];L2) the usual distance between sets of C
(

[0, T ]; L2
)

and

by dC([0,T ];H1) the distance between sets of C
(

[0, T ]; H1
)

.

We write S̃(u0, f) for the skeleton of equation (4) where we replace Φh by ∂f
∂t

where f belongs to H1
0 (0, T ; Hs

R
), the subspace of C ([0, T ]; Hs

R
) of functions that

vanishes at zero and whose time derivative is square integrable. Also Ca denotes
the set

Ca =

{

f ∈ H1
0 (0, T ; Hs

R) :
∂f

∂t
∈ imΦ, IW

T (f) = (1/2)

∥

∥

∥

∥

Φ−1
|(kerΦ)⊥

∂f

∂t

∥

∥

∥

∥

2

L2(0,T ;L2)

≤ a

}

and A(d) the set [2,∞) when d = 1 or d = 2 and [2, 2(3d − 1)/(3(d − 1))) when
d ≥ 3. The above IW

T is the good rate function of the LDP for the Wiener process.
The uniform LDP with the Freidlin-Wentzell formulation that we need in the re-
maining is then as follows. In the additive case we consider the L2 and H1 topologies
while in the multiplicative case we consider the H1 topology only. As it has been
explained previously we do not consider the L2 topology for multiplicative noises
since then the L2 norm remains invariant for the stochastic evolution.
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Theorem 2.1. In the additive case and in L2 we have:
for every a, ρ, T , δ and γ positive,
(i) there exists ǫ0 positive such that for every ǫ in (0, ǫ0), u0 such that

‖u0‖L2 ≤ ρ and ã in (0, a],

P
(

dC([0,T ];L2) (uǫ,u0 , Ku0

T (ã)) ≥ δ
)

< exp (−(ã − γ)/ǫ) ,

(ii) there exists ǫ0 positive such that for every ǫ in (0, ǫ0), u0 such that
‖u0‖L2 ≤ ρ and w in Ku0

T (a),

P

(

‖uǫ,u0 − w‖C([0,T ];L2) < δ
)

> exp (−(Iu0

T (w) + γ)/ǫ) .

In H1, the result holds for additive and multiplicative noises replacing in the above
‖u0‖L2 by ‖u0‖H1 and C

(

[0, T ]; L2
)

by C
(

[0, T ]; H1
)

.

The proof of this result is given in the annex.

Remark 2.2. The extra condition ”For every a positive and K compact in L2, the
set KK

T (a) =
⋃

u0∈K Ku0

T (a) is a compact subset of C
(

[0, T ]; L2
)

” often appears to
be part of a uniform LDP. It is not used in the following.

3. Exit from a domain of attraction in L2

3.1. Statement of the results. In this section we only consider the case of an
additive noise. Recall that for the real multiplicative noise the mass is decreasing
and thus exit is impossible.

We may easily check that the mass N (S(u0, 0)) of the solution of the determin-
istic equation satisfies

(5) N (S(u0, 0)(t)) = N (u0) exp (−2αt) .

With noise though, the mass fluctuates around the deterministic decay. Recall how
the Itô formula applies to the fluctuation of the mass, see [6] for a proof,

(6)
N (uǫ,u0(t)) − N (u0) = −2

√
ǫIm

∫

Rd

∫ t

0 uǫ,u0dWdx

−2α ‖uǫ,u0‖2
L2(0,t;L2) + ǫt‖Φ‖2

L0,0
2

.

We consider domains D which are bounded measurable subsets of L2 containing 0
in its interior and invariant by the deterministic flow, i.e.

∀u0 ∈ D, ∀t ≥ 0, S(u0, 0)(t) ∈ D.

It is thus possible to consider balls. There exists R positive such that D ⊂ BR.
We define by

τ ǫ,u0 = inf {t ≥ 0 : uǫ,u0(t) ∈ Dc}
the first exit time of the process uǫ,u0 off the domain D.

An easy information on the exit time is obtained as follows. The expectation of
an integration via the Duhamel formula of the Itô decomposition, the process uǫ,u0

being stopped at the first exit time, gives E [exp (−2ατ ǫ,u0)] = 1−2αR/
(

ǫ‖Φ‖2
L0,0

2

)

.

Without damping we obtain E [τ ǫ,u0 ] = R/
(

ǫ‖Φ‖2
L0,0

2

)

. To get more precise infor-

mation for small noises we use LDP techniques.
Let us introduce

e = inf
{

I0
T (w) : w(T ) ∈ D

c
, T > 0

}

.
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When ρ is positive and small enough, we set

eρ = inf {Iu0

T (w) : ‖u0‖L2 ≤ ρ, w(T ) ∈ (D−ρ)
c
, T > 0} ,

where D−ρ = D \ N 0 (∂D, ρ) and ∂D is the the boundary of ∂D in L2. We define
then

e = lim
ρ→0

eρ.

We shall denote in this section by ‖Φ‖c the norm of Φ as a bounded operator on
L2. Let us start with the following lemma.

Lemma 3.1. 0 < e ≤ e.

Proof. It is clear that e ≤ e. Let us check that e > 0. Let d denote the positive
distance between 0 and ∂D. Take ρ small such that the distance between B0

ρ and

(D−ρ)
c is larger than d/2. Multiplying the evolution equation by −iS(u0, h), taking

the real part, integrating over space and using the Duhamel formula we obtain

N (S(u0, h)(T )) − exp (−2αT )N (u0)

= 2
∫ T

0 exp (−2α(T − s))Im

(

∫

Rd S (u0, h)Φhdxds
)

.

If S(u0, h)(T ) ∈ (D−ρ)
c

and correspond to the first escape off D then

d/2 ≤ 2‖Φ‖c

∫ T

0
exp (−2α(T − s)) ‖S(u0, h)(s)‖L2 ‖h(s)‖L2ds

≤ 2R‖Φ‖c

(

∫ T

0 exp (−4α(T − s)) ds
)1/2

‖h‖L2(0,T ;L2),

thus

αd2/
(

8R2‖Φ‖2
c

)

≤ ‖h‖2
L2(0,T ;L2)/2,

and the result follows. �

Remark 3.2. We would expect e and e to be equal. We may check that it is enough
to prove approximate controllability. The argument is however difficult since we are
dealing with noises which are colored space wise, the Schrödinger group does not
have global smoothing properties and because of the nonlinearity. If these two bounds
were indeed equal, they would also correspond to

E(D) = (1/2) inf
{

‖h‖2
L2(0,∞;L2) : ∃T > 0 : S(0, h)(T ) ∈ ∂D

}

= infv∈∂D V (0, v)

where the quasi-potential is defined as

V (u0, uf ) = inf
{

Iu0

T (w) : w ∈ C
(

[0,∞); L2
)

, w(0) = u0, w(T ) = uf , T > 0
}

.

We prove in this section the two following results. The first theorem characterizes
the first exit time from the domain.

Theorem 3.3. For every u0 in D and δ positive, there exists L positive such that

(7) limǫ→0ǫ log P (τ ǫ,u0 /∈ (exp ((e − δ)/ǫ) , exp ((e + δ)/ǫ))) ≤ −L,

and for every u0 in D,

(8) e ≤ limǫ→0ǫ log E (τ ǫ,u0) ≤ limǫ→0ǫ log E (τ ǫ,u0) ≤ e.

Moreover, for every δ positive, there exists L positive such that

(9) limǫ→0ǫ log sup
u0∈D

P (τ ǫ,u0 ≥ exp ((e + δ)/ǫ)) ≤ −L,
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and

(10) limǫ→0ǫ log sup
u0∈D

E (τ ǫ,u0) ≤ e.

The second theorem characterizes formally the exit points. We shall define for ρ
positive small enough, N a closed subset of ∂D

eN,ρ = inf
{

Iu0

T (w) : ‖u0‖L2 ≤ ρ, w(T ) ∈
(

D \ N 0 (N, ρ)
)c

, T > 0
}

.

We then define
eN = lim

ρ→0
eN,ρ.

Note that eρ ≤ eN,ρ and thus e ≤ eN .

Theorem 3.4. If eN > e, then for every u0 in D, there exists L positive such that

limǫ→0ǫ log P (uǫ,u0 (τ ǫ,u0) ∈ N) ≤ −L.

Thus the probability of an escape off D via points of N such that eρ ≤ eN,ρ goes
to zero exponentially fast with ǫ.

Suppose that we are able to solve the previous control problem, then as the
noise goes to zero, the probability of an exit via closed subsets of ∂D where the
quasi-potential is not minimal goes to zero. As the expected exit time is finite, an
exit occurs almost surely. It is exponentially more likely that it occurs via infima
of the quasi-potential. When there are several infima, the exit measure is a proba-
bility measure on ∂D. When there is only one infimum we may state the following
corollary.

