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Abstract

The goal of this work is to develop an efficient metaheuristic to solve the parallel machine

scheduling problem where the objective function is to minimize the weighted number of late jobs.

This problem appears in several real-life applications and particularly in finance and production

management. The weighted number of late jobs can also be seen as an indicator of the quality

of a solution or as a minor objective in multi-objective optimisation. To our knowledge, only

a limited number of methods have been developed to solve this problem. The best-performing

method to date is based on constraint propagation techniques and does not succeed in optimally

solving instances of fifty jobs with more than sixty percent success rate. One of the aims of this

research is to provide an efficient method to solve problems with up to 100 jobs at least.

A problem-specific representation is used to represent solutions. It consists of a priority list of

late jobs and a list of early and sequenced jobs for each machine. This representation is well-suited

for this objective and easy to manipulate with any computer language.

Based on this representation, a set of neighbourhoods is used in a VNS strategy. To obtain

good results a tabu search procedure is embedded as the local search mechanism. Numerical

experiments are conducted on a set of instances of 50 jobs and compared with an exact procedure.

Results prove that the proposed method can indeed be used to find solutions of large instances.

Keywords: VNS, Tabu search, parallel machines, late jobs.
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1 Introduction

In a scheduling environment, a set of m parallel and identical machines is available for processing

jobs. Each of a set of n jobs has to be sequenced on one of the m machines. The processing time of

job j is denoted by pj and its weight by wj. Each job j should be processed within its time window

[rj, dj ] (where rj is the release date and dj is the due date). Of course, the start of a job cannot be

scheduled before its release date. If a job cannot be finished before its due date, it is considered late.

The objective is to minimise the weighted number of late jobs (
∑

wjUj , where Uj is a binary

value equal to 1 if job j is late and 0 otherwise). This problem, denoted Pm|rj |
∑

wjUj in the

standard classification [6], is NP-hard in a strong sense [5].

An important remark is the following:

Remark 1 Late jobs can be scheduled arbitraryly after early jobs in any optimal solution. From a

practical point of view, late jobs do not need to be scheduled.

In [1], a complete exact method is developed for solving the Pm|rj |
∑

wjUj problem. This

method is based on a constraint propagation technique which uses new lower bound schemes and new

algorithms for propagation. This method will further be denoted by CPP. Constraint propagation

algorithms solve the decision version of combinatorial optimization problems and dichotomy is used

to find the optimal solution. At each step of this approach, an upper bound UB and a lower bound

LB are computed. A decision variant of the problem is then solved using the mean value of UB and

LB (MV = (UB − LB)/2) as a reference point. If a feasible schedule exists whose objective value

is MV, then MW becomes the new UB and the process is started again. If there is no schedule

with objective value MV, then MV becomes the new lower bound and the process is started again.

However, this type of approach is unable to solve large instances efficiently. Even with a time limit

of 10 minutes, instances with more than 50 jobs cannot be solved to optimality. Moreover, when

a dichotomy technique fails to find a solution within the time limit, it often does not have enough

time to solve one decision version of the problem, and will return a very poor solution.

A Lagrangian relaxation algorithm [3] is able to solve the same problem but again with not

more than 50 jobs. Since better results are provided by the CPP approach, this method will not be

considered in the numerical experiment section. We refer the reader to [3] for a comparison of the

two methods presented above.
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2 A VNS-TS algorithm for parallel machine scheduling

The proposed approach consists of a tabu search (TS) technique imbedded as a local search operator

within a variable neighbourhood search (VNS) method. The encoding of a solution is specific to the

problem and its irregular objective (see e.g. [4]). The property mentioned in remark 1 is used for

this particular encoding. A set of nested neighbourhoods is developed and used for both the TS and

the VNS. The TS always performs a complete exploration of the current neighbourhood whereas the

VNS accepts the first improving solution.

2.1 Encoding

Remark 1 states that late jobs do not need to be scheduled. Hence, an easy way to represent a

solution is using m lists of jobs that are effectively sequenced on the different m machines with their

starting times. The starting times for each early job are determined by the main algorithm and

will be explained later in the paper. Maintaining a feasible solution for each machine individually

ensures that the jobs on each machine can be processed without violating the classical scheduling

constraints.

To complete the solution and avoid non-necessary computations, a list of not-yet scheduled jobs

is maintained. This list corresponds to the list of late jobs. According to remark 1, no starting times

are given for these jobs.

