
HAL Id: hal-00019036
https://hal.science/hal-00019036

Submitted on 14 Feb 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hermite Subdivision with Shape Constraints on a
Rectangular Mesh

Tom Lyche, Jean-Louis Merrien

To cite this version:
Tom Lyche, Jean-Louis Merrien. Hermite Subdivision with Shape Constraints on a Rectangular Mesh.
BIT Numerical Mathematics, 2006, 46 (4), pp.831-859. �hal-00019036�

https://hal.science/hal-00019036
https://hal.archives-ouvertes.fr


1

Hermite Subdivision with Shape Constraints on a
Rectangular Mesh

Tom Lyche1 and Jean-Louis Merrien2

January 24, 2006

1Centre of Mathematics for Applications and Department of Informatics, University of
Oslo, PO Box 1053, Blindern, 0316 Oslo, Norway. email: tom@ifi.uio.no

2INSA de Rennes, 20 av. des Buttes de Coesme CS 14315, 35043 Rennes Cedex, France.

email: Jean-Louis.Merrien@insa-rennes.fr

Abstract.

We study a two parameter version of the Hermite subdivision scheme introduced
in [7], which gives C1 interpolants on rectangular meshes. We prove C1-convergence
for a range of the two parameters. By introducing a control grid we can choose the
parameters in the scheme so that the interpolant inherits positivity and/or directional
monotonicity from the initial data. Several examples are given showing that a desired
shape can be achieved even if we use only very crude estimates for the initial slopes.
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1 Introduction

Subdivision is a technique for constructing smooth curves or surfaces out of a
sequence of successive refinements of polygons, or grids see [3]. Subdivision has
found applications in areas such as geometric design [10, 21], and in computer
games and animation [6]. Subdivision schemes can be of Lagrange type or Her-
mite type. In this last case derivatives are also used. This can be desirable since
a Hermite scheme can be made more local, making it easier to obtain a desired
shape. Moreover, as our examples show, we can achieve a required shape using
only very crude estimates for the derivatives. For some classical methods for
bimonotone interpolation on a rectangular grid see [1, 2, 4, 5].

The first Hermite scheme was introduced in [15]. This method has smoothness
C1 and we refer to it as the HC1-scheme. A notion of control points for two
subfamilies of the HC1-scheme were introduced in [18]. In [14] some further
studies of the HC1-scheme where carried out. The calculation of values and
derivatives was separated and this made it possible to simplify some of the
proofs in [17]. It was also shown that a geometric formulation of the scheme has
a totally positive transformation matrix, and algorithms for constructing curves
satisfying local positivity, monotonicity, and convexity constraints were given
and tested. For more references to Hermite subdivision see [8, 9, 12, 13, 16, 22].

In [11, 19] Hermite subdivision was studied on a rectangular mesh using tensor
products of the HC1-scheme and its control points. An algorithm for achieving
a bimonotone interpolant was given.
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A disadvantage using the tensor product construction is that mixed partial
derivatives ∂2f/∂x∂y is required as input data. In this paper we consider an
alternative method the HRC1-algorithm, where these mixed partial derivatives
are not required. This scheme was introduced in [7]. It is a generalization
of a C1-quadratic finite element on a quadrilateral mesh ([20]). To describe
the HRC1-algorithm we start with values and gradients at the vertices of a
rectangular grid G in the plane. The algorithm is applied to each rectangle R in
turn by a local process. We divide R into 4 rectangles by connecting midpoints
of opposite edges and then compute values and derivatives at the vertices of the
4 sub-rectangles. Repeating this on each sub-rectangle we obtain in the limit
a function defined on a dense subset of R. The scheme is interpolatory, i.e it
retains the values at the vertices of the current rectangular grid. Moreover the
value on an edge E of R only depends on the length of E and on the values of
f and its derivatives at the endpoints of E. This makes it possible to obtain
a global smooth surface by gluing together HRC1-interpolants on neighboring
sub-rectangles.

Our paper can be detailed as follows. In Section 2, we first recall the HRC1-
algorithm and some of its properties which were proved in [7]. We consider a
simplified version of the scheme using only two parameters α and β. We show
that this version simplifies further if we choose α = β/(4(1 − β)).

In Section 3 we show C1-convergence of the HRC1-algorithm for a range of
the parameters α and β. This extends results in [7] where C1-convergence was
only shown for α = −1/8. We also show Hölder continuity of the first order
partial derivatives.