Corollary 3.5. Assume that v∗ in ∂D is such that for every δ positive and N =
{v ∈ ∂D : ‖v − v∗‖L2 ≥ δ} we have eN > e then

∀δ > 0, ∀u0 ∈ D, ∃L > 0 : limǫ→0ǫ log P (‖uǫ,u0 (τ ǫ,u0) − v∗‖L2 ≥ δ) ≤ −L.

3.2. Preliminary lemmas. Let us define

σǫ,u0
ρ = inf

{

t ≥ 0 : uǫ,u0(t) ∈ B0
ρ ∪ Dc

}

,

where B0
ρ ⊂ D.

Lemma 3.6. For every ρ and L positive with B0
ρ ⊂ D, there exists T and ǫ0

positive such that for every u0 in D and ǫ in (0, ǫ0),

P
(

σǫ,u0
ρ > T

)

≤ exp (−L/ǫ) .

Proof. The result is straightforward if u0 belongs to B0
ρ . Suppose now that u0

belongs to D \ B0
ρ . From equation (5), the bounded subsets of L2 are uniformly

attracted to zero by the flow of the deterministic equation. Thus there exists a
positive time T1 such that for every u1 in the ρ/8−neighborhood of D \ B0

ρ and

t ≥ T1, S (u1, 0) (t) ∈ B0
ρ/8. We shall choose ρ < 8 and follow three steps.

Step 1: Let us first recall why there exists M ′ = M ′(T1, R, σ, α) such that

(11) sup
u1∈N 0(D\B0

ρ,ρ/8)
‖S(u1, 0)‖Y (T1,2σ+2) ≤ M ′.

From the Strichartz inequalities, there exists C positive such that

‖S(u1, 0)‖Y (t,2σ+2) ≤ C ‖u1‖L2 + C
∥

∥

∥
|S(u1, 0)|2σ+1

∥

∥

∥

Lγ′ (0,t;Ls′)

+Cα ‖S (u1, 0)‖L1(0,t;L2)
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where γ′ and s′ are such that 1/γ′ + 1/r(p̃) = 1 and 1/s′ + 1/p̃ = 1 and (r(p̃), p̃)
is an admissible pair. Note that the first term is smaller than C(R + 1). From the
Hölder inequality, setting

2σ

2σ + 2
+

1

2σ + 2
=

1

s′
,

2σ

ω
+

1

r(2σ + 2)
=

1

γ′
,

we can write
∥

∥

∥
|S(u1, 0)|2σ+1

∥

∥

∥

Lγ′ (0,t;Ls′)
≤ C ‖S(u1, 0)‖Lr(2σ+2)(0,t;L2σ+2) ‖S(u1, 0)‖2σ

Lω(0,t;L2σ+2) .

It is easy to check that since σ < 2/d, we have ω < r(2σ + 2). Thus it follows that

‖S(u1, 0)‖Y (t,2σ+2) ≤ C(R+1)+Ct
ωr(2σ+2)

r(2σ+2)−ω ‖S(u1, 0)‖2σ+1
Y (t,2σ+2)+Cα

√
t ‖S(u1, 0)‖Y (t,2σ+2) .

The function x 7→ C(R + 1) + Ct
ωr(2σ+2)

r(2σ+2)−ω x2σ+1 + Cα
√

tx − x is positive on
a neighborhood of zero. For t0 = t0(R, σ, α) small enough, the function has at
least one zero. Also, the function goes to ∞ as x goes to ∞. Thus, denoting by
M(R, σ) the first zero of the above function, we obtain by a classical argument that
‖S(u1, 0)‖Y (t0,2σ+2) ≤ M(R, σ) for every u1 in N 0

(

D \ B0
ρ, ρ/8

)

.

Also, as for every t in [0, T ], S(u1, 0)(t) belongs to N 0
(

D \ B0
ρ , ρ/8

)

, repeating the
previous argument, u1 is replaced by S(u1, 0)(t0) and so on, we obtain

sup
u1∈N 0(D\B0

ρ,ρ/8)
‖S(u1, 0)‖Y (T1,p) ≤ M ′,

where M ′ = ⌈T1/t0⌉M proving (11).

Step 2: Let us now prove that for T large enough, to be defined later, and larger
than T1, we have
(12)

Tρ =
{

w ∈ C
(

[0, T ]; L2
)

: ∀t ∈ [0, T ], w(t) ∈ N 0
(

D \ B0
ρ , ρ/8

)}

⊂ Ku0

T (2L)c.

Since Ku0

T (2L) is included in the image of S(u0, ·) it suffices to consider w in Tρ

such that w = S(u0, h) for some h in L2(0, T ; L2). Take h such that S(u0, h) belongs
to Tρ we have

‖S(u0, h) − S(u0, 0)‖C([0,T1];L2) ≥ ‖S(u0, h)(T1) − S(u0, 0)(T1)‖L2 ≥ 3ρ/4,

but also, necessarily, for the admissible pair (r(2σ + 2), 2σ + 2),

(13) ‖S(u0, h) − S(u0, 0)‖Y (T1,2σ+2) ≥ 3ρ/4.

Denote by SM ′+1 the skeleton corresponding to the following control problem
{

i
(

du
dt + αu

)

= ∆u + λθ
(

‖u‖
Y (t,2σ+2)

M ′+1

)

|u|2σu + Φh,

u(0) = u1

where θ is a C∞ function with compact support, such that θ(x) = 0 if x ≥ 2 and
θ(x) = 1 if 0 ≤ x ≤ 1. Then (13) implies that

∥

∥

∥
SM ′+1(u0, h) − SM ′+1(u0, 0)

∥

∥

∥

Y (T1,2σ+2)
≥ 3ρ/4.

We shall now split the interval [0, T1] in many parts. We shall denote here by
Y s,t,2σ+2 for s < t the space Y t,2σ+2 on the interval [s, t]. Applying the Strichartz
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inequalities on a small interval [0, t] with the computations in the proof of Lemma
3.3 in [5], we obtain
∥

∥

∥
SM ′+1(u0, h) − SM ′+1(u0, 0)

∥

∥

∥

Y (t,2σ+2)
≤ Cα

√
t
∥

∥

∥
SM ′+1(u0, h) − SM ′+1(u0, 0)

∥

∥

∥

Y (t,2σ+2)

+CM ′+1t
1−dσ/2

∥

∥

∥
SM ′+1(u0, h) − SM ′+1(u0, 0)

∥

∥

∥

Y (t,2σ+2)
+ C

√
t‖Φ‖c‖h‖L2(0,t;L2)

where CM ′+1 is a constant which depends on M ′ + 1. Take t1 small enough such

that CM ′+1t
1−dσd/2
1 + Cα

√
t1 ≤ 1/2. We obtain then

∥

∥

∥
SM ′+1(u0, h) − SM ′+1(u0, 0)

∥

∥

∥

Y (t1,2σ+2)
≤ 2C

√
t1‖Φ‖c‖h‖L2(0,t1;L2).

In the case where 2t1 < T1, let us see how such inequality propagates on [t1, 2t1].

We now have two different initial data SM ′+1(u0, h) (t1) and SM ′+1(u0, 0) (t1). We
obtain similarly
∥

∥

∥
SM ′+1(u0, h) − SM ′+1(u0, 0)

∥

∥

∥

Y (t1,2t1,2σ+2)

≤ 2C
√

t1‖Φ‖c‖h‖L2(0,t1;L2) + 2
∥

∥

∥
SM ′+1(u0, h) (t1) − SM ′+1(u0, 0) (t1)

∥

∥

∥

H1

≤ 2C
√

t1‖Φ‖c‖h‖L2(0,T1;L2) + 2
∥

∥

∥
SM ′+1(u0, h) (t1) − SM ′+1(u0, 0) (t1)

∥

∥

∥

Y (0,t1,2σ+2)
.

Then iterating on each interval of the form [kt1, (k+1)t1] for k in {1, ..., ⌊T1/t1 − 1⌋},
the remaining term can be treated similarly, and using the triangle inequality we
obtain that
∥

∥

∥
SM ′+1(u0, h) − SM ′+1(u0, 0)

∥

∥

∥

Y (T1,2σ+2)
≤ 2⌈T1/t1⌉+1C

√
t1‖Φ‖c‖h‖L2(0,t1;L2).

We may then conclude that

‖h‖2
L2(0,T1;L2) /2 ≥ M ′′

where M ′′ = ρ2/(8C (t1, T1) ‖Φ‖2
c) and C (t1, T1) is a constant which depends only

on t1 and T1. Note that we have used for later purposes that 3ρ/2 > ρ/2.