2.2 Neighbourhood structures

Since the objective of our problem is to minimize the number of late jobs, the quality of a solution

can only be improved by moving jobs (named candidate jobs) from the late list to one of the m

machine list. To do so and according to the encoding presented above, a starting time should be

found for the candidate jobs. If there is enough free processing time available on one of the machines

(e.g. idle times due to the release dates), a candidate job can be moved from the late list to one

of the machine lists without violating any constraints. If not, a late job can only be moved to a

machine by removing one or several consecutive early jobs from this machine and putting the job in

their place on the considered machine.

In our algorithm, only one late job is exchanged at a time. The reason for this is that exchanging
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several late jobs at the same time increases the complexity of the algorithm, while making it more

difficult to determine the neighbourhood. With this exchange rule, we define Nk, our neighbourhood

of size k as the set of feasible solutions that result from swapping one candidate job with 0 to up to

k consecutive early jobs on the same machine.

Figure 1 presents an example with 2 machines and 9 jobs. In the solution represented in this

figure, jobs 2 and 3 are late, jobs 1, 6, 5 and 9 are sequenced in this order on machine M1 and jobs

8, 4 and 7 are sequenced in this order on machine M2. Of course, jobs on the machines are early.

If we assume that we are determining the neighbourhood with k = 2, we take the first candidate

(late) job (job 2) and try to set it early on machine M1 and M2 in any possible position, without

removing any jobs from these machines. If it can be set early, without removing any job, we have

found one or more feasible solutions in the neighbourhood (any position in which the job can be

inserted constitutes a new solution in the neighbourhood). Then, we try to set this candidate job

early by setting late one of the early jobs. So we try to set job 2 early by setting late succcessively

jobs 1, 6, 5 and 9 on machine M1, possibly generating new solutions in the neighbourhood. We

redo this with machine M2. Finally, we try to set this candidate job early by setting late two (k)

consecutives early jobs. So we try to set early candidate job 2 by setting late jobs 1 and 6, then by

setting late jobs 6 and 5,then with jobs 5 and 9 on machine M1. And the same is done with jobs

8, 4 and with jobs 4 and 7. The complete neighbourhood is found by repeating this process for late

job 3.

Late jobs {2, 3} M1 {1, 6, 5, 9}

M2 {8, 4, 7}

Figure 1: Example with 2 machines and 9 jobs

All these “moves” have a specific cost (variation of the objective function value). This cost is

stored with the neighbour solution and will be used in VNS and TS algorithm. Note that we never

attempt to compact the schedules on the individual machines e.g. by moving all jobs forward as

much as possible. This is left for future research.

Another option is to exchange one late job with exactly k early jobs (k ∈ [0, n]). During a

preliminary computational experiment phase, this option has been tested and shown to be inefficient.
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2.3 Initial solutions

We use a greedy approach to construct an initial solution. Initially, all jobs are considered late, and

the list of late jobs is sorted in increasing order of the ratio wj/pj (weight over processing time).

This sorting rule is denoted weighted shortest processing time. Jobs are then added to one of the

machine lists in the order they appear on this list; machines are taken in sequencial order. This rule

is efficient on single and parallel machine problems and was again used for our problem (see [8]).

In the computational test phase, we will also run the final algorithm from another inital solution.

This initial solution will be obtained using the same greedy algorithm but a random order of the

initial list of late jobs is used. As explain in section 3, several runs of the main algorithm will be

performed and the best solution over all runs will be kept for comparison.

2.4 Tabu search

The tabu search is based on the same neighbourhoods and is briefly described here. A maximum

of itmax iterations are performed during this phase. The tabu search works with neighbourhood

Nk (k is given by the main VNS algorithm). The complete neighbourhood Nk is generated. The

best solution from Nk is extracted and its tabu status is checked. If the solution is tabu and does

not satisfy the aspiration criterion, the second best solution from Nk is used, etc, until all solutions

from Nk are tested, otherwise, the solution is used as the new current solution and the tabu search

continues.

The tabu status of a solution is defined by a pair of integer values: (1) the sum of the weights of

the late jobs and (2) the sum of the processing times of the late jobs. This technique has been used

to avoid similar configurations that can be found by e.g. just switching machines identifiers.