In Section 4 we define a control grid thereby giving a geometric formulation of
the HRC1-algorithm. This formulation is used in Section 5 to show how local
shape constraints can be achieved in the limit function. We give several examples
involving positivity and directional monotonicity constraints. We also show that
a convexity preserving HRC1-interpolant cannot be obtained in general.

2 Description of the algorithm HRC1

We let R := [a, b] × [c, d] be a given rectangle. The algorithm HRC1 which
gives a C1 Hermite interpolant on R was proposed by Dubuc and Merrien [7].
The goal is to construct a bivariate function f and its first partial derivatives
p := fx, q := fy on R in such a way that f, p, q are continuous.

The HRC1-Algorithm can be formulated as follows. We start with Hermite
data f0

i,j , p
0
i,j , q

0
i,j for i, j = 0, 1 at the corners of the rectangle [s00, s01]× [t00, t01] :=

[a, b] × [c, d]. For n = 0, 1, 2, . . . , let us denote by Pn the regular partition of
[a, b] into 2n subintervals and by Qn the similar regular partition of [c, d]. Also
let P := ∪n∈NPn and Q := ∪n∈NQn. For n = 0, 1, 2, . . . the points in the
partitions are denoted by sn

i := a + ihn and tnj := c + jkn, for i, j = 0, . . . , 2n,
where hn := 2−n(b − a) and kn := 2−n(d − c). What we compute at the grid
points (sn

i , t
n
j ) can be viewed either as point sequences {fn

ij}, {pn
ij}, {qn

ij} or as
functions f, p, q : P × Q → R defined by f(sn

i , t
n
j ) := fn

ij , p(s
n
i , t

n
j ) := pn

ij , and
q(sn

i , t
n
j ) := qn

ij . We will find both the sequence point of view and the function
point of view useful.

To define f , p and q on P×Q, we proceed by induction on n. For n = 0, 1, 2, . . .
suppose we have computed {fn

i,j}, {pn
i,j}, and {qn

i,j} on the grid Pn × Qn. We
set hn := 2−n(b − a), kn := 2−n(d − c) and compute fn+1

i,j , pn+1
i,j , and qn+1

i,j on
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the grid Pn+1 ×Qn+1 as follows:

(2.1)
for i = 2n : −1 : 0, for j = 2n : −1 : 0

fn+1
2i,2j := fn

i,j , pn+1
2i,2j := pn

i,j , qn+1
2i,2j := qn

i,j ,

(2.2)

for i = 0 : 2n − 1, for j = 0 : 2n

fn+1
2i+1,2j :=

fn
i+1,j + fn

i,j

2
+ αhn

(
pn

i+1,j − pn
i,j

)
,

pn+1
2i+1,2j := (1 − β)

fn
i+1,j − fn

i,j

hn
+ β

pn
i+1,j + pn

i,j

2
,

qn+1
2i+1,2j :=

qn
i+1,j + qn

i,j

2
,

(2.3)

for i = 0 : 2n, for j = 0 : 2n − 1

fn+1
2i,2j+1 :=

fn
i,j+1 + fn

i,j

2
+ αkn

(
qn
i,j+1 − qn

i,j

)
,

pn+1
2i,2j+1 :=

pn
i,j+1 + pn

i,j

2
,

qn+1
2i,2j+1 := (1 − β)

fn
i,j+1 − fn

i,j

kn
+ β

qn
i,j+1 + qn

i,j

2
,

(2.4)

for i = 0 : 2n − 1, for j = 0 : 2n − 1

fn+1
2i+1,2j+1 :=

fn
i,j + fn

i+1,j + fn
i,j+1 + fn

i+1,j+1

4

+ αhn

pn
i+1,j − pn

i,j + pn
i+1,j+1 − pn

i,j+1

2

+ αkn

qn
i,j+1 − qn

i,j + qn
i+1,j+1 − qn

i+1,j

2

pn+1
2i+1,2j+1 := (1 − β)

fn
i+1,j − fn

i,j + fn
i+1,j+1 − fn

i,j+1

2hn

+ β
pn

i,j + pn
i,j+1 + pn

i+1,j + pn
i+1,j+1

4

+ βkn

qn
i+1,j+1 − qn

i+1,j + qn
i,j − qn

i,j+1

4hn
,

qn+1
2i+1,2j+1 := (1 − β)

fn
i,j+1 − fn

i,j + fn
i+1,j+1 − fn

i+1,j

2hn

+ β
qn
i,j + qn

i+1,j + qn
i,j+1 + pn

i+1,j+1

4

+ βkn

pn
i+1,j+1 − pn

i,j+1 + pn
i,j − qn

i+1,j

4hn
.
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In (2.1) we simply redefine the functions at the points on Pn×Qn as points on a
subset of Pn+1 ×Qn+1. These points are marked by gray squares in Figure 2.1.
In (2.3-2.4) we compute new values at the new points marked by black circles in
Figure 2.1.