Similarly replacing [0, T1] by [T1, 2T1] and u0 respectively by S (u0, h) (T1) and
S (u0, 0) (T1) in (13), the inequality still holds true. Thus thanks to the inverse
triangle inequality we obtain on [T1, 2T1]
∥

∥

∥
SM ′+1(u0, h) − SM ′+1(u0, 0)

∥

∥

∥

Y (T1,2T1,2σ+2)

=
∥

∥

∥
SM ′+1

(

SM ′+1(u0, h)(T1), h
)

− SM ′+1
(

SM ′+1(u0, 0)(T1), 0
)
∥

∥

∥

Y (0,T1,2σ+2)

≥ 3ρ/4

Thus from the inverse triangle inequality along with the fact that for both SM ′+1(u0, h)(T1)

and SM ′+1(u0, 0)(T1) as initial data the deterministic solutions belong to the ball
B0

ρ/8, we obtain
∥

∥

∥
SM ′+1

(

SM ′+1(u0, h)(T1), h
)

− SM ′+1
(

SM ′+1(u0, h)(T1), 0
)∥

∥

∥

Y (0,T1,2σ+2)
≥ ρ/2.

We finally obtain the same lower bound

‖h‖2
L2(T1,2T1;L2) /2 ≥ M ′′

as before.
Iterating the argument we obtain if T > 2T1,

‖h‖2
L2(0,2T1;L2) /2 = ‖h‖2

L2(0,T1;L2) /2 + ‖h‖2
L2(T1,2T1;L2) /2 ≥ 2M ′′.
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Thus for j positive and T > jT1, we obtain, iterating the above argument, that

‖h‖2
L2(0,jT1;L2) /2 ≥ jM ′′.

The result (12) is obtained for T = jT1 where j is such that jM ′′ > 2L.

Step 3: We may now conclude from the (i) of Theorem 2.1 since,

P
(

σǫ,u0
ρ > T

)

= P
(

∀t ∈ [0, T ], uǫ,u0(t) ∈ D \ B0
ρ

)

= P
(

dC([0,T ];L2)

(

uǫ,u0, T c
ρ

)

> ρ/8
)

,
≤ P

(

dC([0,T ];L2) (uǫ,u0, Ku0

T (2L)) ≥ ρ/8
)

,

taking a = 2L, ρ = R where D ⊂ BR, δ = ρ/8 and γ = L.
Note that if ρ ≥ 8, we should replace R +1 by R + ρ/8 and M ′ +1 by M ′ + ρ/8.

Anyway, we will use the lemma for small ρ. �

Lemma 3.7. For every ρ positive such that B0
ρ ⊂ D and u0 in D, there exists L

positive such that

limǫ→0ǫ log P
(

uǫ,u0
(

σǫ,u0
ρ

)

∈ ∂D
)

≤ −L

Proof. Take ρ positive satisfying the assumptions of the lemma and take u0

in D. When u0 belongs to B0
ρ the result is straightforward. Suppose now that u0

belongs to D \ B0
ρ . Let T be defined as

T = inf
{

t ≥ 0 : S (u0, 0) (t) ∈ B0
ρ/2

}

,

then since S (u0, 0) ([0, T ]) is a compact subset of D, the distance d between S (u0, 0) ([0, T ])
and Dc is well defined and positive. The conclusion follows then from the fact that

P
(

uǫ,u0
(

σǫ,u0
ρ

)

∈ ∂D
)

≤ P

(

‖uǫ,u0 − S (u0, 0)‖C([0,T ];L2) ≥ (ρ ∧ d)/2
)

,

the LDP and the fact that, from the compactness of the sets Ku0

T (a) for a positive,
we have

inf
h∈L2(0,T ;L2): ‖S(u0,h)−S(u0,0)‖C([0,T ];L2)≥(ρ∧d)/2

‖h‖2
L2(0,T ;L2) > 0.

We have used the fact that the upper bound of the LDP in the Freidlin-Wentzell
formulation implies the classical upper bound. Note that this is a well known result
for non uniform LDPs. Indeed we do not need a uniform LDP in this proof. �

The following lemma replaces Lemma 5.7.23 in [11]. Indeed, the case of a sto-
chastic PDE is more intricate than that of a SDE since the linear group is only
strongly and not uniformly continuous. However, it is possible to prove that the
group on L2 when acting on bounded sets of H1 is uniformly continuous. We shall
proceed in a different manner and thus we do not loose in regularity.

Lemma 3.8. For every ρ and L positive such that B0
2ρ ⊂ D, there exists T (L, ρ) <

∞ such that

limǫ→0ǫ log sup
u0∈S0

ρ

P

(

sup
t∈[0,T (L,ρ)]

(N (uǫ,u0(t)) − N (u0)) ≥ 3ρ2

)

≤ −L

Proof. Take L and ρ positive. Note that for every ǫ in (0, ǫ0) where ǫ0 =
ρ2/‖Φ‖2

L0,0
2

, for T (L, ρ) ≤ 1 we have ǫT (L, ρ)‖Φ‖2
L0,0

2

< ρ2. Thus from equation (6),
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we know that it is enough to prove that there exists T (L, ρ) ≤ 1 such that for ǫ1
small enough, ǫ1 < ǫ0, and all ǫ < ǫ0,

ǫ log sup
u0∈S0

ρ

P

(

sup
t∈[0,T (L,ρ)]

(

−2
√

ǫIm

∫

Rd

∫ t

0

uǫ,u0,τdWdx

)

≥ 2ρ2

)

≤ −L,

where uǫ,u0,τ is the process uǫ,u0 stopped at τ ǫ,u0

S0
2ρ

, the first time when uǫ,u0 hits

S0
2ρ. Setting Z(t) = Im

∫

Rd

∫ t

0
uǫ,u0,τdWdx, it is enough to show that

ǫ log sup
u0∈S0

ρ

P

(

sup
t∈[0,T (L,ρ)]

|Z(t)| ≥ ρ2/
√

ǫ

)

≤ −L,

and thus to show exponential tail estimates for the process Z(t). Our proof now fol-

lows closely that of [21][Theorem 2.1]. We introduce the function fl(x) =
√

1 + lx2,
where l is a positive parameter. We now apply the Itô formula to fl(Z(t)) and the
process decomposes into 1 + El(t) + Rl(t) where

El(t) =

∫ t

0

2lZ(t)
√

1 + lZ(t)2
dZ(t) − (1/2)

∫ t

0

(

2lZ(t)
√

1 + lZ(t)2

)2

d < Z >t,

and

Rl(t) = (1/2)

∫ t

0

(

2lZ(t)
√

1 + lZ(t)2

)2

d < Z >t +

∫ t

0

l

(1 + lZ(t)2)
3/2)

d < Z >t .

Moreover, given (ej)j∈N
a complete orthonormal system of L2,

< Z(t) >=

∫ t

0

∑

j∈N

(uǫ,u0,τ ,−iΦej)
2
L2 (s)ds,

we prove with the Hölder inequality that |Rl(t)| ≤ 12lρ2‖Φ‖2
L0,0

2

t, for every u0 in

D. We may thus write

P

(

supt∈[0,T (L,ρ)] |Z(t)| ≥ ρ2/
√

ǫ
)

= P

(

supt∈[0,T (L,ρ)] exp (fl(Z(t))) ≥ exp
(

fl

(

ρ2/
√

ǫ
))

)

≤ P

(

supt∈[0,T (L,ρ)] exp (El(t)) ≥ exp
(

fl

(

ρ2/
√

ǫ
)

− 1 − 12lρ2‖Φ‖2
L0,0

2

T (L, ρ)
))

.

The Novikov condition is also satisfied and El(t) is such that (exp (El(t)))t∈R+ is
a uniformly integrable martingale. The exponential tail estimates follow from the
Doob inequality optimizing on the parameter l. We may then write

sup
u0∈S0

ρ

P

(

sup
t∈[0,T (L,ρ)]

|Z(t)| ≥ ρ2/
√

ǫ

)

≤ 3 exp

(

− ρ2

48ǫ‖Φ‖2
L0,0

2

T (L, ρ)

)

.

We now conclude setting T (L, ρ) = ρ2/
(

50‖Φ‖2
L0,0

2

L
)

and choosing ǫ1 < ǫ0 small

enough. �
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3.3. Proof of Theorem 3.3 and Theorem 3.4. We first prove Theorem 3.3.
Proof of Theorem 3.3. Let us first prove (10) and deduce (9). Fix δ positive and

choose h and T1 such that S(0, h)(T1) ∈ D
c

and

I0
T1

(S(0, h)) = (1/2)‖h‖2
L2(0,T ;L2) ≤ e + δ/5.