2.5 VNS

Our variable neighbourhood search algorithm follows the classical definition of the VNS algorithm

proposed in [7]. The standard algorithm has been used (see algorithm 1), but a few shortcuts have

been added such as loop exits (e.g. if a feasible solution can be found in which all jobs are early,

which is of course optimal).
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Algorithm 1: VNS main algorithm

while Stopping conditions are not met do

k ← 0

while k ≤ kmax do

Shaking : Choose a random neighbour x′ ∈ Nk(x)

Local search: Apply tabu search on x′ as defined previously and get x′′

Move or not : if x′′ is better than x′ then

x← x′, k ← 0

else

k ← k + 1

3 Experiments

Instances for numerical experiments are taken from [1]. They have been generated for single machine

problems in [2] but can be easily extended to more than one machine. Four important characteristics

are taken into account for generation: (1) distribution of processing times, (2) distribution of weights,

(3) overall load of the machines (load is computed as the ratio between the sum of processing times

and m(max dj −min rj) and (4) margin of each job mi = dj − rj − pj . Hence, processing times are

generated by the uniform distribution U [pmin, pmax], weights are generated by U [1, wmax], release

dates by the normal distribution N (0, σ) and margins by U [1,mmax]. Since most release dates are

in [−2σ, 2σ], load can be approximated by load = n(pmin+pmax)/2
m(4σ+pmax+mmax) . The value of σ is computed

using this formula. Parameters are taken from the table 1 and one instance is generated for each

combination of these parameters.

Parameter Possible values Parameter Possible values

n 50; 100 mmax 50; 200; 350; 500; 650

m 1; 3; 6 load 1.0; 1.6; 2.2

[pmin, pmax] [0,100];[25,75] wmax 1; 10; 100

Table 1: Parameters for instance generation

Two types of tests have been performed. First, we compare our resolution approach with the

exact approach proposed in [1] on a number of 50-job instances. The number of optima found, as

well as the improvements of one method over the other are reported. In the second type of tests, we

use the 100-job instances and report the results of the main algorithm and compare it with the best

of 10 runs on the same algorithm but starting from an inital random solution.
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In Tables 2, 3 and 4, the first three columns (“Optima”) present the number of optimal solutions

found by the CPP method (see [2]), the number of optimal solutions found by the VNS method

presented here and the average gap (in %) between the VNS solution and the optimal solution. The

next two columns (“Best sol.”) present results when the optimal solution is not known. Column

“Improv.” shows the number of times the best solution found by the CPP method is improved by

our VNS and the improvement in percentage. The last two columns give the average CPU times of

each method.

Inst. type Optima Best sol. CPU times (s)

wmax # CPP # VNS Gap Improv. Gap CPP VNS

1 29 0 40.18 0 – 64.39 3.95

10 28 0 30.44 1 -65.23 101.58 4.54

99 28 0 33.84 0 – 176.91 4.65

Total 85 0 34.88 1 -65.23 114.29 4.38

Table 2: Results for n = 50 and m = 1

Clearly, for 50 jobs and one machine problems, the CPP method is adequate, 85 out of 90 optimal

solution are found. Only one instance (for which optimal solution is not found) is improved by our

approach; in that case, the CPP solution is improved by about 65%.

Inst. type Optima Best sol. CPU times (s)

wmax # CPP # VNS Gap Improv. Gap CPP VNS

1 3 0 41.00 25 -62.56 549.88 2.01

10 4 0 36.08 23 -77.56 542.24 2.54

99 3 0 68.96 21 -77.63 554.13 2.50

Total 10 0 46.14 69 -72.15 548.75 2.35

Table 3: Results for n = 50 and m = 3

For three machine problems, the CPP has more difficulties to complete the exhaustive search,

and only a small number of optimal solutions are found. As mentioned before, if the CPP search

fails, in most cases, not even a single run of the decision problem is achieved and the quality of the

solution is poor. This justifies the gaps observed in “Best sol.” columns.

As the number of machines increases, the efficiency of our approach relative to the CPP method

increases. In fact, the CPP method becomes more and more inefficient with increasing number of

machines. This is probably due to a property of the CPP method, in particular the fact that this

method is unable to detect similarities of configurations of early jobs. In our problem, all machines

are identical but in the CPP method, setting job 1 and job 2 early on machine 1 is totally different
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Inst. type Optima Best sol. CPU times (s)

wmax # CPP # VNS Gap Improv. Gap CPP VNS

1 19 10 25.29 8 -69.25 255.21 0.86

10 15 11 0.00 9 -83.48 303.62 1.22

99 16 11 0.00 10 -71.46 283.65 1.17

Total 50 32 25.29 27 -74.81 280.82 1.08

Table 4: Results for n = 50 and m = 6

from setting these jobs early on machine 2. For our VNS/TS method, we can observe a computing

time decrease as the number of machines increases. This is due to the fact that, the more machines

we have, the shorter time the VNS/TS method needs to find an inproving solution and stop the

search.