Let d0 denote the positive distance between S(0, h) (T1) and D. With similar argu-
ments as in [6] or with a truncation argument we may prove that the skeleton is
continuous with respect to the initial datum for the L2 topology. Thus there exists
ρ positive, a function of h which has been fixed, such that if u0 belongs to B0

ρ then

‖S (u0, h) − S(0, h)‖C([0,T1];L2) < d0/2.

We may assume that ρ is such that B0
ρ ⊂ D. From the triangle inequality and the

(ii) of Theorem 2.1, there exists ǫ1 positive such that for all ǫ in (0, ǫ1) and u0 in
B0

ρ,

P (τ ǫ,u0 < T1) ≥ P

(

‖uǫ,u0 − S(0, h)‖C([0,T1];L2) < d0

)

≥ P

(

‖uǫ,u0 − S (u0, h)‖C([0,T1];L2) < d0/2
)

≥ exp
(

−(Iu0

T1
(S(u0, h)) + δ

5 )/ǫ
)

.

From Lemma 3.6, there exists T2 and ǫ2 positive such that for all ǫ in (0, ǫ2),

inf
u0∈D

P
(

σǫ,u0
ρ ≤ T2

)

≥ 1/2.

Thus, for T = T1 + T2, from the strong Markov property we obtain that for all
ǫ < ǫ3 < ǫ1 ∧ ǫ2.

q = infu0∈D P (τ ǫ,u0 ≤ T ) ≥ infu0∈D P
(

σǫ,u0
ρ ≤ T2

)

infu0∈B0
ρ

P (τ ǫ,u0 ≤ T1)

≥ (1/2) exp
(

−
(

Iu0

T1
(S(u0, h)) + δ/5

)

/ǫ
)

≥ exp
(

−
(

Iu0

T1
(S(u0, h)) + 2δ/5

)

/ǫ
)

.

Thus, for any k ≥ 1, we have

P (τ ǫ,u0 > (k + 1)T ) = [1 − P (τ ǫ,u0 ≤ (k + 1)T |τ ǫ,u0 > kT )] P (τ ǫ,u0 > kT )
≤ (1 − q)P (τ ǫ,u0 > kT )
≤ (1 − q)k.

We may now compute, since Iu0

T1
(S (u0, h)) = I0

T1
(S (0, h)) = (1/2)‖h‖2

L2(0,T ;L2)

supu0∈D E (τ ǫ,u0) = supu0∈D

∫∞

0
P (τ ǫ,u0 > t) dt

≤ T [1 +
∑∞

k=1 supx∈D P (τ ǫ,u0 > kT )]
≤ T/q
≤ T exp ((e + 3δ/5)/ǫ) .

It implies that there exists ǫ4 small enough such that for ǫ in (0, ǫ4),

(14) sup
u0∈D

E (τ ǫ,u0) ≤ exp ((e + 4δ/5)/ǫ) .

Thus the Chebychev inequality gives that

sup
u0∈D

P (τ ǫ,u0 ≥ exp ((e + δ)/ǫ)) ≤ exp (−(e + δ)/ǫ) sup
u0∈D

E (τ ǫ,u0) ,

in other words

(15) sup
u0∈D

P (τ ǫ,u0 ≥ exp ((e + δ)/ǫ)) ≤ exp (−δ/(5ǫ)) .

Relations (14) and (15) imply (10) and (9).
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Let us now prove the lower bound on τ ǫ,u0 . Take δ positive. Remind that we
have proved that e > 0. Take ρ positive small enough such that e − δ/4 ≤ eρ and
B0

2ρ ⊂ D. We define the following sequences of stopping times, θ0 = 0 and for k in
N,

τk = inf
{

t ≥ θk : uǫ,u0(t) ∈ B0
ρ ∪ Dc

}

,
θk+1 = inf

{

t > τk : uǫ,u0(t) ∈ S0
2ρ

}

,

where θk+1 = ∞ if uǫ,u0(τk) ∈ ∂D. Fix T1 = T (e − 3δ/4, ρ) given in Lemma 3.8.
We know that there exists ǫ1 positive such that for all ǫ in (0, ǫ1), for all k ≥ 1 and
u0 in D,

P (θk − τk−1 ≤ T1) ≤ exp (−(e − 3δ/4)/ǫ) .

For u0 in D and an m in N
∗, we have

(16)

P (τ ǫ,u0 ≤ mT1) ≤ P (τ ǫ,u0 = τ0) +
∑m

k=1 P (τ ǫ,u0 = τk)
+P (∃k ∈ {1, ..., m} : θk − τk−1 ≤ T1)

= P (τ ǫ,u0 = τ0) +
∑m

k=1 P (τ ǫ,u0 = τk)
+
∑m

k=1 P (θk − τk−1 ≤ T1) .

In other words the escape before mT1 can occur either as an escape without passing
in the small ball B0

ρ (if u0 belongs to D \ B0
ρ) or as an escape with k in {1, ...m}

significant fluctuations off B0
ρ , i.e. crossing S0

2ρ, or at least one of the m first

transitions between S0
ρ and S0

2ρ happens in less than T1. The latter is known to be
arbitrarily small. Let us prove that the remaining probabilities are small enough
for small ǫ.
For every k ≥ 1 and T2 positive, we may write

P (τ ǫ,u0 = τk) ≤ P (τ ǫ,u0 ≤ T2; τ
ǫ,u0 = τk) + P

(

σǫ,u0
ρ > T2

)

.

Fix T2 as in Lemma 3.6 with L = e− 3δ/4. Thus there exists ǫ2 small enough such
that for ǫ in (0, ǫ2),

P
(

σǫ,u0
ρ > T2

)

≤ exp (−(e − 3δ/4)/ǫ) .

Also, from the (i) of Theorem 2.1, we obtain that there exists ǫ3 positive such that
for every u1 in B0

ρ and ǫ in (0, ǫ3),

P (τ ǫ,u1 ≤ T2) ≤ P
(

dC([0,T2];L2)

(

uǫ,u1 , Ku1

T2
(eρ − δ/4)

)

≥ ρ
)

≤ exp (−(eρ − δ/2)/ǫ)
≤ exp (−(e − 3δ/4)/ǫ) .

Thus the above bound holds for P (τ ǫ,u0 ≤ T2; τ
ǫ,u0 = τk) replacing u1 by uǫ,u0 (τk−1)

since as k ≥ 1, uǫ,u0 (τk−1) belongs to B0
ρ and τk − τk−1 ≤ T2 and using the Markov

property. The inequality (16) gives that for all ǫ in (0, ǫ0) where ǫ0 = ǫ1 ∧ ǫ2 ∧ ǫ3,

P (τ ǫ,u0 ≤ mT1) ≤ P
(

uǫ,u0
(

σǫ,u0
ρ

)

∈ ∂D
)

+ 3m exp (−(e − 3δ/4)/ǫ) .

Fix m = ⌈(1/T1) exp ((e − δ)/ǫ)⌉, then for all ǫ in (0, ǫ0),

P (τ ǫ,u0 ≤ exp ((e − δ)/ǫ)) ≤ P (τ ǫ,u0 ≤ mT1)
≤ P

(

uǫ,u0
(

σǫ,u0
ρ

)

∈ ∂D
)

+ (3/T1) exp (−δ/(4ǫ)) .

We may now conclude with Lemma 3.7 and obtain the expected lower bound on
E (τ ǫ,u0) from the Chebychev inequality. �

Let us now prove Theorem 3.4.
Proof of Theorem 3.4. Let N be closed subset of ∂D. When eN = ∞ we shall
replace in the proof that follows eN by an increasing sequence of positive numbers.
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Take δ such that 0 < δ < (eN − e)/3, ρ positive such that eN − δ/3 ≤ eN,ρ and
B0

2ρ ⊂ D. Define the same sequences of stopping times (τk)k∈N
and (θk)k∈N

as in
the proof of Theorem 3.3.
Take L = eN − δ and T1 and T2 = T (L, ρ) as in Lemma 3.6 and 3.8. Thanks to
Lemma 3.6 and the uniform LDP, with a computation similar to the one following
inequality (16), we obtain that for ǫ0 small enough and ǫ ≤ ǫ0,

supu0∈S0
2ρ

P
(

uǫ,u0
(

σǫ,u0
ρ

)

∈ N
)

≤ supu0∈S0
2ρ

P
(

uǫ,u0
(

σǫ,u0
ρ

)

∈ N, σǫ,u0
ρ ≤ T1

)

+ supu0∈S0
2ρ

P
(

σǫ,u0
ρ > T1

)

≤ supu0∈B0
2ρ

P
(

dC([0,T1];L2)

(

uǫ,u0 , Ku0

T1
(eN,ρ − δ/3)

)

≥ ρ
)

+ supu0∈D P
(

σǫ,u0
ρ > T1

)

≤ 2 exp (−(eN − δ)/ǫ) .

Possibly choosing ǫ0 smaller, we may assume that for every positive integer l and
every ǫ ≤ ǫ0,

supu0∈D P (τl ≤ lT2) ≤ l supu0∈S0
ρ

P

(

supt∈[0,T2] (N (uǫ,u0(t)) − N (u0)) ≥ ρ
)

≤ l exp (−(eN − δ)/ǫ) .

Thus if u0 belongs to B0
ρ

P (uǫ,u0 (τ ǫ,u0) ∈ N) ≤ P (τ ǫ,u0 > τl) +
∑l

k=1 P (uǫ,u0 (τ ǫ,u0) ∈ N, τ ǫ,u0 = τk)
≤ P (τ ǫ,u0 > lT2) + P (τl ≤ lT2)

+l supu0∈S0
2ρ

P
(

uǫ,u0
(

σǫ,u0
ρ

)

∈ N
)

≤ P (τ ǫ,u0 > lT2) + 3l exp (−(eN − δ)/ǫ) .

Take now l = ⌈(1/T2) exp ((e + δ)/ǫ)⌉ and use the upper bound (15), possibly
choosing ǫ0 smaller, we obtain that for ǫ ≤ ǫ0

supu0∈B0
ρ

P (uǫ,u0 (τ ǫ,u0) ∈ N) ≤ exp (−δ/(5ǫ)) + (4/T2) exp (−(eN − e + 2δ)/ǫ)

≤ exp (−δ/(5ǫ)) + (4/T2) exp (−δ/ǫ) .

Finally, when u0 is any function in D, we conclude thanks to

P (uǫ,u0 (τ ǫ,u0) ∈ N) ≤ P
(

uǫ,u0
(

σǫ,u0
ρ

)

∈ ∂D
)

+ sup
u0∈B0

ρ

P (uǫ,u0 (τ ǫ,u0) ∈ N)

and to Lemma 3.7. �

Remark 3.9. It is proposed in [22] to introduce control elements to reduce or en-
hance exponentially the expected exit time or to act on the exiting points, for a
limited cost. We could then optimize on these external fields. However, the prob-
lem is computationally involved since the optimal control problem requires double
optimisation.

4. Exit from a domain of attraction in H1

4.1. Preliminaries. We now consider a measurable bounded subset D of H1 in-
variant by the flow of the deterministic equation and which contains zero in its
interior. We choose R such that D ⊂ B1

R. We consider both (3) and (4) where the
noise is either of additive or of multiplicative type. In this section we are interested
in both the fluctuation of the L2 norm and that of the L2 norm of the gradient.
The Hamiltonian and a modified Hamiltonian are thus of particular interest. We
first distinguish the case where the nonlinearity is defocusing (λ = −1) where the
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Hamiltonian takes non negative values from the case where the nonlinearity is fo-
cusing (λ = 1) where the Hamiltonian may take negative values.

We may prove, see for example [18], that

d

dt
H (S(u0, 0)(t)) + 2αΨ (S(u0, 0)) = 0,

where S(u0, 0) is the solution of the deterministic weakly damped nonlinear Schrödinger
equation with initial datum u0 in H1 and

Ψ (S(u0, 0)) = ‖∇S(u0, 0)‖2
L2 /2 − λ

∫

Rd

|S(u0, 0)(x)|2σ+2
dx/2.

Thus, when the nonlinearity is defocusing we have

(17) 0 ≤ H (S(u0, 0)(t)) ≤ H (u0) exp (−2αt) .

As it is done in [10], we consider in the focusing case a modified Hamiltonian

denoted by H̃(u) defined for u in H1 by

H̃(u) = H(u) + β(σ, d)C ‖u‖2+4σ/(2−σd)
L2

where the constant C is that of the third inequality in the following sequence of
inequalities where we use the Gagliardo-Nirenberg inequality

‖u‖2σ+2
L2σ+2/(2σ + 2) ≤ C‖u‖2σ+2−σd

L2 ‖∇u‖σd
L2 ≤ ‖∇u‖2

L2/4 + C‖u‖2+4σ/(2−σd)
L2 ,

and β(σ, d) = 2σ(2−σd)
(σ+2)(2−σd)+2σ(4σ+3) ∨ 2. When evaluated at the deterministic solu-

tion, the modified Hamiltonian satisfies

(18) 0 ≤ H̃ (S(u0, 0)(t)) ≤ H̃ (u0) exp

(

−2α
3(σ + 1)

4σ + 3
t

)

.

Also, when the nonlinearity is defocusing we now have, for every β positive,

(19) 0 ≤ H̃ (S(u0, 0)(t)) ≤ H̃ (u0) exp (−2αt) .

From the Sobolev inequalities, for ρ positive, the sets

H̃ρ =
{

u ∈ H1 : H̃(u) = ρ
}

= H̃−1 ({ρ}) , ρ > 0

are closed subsets of H1 and

H̃<ρ =
{

u ∈ H1 : H̃(u) < ρ
}

= H̃−1 ([0, ρ)) ρ > 0

are open subsets of H1.
Also, H̃ is such that

(20)

‖∇u‖2
L2/2 + βC‖u‖2+4σ/(2−σd)

L2 ≤ H̃(u) ≤ 3‖∇u‖2
L2/4 + (β + 1)C‖u‖2+4σ/(2−σd)

L2

when the nonlinearity is defocusing and

(21) ‖∇u‖2
L2/4+C‖u‖2+4σ/(2−σd)

L2 ≤ H̃(u) ≤ ‖∇u‖2
L2/2+β(σ, d)C‖u‖2+4σ/(2−σd)

L2

when it is focusing. Thus the sets H̃<ρ for ρ positive are bounded in H1 and a

bounded set in H1 is bounded for H̃. Note that the domain D of attraction may be
a domain of the form H̃<ρ.

We no longer distinguish the focusing and defocusing cases and take the same
value of β, i.e. β(σ, d). Also to simplify the notations we now sometimes drop the
dependence of the solution in ǫ and u0.
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The fluctuation of H̃ (uǫ,u0(t)) is of particular interest. We have the following
result when the noise is of additive type.

Proposition 4.1. When u denotes the solution of equation (3), (ej)j∈N
a complete

orthonormal system of L2, the following decomposition holds

H̃ (u(t)) = H̃ (u0)

−2α
∫ t

0 Ψ (u(s)) ds − 2βC (1 + 2σ/(2 − σd)) α
∫ t

0 ‖u(s)‖2+4σ/(2−σd)
L2 ds

+
√

ǫ
(

Im
∫

Rd

∫ t

0 ∇u(s)∇dW (s)dx − λIm
∫

Rd

∫ t

0 |u(s)|2σ
u(s)dW (s)dx

+2βC (1 + 2σ/(2 − σd)) Im
∫

Rd

∫ t

0
‖u(s)‖4σ/(2−σd)

L2 u(s)dW (s)dx
)

−(λǫ/2)
∑

j∈N

∫ t

0

∫

Rd

[

|u(s)|2σ |Φej|2 + 2σ |u(s)|2σ−2
(Re(u(s)Φej))

2
]

dxds

+(ǫ/2)‖∇Φ‖2
L0,0

2

t + ǫβC (1 + 2σ/(2 − σd)) ‖Φ‖2
L0,0

2

∫ t

0
‖u(s)‖4σ/(2−σd)

L2 ds

+ǫβC (4σ/(2 − σd)) (1 + 2σ/(2 − σd))
∑

j∈N

∫ t

0
‖u(s)‖2(2σ/(2−σd)−1)

L2

(

Re
∫

Rd u(s)Φejdx
)2

ds

Proof. The result follows from the Itô formula. The main difficulty is in justi-
fying the computations. We may proceed as in [6]. �

Also, when the noise is of multiplicative type we obtain the following proposition.

Proposition 4.2. When u denotes the solution of equation (4), (ej)j∈N
a complete

orthonormal system of L2, the following decomposition holds

H̃ (u(t)) = H̃ (u0)

−2α
∫ t

0
Ψ (u(s)) ds − 2βC (1 + 2σ/(2 − σd)) α

∫ t

0
‖u(s)‖2+4σ/(2−σd)

L2 ds

+
√

ǫIm
∫

Rd

∫ t

0
u(s)∇u(s)∇dW (s)dx

+(ǫ/2)
∑

j∈N

∫ t

0

∫

Rd |u(s)|2|∇Φej |2dxds.