In Tables 5, 6 and 7, results are presented for instances with 100 jobs. There is no other

competitive method that solve these instances. Hence, the VNS/TS is run from two different initial

solutions. The first version uses an initial heuristic where jobs are sorted according to the weighted

shortest processing time rule and then inserted in the machines in this order, the VNS/TS is applied

from that solution. This method will be denoted BW (Best Weighted). The second version uses a

random order rule for initial insertion and the VNS/TS is applied on that solution. This approach

is run ten times and the best result is reported. We will denote this method RS (Random Shuffle).

The first two columns give the number of times BW gives the best results as well as its improvement

over RS. The next two columns give the same results for RS. The next three columns give specific

results on BW: the number of times VNS/TS improves the initial solution; when improved, how

much; and how long it takes. The last three columns report the same results for RS (CPU times are

the average running times over all ten runs).

Inst. type First place BW + VNS/TS RS + VNS/TS

wmax BW %(BW) RS %(RS) Imp. (%) CPU (s) Imp. (%) CPU (s)

1 24 1.70 4 0.20 0 0.00 17.88 28 -6.65 16.67

10 5 0.14 25 1.78 25 -4.57 17.57 30 -30.49 17.75

99 6 0.25 23 1.90 29 -4.85 17.94 30 -34.93 17.96

Total 35 2.09 52 3.89 54 -4.72 17.79 88 -24.42 17.46

Table 5: Results for n = 100 and m = 1

For single machine instances, the performance of the two methods is quasi-identical. Even if RS

gives better solutions, improvement is not significant enough to state that this approach is the best.

CPU times are comparable.
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Inst. type First place BW + VNS/TS RS + VNS/TS

wmax BW %(BW) RS %(RS) Imp. (%) CPU (s) Imp. (%) CPU (s)

1 27 3.55 2 0.13 0 0.00 8.54 28 -6.83 7.55

10 18 0.99 10 1.01 16 -3.64 8.53 30 -35.43 9.07

99 20 1.19 10 0.63 21 -1.93 9.00 30 -38.71 9.29

Total 65 5.73 22 1.77 37 -2.67 8.69 88 -27.45 8.64

Table 6: Results for n = 100 and m = 3

We can see here that initial solutions used for the BW variant are improved by only about 3%

on average. We are currently investigating whether this is due to the fact that these initial solutions

are very good, or whether the VNS/TS needs improvement.

Inst. type First place BW + VNS/TS RS + VNS/TS

wmax BW %(BW) RS %(RS) Imp. (%) CPU (s) Imp. (%) CPU (s)

1 26 5.23 0 0.00 0 0.00 4.67 26 -10.53 4.61

10 19 2.10 11 1.40 10 -1.66 5.01 30 -42.07 6.29

99 23 2.68 7 0.88 13 -2.76 5.23 30 -45.37 6.36

Total 68 10.01 18 2.28 23 -2.28 4.97 86 -33.69 5.75

Table 7: Results for n = 100 and m = 6

A general observation is that the inital solution heuristics for BW performs very well, especially

on instances where wmax = 1. With the current settings, no improvements are made by the VNS/TS

algorithm on these instances.

4 Conclusion and future directions

In this paper, we have proposed a novel approach that combines variable neighbourhood search and

tabu search to solve the parallel machine scheduling problem with the minimisation of the weighted

number of late jobs as objective function. We have introduced a solution encoding that takes the

specific structure of a solution into account, especially the fact that late jobs do not need to be

scheduled. We used this encoding to develop a set of k neighbourhoods, that become larger as the

value of k increases. A tabu search algorithm was built, based on these neighbourhoods, and this

was embedded in a variable neighbourhood search algorithm, also based on these neigbourhoods.

This approach was compared to an exact method where possible. Although the approach was

obviously outperformed in terms of quality, it was shown to be much faster than the exact method.

When the exact method failed to find the optimal solution, our approach performed better.
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However, the goal of this research was to develop a metaheuristic approach that would be able

to solve large instances, where exact methods fail. To the best of our knowledge, there is no other

published metaheuristic approach for this specific problem. We have applied our VNS/TS to a

number of large instances. Initial tests gives promising results, but also indicates a number of areas

for improvement and future research.
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