The first exit time τ ǫ,u0 from the domain D in H1 is defined as in Section 2. We
also define

e = inf
{

I0
T (w) : w(T ) ∈ D

c
, T > 0

}

,

and for ρ positive small enough

eρ = inf
{

Iu0

T (w) : H̃ (u0) ≤ ρ, w(T ) ∈ (D−ρ)
c
, T > 0

}

,

where D−ρ = D \ N 1 (∂D, ρ). Then we set

e = lim
ρ→0

eρ.

Also, for ρ positive small enough, N a closed subset of the boundary of D, we define

eN,ρ = inf
{

Iu0

T (w) : H̃ (u0) ≤ ρ, w(T ) ∈
(

D \ N 1 (N, ρ)
)c

, T > 0
}

and
eN = lim

ρ→0
eN,ρ.

We finally also introduce

σǫ,u0
ρ = inf

{

t ≥ 0 : uǫ,u0(t) ∈ H̃<ρ ∪ Dc
}

,

where H̃<ρ ⊂ D.
Again we have the following inequalities.

Lemma 4.3. 0 < e ≤ e.
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Proof. We only have to prove the first inequality. Integrating the equation
describing the evolution of H̃ (S (u0, h) (t)) via the Duhamel formula where the
skeleton is that of the equation with an additive noise we obtain

H̃ (S(u0, h)(T )) − exp
(

−2α3(σ+1)
4σ+3 T

)

H̃ (u0)

≤
∫ T

0 exp
(

−2α3(σ+1)
4σ+3 (T − s)

)

[

Im
∫

Rd

(

∇S(u0, h)∇Φh
)

(s, x)dx

−λIm
∫

Rd

(

|S(u0, h)|2σS(u0, h)Φh
)

(s, x)dx

−2Cβ (1 + 2σ/(2 − σd)) Im
∫

Rd

(

S (u0, h)Φh
)

(s, x)dx
]

ds,

with a focusing or defocusing nonlinearity. Let d denote the positive distance be-
tween 0 and ∂D. Take ρ such that the distance between B1

ρ and (D−ρ)
c

is larger

than d/2. We then have, from the fact that the Sobolev injection from H1 into
L2σ+2,

d/2 ≤
∫ T

0 exp
(

−2α3(σ+1)
4σ+3 (T − s)

)

[

R‖Φ‖Lc(L2,H1)‖h‖L2

+CR2σ+1‖Φ‖Lc(L2,H1)‖h‖L2

+2Cβ (1 + 2σ/(2 − σd)) R‖Φ‖Lc(L2,L2)‖h‖L2

]

ds,

We conclude as in Lemma 3.1 and use that from the choice of β the complementary
of a ball is included in the complementary of a set H̃<a. In the case of the skeleton of
the equation with a multiplicative noise, it is enough to replace the term in bracket

in the right hand side of the above formula by Im
∫

Rd

(

∇S (u0, h)S (u0, h)∇Φh
)

(s, x)dx.

Recall that we can proceed as in the additive case since we have imposed that Φ
belongs to L0,s

2,R where s > d/2 + 1, in particular Φ belongs to Lc

(

L2, W1,∞
)

. �

4.2. Statement of the results. The theorems of Section 2 still hold for a domain
of attraction in H1 and a noise of additive and multiplicative type.

Theorem 4.4. For every u0 in D and δ positive, there exists L positive such that

(22) limǫ→0ǫ log P (τ ǫ,u0 /∈ (exp ((e − δ)/ǫ) , exp ((e + δ)/ǫ))) ≤ −L,

and for every u0 in D,

(23) e ≤ limǫ→0ǫ log E (τ ǫ,u0) ≤ limǫ→0ǫ log E (τ ǫ,u0) ≤ e.

Moreover, for every δ positive, there exists L positive such that

(24) limǫ→0ǫ log sup
u0∈D

P (τ ǫ,u0 ≥ exp ((e + δ)/ǫ)) ≤ −L,

and

(25) limǫ→0ǫ log sup
u0∈D

E (τ ǫ,u0) ≤ e.

Remark 4.5. Again the control argument to prove that e = e seems difficult. It
should be even more difficult for multiplicative noises.

Theorem 4.6. If eN > e, then for every u0 in D, there exists L positive such that

limǫ→0ǫ log P (uǫ,u0 (τ ǫ,u0) ∈ N) ≤ −L.

Again we may deduce the corollary

Corollary 4.7. Assume that v∗ in ∂D is such that for every δ positive and N =
{v ∈ ∂D : ‖v − v∗‖L2 ≥ δ} we have eN > e then

∀δ > 0, ∀u0 ∈ D, ∃L > 0 : limǫ→0ǫ log P (‖uǫ,u0 (τ ǫ,u0) − v∗‖L2 ≥ δ) ≤ −L.
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4.3. Proof of the results. The proof of these results still rely on three lemmas
and the uniform LDP. Let us now state the lemmas for both a noise of additive and
of multiplicative type.

Lemma 4.8. For every ρ and L positive with H̃<ρ ⊂ D, there exists T and ǫ0
positive such that for every u0 in D and ǫ in (0, ǫ0),

P
(

σǫ,u0
ρ > T

)

≤ exp (−L/ǫ) .

Proof. We proceed as in the proof of Lemma 3.6.
Let d denote the positive distance between 0 and D \ H̃<ρ. Take α positive such
that αρ < d. The domain D is uniformly attracted to 0, thus there exists a time T1

such that for every initial datum u1 in N 1
(

D \ H̃<ρ, αρ/8
)

, for t ≥ T1, S (u1, 0) (t)

belongs to B1
αρ/8.

We could also prove, see [6], that there exists a constant M ′ which depends on
T1, R, σ and α such that

(26) sup
u1∈N 1(D\H̃<ρ,αρ/8)

‖S (u1, 0)‖X(T1,2σ+2) ≤ M ′.

The Step 2, corresponding to that of Lemma 3.6, in the proof in the additive
case uses the truncation argument, upper bounds similar to that in [6] derived from
the Strichartz inequalities on smaller intervals; we shall also replace in the proof of
Lemma 3.6 ρ/8 by αρ/8.

In Step 2 for the multiplicative case, we also introduce the truncation in front of
the term uΦh in the controlled PDE.

The end of the proof is identical to that of Lemma 3.6, the LDP is the LDP in
C
(

[0, T ]; H1
)

, for additive or multiplicative noises. �

Lemma 4.9. For every ρ positive such that H̃ρ ⊂ D and u0 in D, there exists L
positive such that

limǫ→0ǫ log P
(

uǫ,u0
(

σǫ,u0
ρ

)

∈ ∂D
)

≤ −L

Proof. It is the same proof as for Lemma 3.7. We only have to replace B0
ρ/2 by

any ball in H1 centered at 0 and included in H̃<ρ and use the LDP in C
(

[0, T ]; H1
)

.�

Lemma 4.10. For every ρ and L positive such that H̃2ρ ⊂ D, there exists T (L, ρ) <
∞ such that

limǫ→0ǫ log sup
u0∈H̃ρ

P

(

sup
t∈[0,T (L,ρ)]

(

H̃ (uǫ,u0(t)) − H̃ (u0)
)

≥ ρ

)

≤ −L

Proof. Integrating the Itô differential relation using the Duhamel formula allows
to get rid of the drift term that is not originated from the bracket. Indeed, the event

{

sup
t∈[0,T (L,ρ)]

(

H̃ (uǫ,u0(t)) − H̃ (u0)
)

≥ ρ

}

is included in
{

sup
t∈[0,T (L,ρ)]

(

H̃ (uǫ,u0(t)) − exp

(

−2α

(

3(σ + 1)

4σ + 3

)

T (L, ρ)

)

H̃ (u0)

)

≥ ρ

}

.
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Then, setting c(σ) = 3(σ+1)
4σ+3 and m(σ, d) = 1+2σ/(2−σd), dropping the exponents

ǫ and u0 to have more concise formulas, we obtain in the additive case

H̃ (u(t)) − exp (−2αc(σ)t) H̃ (u0)

≤ √
ǫ
(

Im
∫

Rd

∫ t

0 exp (−2αc(σ)(t − s))∇u(s)∇dW (s)dx

−λIm
∫

Rd

∫ t

0 exp (−2αc(σ)(t − s)) |u(s)|2σ
u(s)dW (s)dx

+2βCm(σ, d)Im
∫

Rd

∫ t

0
exp (−2αc(σ)(t − s)) ‖u(s)‖4σ/(2−σd)

L2 u(s)dW (s)dx
)

−(λǫ/2)
∑

j∈N

∫ t

0 exp (−2αc(σ)(t − s))
∫

Rd

[

|u(s)|2σ |Φej |2

+ 2σ |u(s)|2σ−2
(Re(u(s)Φej))

2
]

dxds

+ (ǫ/(4αc(σ))) (1 − exp (−2αc(σ)t)) ‖∇Φ‖2
L0,0

2

+ǫβCm(σ, d)‖Φ‖2
L0,0

2

∫ t

0
exp (−2αc(σ)(t − s)) ‖u(s)‖4σ/(2−σd)

L2 ds

+ǫβCm(σ, d) (4σ/(2 − σd))
∑

j∈N

∫ t

0 exp (−2αc(σ)(t − s)) ‖u(s)‖2(2σ/(2−σd)−1)
L2

(

Re
∫

Rd u(s)Φejdx
)2

ds.

We again use a localization argument and replace the process u by the process uτ

stopped at the first exit time off H̃<2ρ. We use (20) and (21) and obtain

‖uτ‖2
H1 ≤ 8ρ + (2ρ/(Cσ))

1
1+2σ/(2−σd) .

We denote the right hand side of the above by b(ρ, σ, d).
From the Hölder inequality along with the Sobolev injection of H1 into L2σ+2 we
obtain the following upper bound for the drift

(ǫ/(4αc(σ)))
[

(1 + 2σ)c(1, 2σ + 2)2σ+2‖Φ‖2
L0,1

2

b(ρ, σ, d)2σ + ‖∇Φ‖2
L0,0

2

]

+m(σ, d) (ǫβC/(2αc(σ))) (1 + 4σ/(2 − σd)) ‖Φ‖2
L0,0

2

b(ρ, σ, d)4σ/(2−σd)

where we denote by c(1, 2σ + 2) the norm of the continuous injection of H1 into
L2σ+2.
Thus, choosing ǫ small enough, it is enough to show the result for the stochastic
integral replacing ρ by ρ/2. Also it is enough to show the result for each of the three
stochastic integrals replacing ρ/2 by ρ/6. With the same one parameter families and
similar computations as in the proof of Lemma 3.8, we know that it is enough to
obtain upper bounds of the brackets of the stochastic integrals

Z1(t) = Im
∫

Rd

∫ t

0
exp (2αc(σ)s)∇uτ (s)∇dW (s)dx

Z2(t) = Im
∫

Rd

∫ t

0
exp (2αc(σ)s) |uτ (s)|2σ

uτ (s)dW (s)dx

Z3(t) = 2βCm(σ, d)Im
∫

Rd

∫ t

0 exp (2αc(σ)s) ‖uτ (s)‖4σ/(2−σd)
L2 uτ (s)dW (s)dx.

We then obtain

d < Z1 >t≤ exp (4αc(σ)t)
∑

j∈N
(∇uτ (t),−i∇Φej)

2
L2 dt

d < Z2 >t≤ exp (4αc(σ)t)
∑

j∈N

(

|uτ (t)|2σuτ (t),−iΦej

)2

L2 dt

d < Z3 >t≤ 4β2C2m(σ, d)2 exp (4αc(σ)t) ‖uτ (t)‖8σ/(2−σd)
L2

∑

j∈N
(uτ (t),−iΦej)

2
L2 dt.

Using the Hölder inequality and, for Z2, the continuous Sobolev injection of H1

into L2σ+2 we obtain

d < Z1 >t≤ exp (4αc(σ)t) ‖Φ‖2
L0,1

2

b(ρ, σ, d)dt

d < Z2 >t≤ exp (4αc(σ)t) c(1, 2σ + 2)2(2σ+2)‖Φ‖2
L0,1

2

b(ρ, σ, d)2σ+1dt

d < Z3 >t≤ 4β2C2m(σ, d)2 exp (4αc(σ)t) b(ρ, σ, d)(1+4σ/(2−σd))‖Φ‖2
L0,1

2

dt.
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We can then bound each of the three remainders
(

Ri
l(t)
)

i=1,2,3
similar to that of

Lemma 3.8 using the inequality Ri
l(t) ≤ 3l

∫ t

0
d < Zi >t.

We conclude that it is possible to choose T (L, ρ) equal to

1
4αc(σ) log

(

αc(σ)ρ2

90b(ρ,σ,d)‖Φ‖2

L
0,1
2

max(1,c(1,2σ+2)2(2σ+1)b(ρ,σ,d)2σ ,4β2C2m(σ,d)2b(ρ,σ,d)4σ/(2−σd))

)

.

When the noise is of multiplicative type we obtain

H̃ (u(t)) − exp (−2αc(σ)t) H̃ (u0)

≤ √
ǫIm

∫

Rd

∫ t

0
exp (−2αc(σ)(t − s))u(s)∇u(s)∇dW (s)dx

+(ǫ/2)
∑

j∈N

∫ t

0
exp (−2αc(σ)(t − s))

∫

Rd |u(s)|2|∇Φej|2dxds.

Again we use a localization argument and consider the process u stopped at the
exit off H̃2ρ. As Φ is Hilbert-Schmidt from L2 into Hs

R
, the second term of the right

hand side is less than ǫ
4αc(σ)‖Φ‖2

L0,s
2

b(ρ, σ, d) and for ǫ small enough, it is enough

to prove the result for the stochastic integral replacing ρ by ρ/2. We know that it
is enough to obtain an upper bound of the bracket of

Z(t) = Im

∫

Rd

∫ t

0

exp (2αc(σ)s) uτ (s)∇uτ (s)∇dW (s)dx.

We obtain

d < Z >t≤ exp (4αc(σ)t)
∑

j∈N

(∇uτ (t),−iuτ(t)∇Φej)
2
L2 dt.

Denoting by c(s,∞) the norm of the Sobolev injection of Hs
R

into W1,∞
R

we deduce
that

d < Z >t≤ exp (4αc(σ)t) c(s,∞)2‖Φ‖2
L0,s

2

b(ρ, σ, d)2dt.

Finally, we conclude that we may choose

T (L, ρ) =
1

4αc(σ)
log

(

αc(σ)ρ2

10b(ρ, σ, d)2c(s,∞)2‖Φ‖2
L0,s

2

L

)

.

�

We may now prove Theorem 22 and 23.
Elements for the proof of Theorem 22. There is no difference in the proof of
the upper bound on τ ǫ,u0 . Let us thus focus on the lower bound. Take δ positive.
Since e > 0, we now choose ρ positive such that e − δ/4 ≤ eρ, H̃2ρ ⊂ D and

H̃2ρ ⊂ Dc
−ρ. We define the sequences of stopping times θ0 = 0 and for k in N,

τk = inf
{

t ≥ θk : uǫ,u0(t) ∈ H̃<ρ ∪ Dc
}

,

θk+1 = inf
{

t > τk : uǫ,u0(t) ∈ H̃2ρ

}

,

where θk+1 = ∞ if uǫ,u0(τk) ∈ ∂D. Let us fix T1 = T (e − 3δ/4, ρ) given by Lemma
4.10. We now use that for u0 in D and m a positive integer,

(27)
P (τ ǫ,u0 ≤ mT1) ≤ P (τ ǫ,u0 = τ0) +

∑m
k=1 P (τ ǫ,u0 = τk)

+
∑m

k=1 P (θk − τk−1 ≤ T1)

and conclude as in the proof of Theorem 3.3. �
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We may check that the proof of Theorem 3.4 also applies to Theorem 4.6, the
LDPs are those in H1 and the sequences of stopping times are those defined above.

Remark 4.11. In [13], reaction-diffusion equations perturbed by an additive white
noise are considered. When the space dimension is larger than one, the case where
the vector field can decomposed in a gradient and a second field which is orthogonal
is treated. The quasi-potential is then equal to the potential at the end point. It
again involves a control argument. In our case, since we consider colored noises and
nonlinear equations, the orthogonality is lost for the geometry of the reproducing
kernel Hilbert space of the law of W (1). We thus obtain extra commutator terms.
Under suitable assumptions on the space correlations of the noise, going to zero, it
is possible that we obtain a non trivial minimisation problem. Recall that solitary
waves are solutions of variational problem where we minimize the Hamiltonian for
fixed levels of the mass.

5. Annex - proof of Theorem 2.1

The following lemma is at the core of the proof of the uniform LDPs. It is often
called Azencott lemma or Freidlin-Wentzell inequality. The differences with the
result of [17] are that here the initial data are the same for the random process and
the skeleton and that the ”for every ρ positive” stands before ”there exists ǫ0 and
γ positive”. We shall only stress on the differences in the proof.

Lemma 5.1. For every a, L, T , δ and ρ positive, f in Ca, p in A(d), there exists
ǫ0 and γ positive such that for every ǫ in (0, ǫ0), ‖u0‖H1 ≤ ρ,

ǫ log P

(∥

∥

∥
uǫ,u0 − S̃(u0, f)

∥

∥

∥

X(T,p)
≥ δ; ‖√ǫW − f‖C([0,T ];Hs

R)
< γ

)

≤ −L.

Elements of proof. There are still three steps in the proof of this result. The
first step is a change of measure to center the process around f . It uses the Girsanov
theorem and is the same as in [17].
The second step is a reduction to estimates for the stochastic convolution. It strongly
involves the Strichartz inequalities but it is slightly different than in [17]. The
truncation argument has to hold for all ‖u0‖H1 ≤ ρ. Thus we use the fact that
there exists M = M(T, ρ, σ) positive such that

sup
u1∈B1

ρ

∥

∥

∥
S̃(u1, f)

∥

∥

∥

X(T,p)
≤ M.

The proof of this fact follows from the computations in [6], we have recalled the
arguments in L2 in the proof of Lemma 3.6. The result in H1 is again be used in
the proof of Lemma 4.8. As the initial data are the same for the random process
and the skeleton, the remaining of the argument does not require restrictions on ρ.
The third step corresponds to estimates for the stochastic convolution. It is the
same as in [17].
The extra damping term in the drift is treated easily thanks to the Strichartz
inequalities. �

Elements for the proof of Theorem 2.1. Let us start with the case of an
additive noise. Recall that, in that case, the mild solution of the stochastic equation
could be written as a function of the perturbation in the convolution form. Let
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vu0(Z) denote the solution of
{

i∂v
∂t −

(

∆v + |v − iZ|2σ(v − iZ) − iα(v − iZ)
)

= 0,
v(0) = u0,

or equivalently a fixed point of the functional FZ such that

FZ(v)(t) = U(t)u0 − iλ
∫ t

0 U(t − s)
(

|(v − iZ)(s)|2σ(v − iZ)(s)
)

ds

−α
∫ t

0 U(t − s)(v − iZ)(s)ds,

where Z belongs to C
(

[0, T ]; L2
)

(respectively C
(

[0, T ]; H1
)

). If uǫ,u0 is defined as

uǫ,u0 = vu0 (Zǫ) − iZǫ where Zǫ is the stochastic convolution Zǫ(t) =
√

ǫ
∫ t

0 U(t −
s)dW (s) then uǫ,u0 is a solution of the stochastic equation. Consequently, if G (·, u0)
denotes the mapping from C

(

[0, T ]; L2
)

(respectively C
(

[0, T ]; H1
)

) to C
(

[0, T ]; L2
)

(respectively C
(

[0, T ]; H1
)

) defined by G (Z, u0) = vu0(Z) − iZ, we obtain uǫ,u0 =
G (Zǫ, u0). We may also check with arguments similar to that of [6, 16], involving the
Strichartz inequalities that the mapping G is equicontinuous in its first arguments
for second arguments in bounded sets of L2 (respectively H1). The result now follows
from Proposition 5 in [23].

Let us now consider the case of a multiplicative noise. Initial data belong to H1

and we consider paths in H1. The proof is very close to that in [17].
The main tool is again the Azencott lemma or almost continuity of the Itô map.

We need the slightly different result from that in [17].
Let us see how the above lemma implies (i) and (ii).

We start with the upper bound (i). Take a, ρ, T and δ positive. Take L > a. For
ã in (0, a], we denote by

Au0

ã =
{

v ∈ C
(

[0, T ]; H1
)

: dC([0,T ];H1) (v, Ku0

T (ã)) ≥ δ
}

.

Note that we have Au0
a ⊂ Au0

ã and Cã ⊂ Ca. Take ã ∈ (0, a] and f such that
IW
T (f) < ã.

We shall now apply the Azencott lemma and choose p = 2. We obtain ǫρ,f,δ and
γρ,f,δ positive such that for every ǫ ≤ ǫρ,f,δ and u0 such that ‖u0‖H1 ≤ ρ,

ǫ log P

(∥

∥

∥
uǫ,u0 − S̃(u0, f)

∥

∥

∥

X(T,p)
≥ δ;

∥

∥

√
ǫW − f

∥

∥

C([0,T ];Hs
R)

< γρ,f,δ

)

≤ −L.

Let us denote by Oρ,f,δ the set Oρ,f,δ = BC([0,T ];Hs
R)

(f, γρ,f,δ). The family (Oρ,f,δ)f∈Ca

is a covering by open sets of the compact set Ca, thus there exists a finite sub-

covering of the form
⋃N

i=1 Oρ,fi,δ. We can now write

P (uǫ,u0 ∈ Au0

ã ) ≤ P

(

{uǫ,u0 ∈ Au0

ã } ∩
{√

ǫW ∈ ⋃N
i=1 Oρ,fi,δ

})

+P

(√
ǫW /∈ ⋃N

i=1 Oρ,fi,δ

)

≤ ∑N
i=1 P ({uǫ,u0 ∈ Au0

ã } ∩ {√ǫW ∈ Oρ,fi,δ})
+P (

√
ǫW /∈ Ca)

≤ ∑N
i=1 P

({∥

∥

∥
uǫ,u0 − S̃(u0, f)

∥

∥

∥

X(T,p)
≥ δ
}

∩ {√ǫW ∈ Oρ,fi,δ}
)

+ exp (−a/ǫ) ,

for ǫ ≤ ǫ0 for some ǫ0 positive. We used that

dC([0,T ];H1)

(

S̃(u0, f), Au0

ã

)

≥ δ,
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which is a consequence of the definition of the sets Au0

ã .
As a consequence, for ǫ ≤ ǫ0 ∧ (mini=1,..,N ǫu0,fi) we obtain for u0 in B1

ρ,

P (uǫ,u0 ∈ Au0

ã ) ≤ N exp (−L/ǫ) + exp (−a/ǫ) ,

and for ǫ1 small enough, for every ǫ ∈ (0, ǫ1),

ǫ log P (uǫ,u0 ∈ Au0

ã ) ≤ ǫ log 2 + (ǫ logN − L) ∨ (−a).

If ǫ1 is also chosen such that ǫ1 < γ
log(2) ∧ L−a

log(N) we obtain

ǫ log P (uǫ,u0 ∈ Au0

ã ) ≤ −ã − γ,

which holds for every u0 such that ‖u0‖H1 ≤ ρ.
We consider now the lower bound (ii). Take a, ρ, T and δ positive. The continuity

of S̃(u0, ·), to be proved as in [17], along with the compactness of Ca give that for

u0 such that ‖u0‖H1 ≤ ρ and w in Ku0

T (a), there exists f such that w = S̃(u0, f)
and Iu0

T (w) = IW
T (f). Take L > Iu0(w). Choose ǫρ,f,δ positive and Oρ,f,δ, the ball

centered at f of radius γρ,f,δ defined as previously, such that for every ǫ ≤ ǫρ,f,δ

and u0 such that ‖u0‖H1 ≤ ρ,

ǫ log P

(∥

∥

∥
uǫ,u0 − S̃(u0, f)

∥

∥

∥

X(T,p)
≥ δ;

∥

∥

√
ǫW − f

∥

∥

C([0,T ];Hs
R)

< γρ,f,δ

)

≤ −L.

We obtain

exp
(

−IW
T (f)/ǫ

)

≤ P (
√

ǫW ∈ Oρ,f,δ)

≤ P

({∥

∥

∥
uǫ,u0 − S̃(u0, f)

∥

∥

∥

X(T,p)
≥ δ
}

∩ {√ǫW ∈ Oρ,f,δ}
)

+P

(
∥

∥

∥
uǫ,u0 − S̃(u0, f)

∥

∥

∥

X(T,p)
< δ
)

.

Thus, for ǫ ≤ ǫρ,f,δ, for every u0 such that ‖u0‖H1 ≤ ρ,

−Iu0(w) ≤ ǫ log 2 +
(

ǫ log P

(∥

∥

∥
uǫ,u0 − S̃(u0, f)

∥

∥

∥

X(T,p)
< δ
))

∨ (−L)

and for ǫ1 small enough and such that ǫ1 log(2) < γ, for every ǫ positive such that
ǫ < ǫ1, for every u0 such that ‖u0‖H1 ≤ ρ,

−Iu0(w) − γ ≤ ǫ log P

(∥

∥

∥
uǫ,u0 − S̃(u0, f)

∥

∥

∥

X(T,p)
< δ
)

.

It ends the proof of (i) and (ii). �
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