2i 2i+1 2i+2

2j

2j+1

2j+2

Figure 2.1: Recursive computation of f, p and q.

For α = −1/8, β = −1 it was shown in [7] that we obtain the Sibson-Thomson
interpolant on R proposed in [20]. In this case, the HRC1-interpolant is a C1

piecewise quadratic consisting of 16 individual pieces, see Figure 2.2. Moreover
the cross boundary derivatives are linear functions along the outer boundary of
[a, b] × [c, d].

It was shown in [7] that the HRC1-algorithm is exact for bilinear functions
for any value of α and β. It is exact for quadratic polynomials if and only if
α = −1/8 and exact for cubic polynomials if and only if α = −1/8 and β = −1/2.

a b
c

d

Figure 2.2: Sibson-Thomson subdivision of a rectangle.

We have simplified the construction of [7] and it depends on only two param-
eters α and β. This simplification gives new formulas for the computation of
fn+1
2i+1,2j+1, p

n+1
2i+1,2j+1 and qn+1

2i+1,2j+1.
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Proposition 2.1.
(2.5)

for i = 0 : 2n − 1, for j = 0 : 2n − 1

fn+1
2i+1,2j+1 =

fn+1
2i+2,2j+1 + fn+1

2i,2j+1

2
+ αhn

(
pn+1
2i+2,2j+1 − pn+1

2i,2j+1

)
,

=
fn+1
2i+1,2j+2 + fn+1

2i+1,2j

2
+ αkn

(
qn+1
2i+1,2j+2 − qn+1

2i+1,2j

)
,

pn+1
2i+1,2j+1 = (1 − β)

fn+1
2i+2,2j+1 − fn+1

2i,2j+1

hn
+ β

pn+1
2i+2,2j+1 + pn+1

2i,2j+1

2

+
kn

hn

(
(1 − β)α− β/4

)(
qn+1
2i+2,2j − qn+1

2i+2,2j+2 + qn+1
2i,2j+2 − qn+1

2i,2j

)
,

qn+1
2i+1,2j+1 = (1 − β)

fn+1
2i+1,2j+2 − fn+1

2i+1,2j

kn
+ β

qn+1
2i+1,2j+2 + qn+1

2i+1,2j

2

+
hn

kn

(
(1 − β)α− β/4

)(
pn+1
2i,2j+2 − pn+1

2i+2,2j+2 + pn+1
2i+2,2j − pn+1

2i,2j

)
.

Proof. For n ∈ N, i, j ∈ {0, . . . , 2n − 1}, the first formula of (2.4) can be
written:

fn+1
2i+1,2j+1 =

1
2
[fn

i+1,j+1 + fn
i+1,j

2
+ αkn(qn

i+1,j+1 − qn
i+1,j)

+
fn

i,j+1 + fn
i,j)

2
+ αkn(qn

i,j+1 − qn
i,j)

]
+ αhn

[pn
i+1,j+1 + pn

i+1,j

2
− pn

i,j+1 + pn
i,j

2
]
.

Using (2.3) this gives the first formula in (2.5). The proof of the second formula
is similar.

We write the second formula of (2.4)

pn+1
2i+1,2j+1 =

1 − β

hn

[fn
i+1,j+1 + fn

i+1,j

2
+ αkn(qn

i+1,j+1 − qn
i+1,j)

]
− 1 − β

hn

[fn
i,j+1 + fn

i,j

2
+ αkn(qn

i,j+1 − qn
i,j)

]
+
β

2
[pn

i+1,j+1 + pn
i+1,j

2
+
pn

i,j+1 + pn
i,j

2
]

+
kn

hn

[
(1 − β)α − β/4

][
qn
i+1,j − qn

i+1,j+1 + qn
i,j+1 − qn

i,j

]
.

Thanks to (2.1) and (2.3), we obtain the result. The last formula is symmetrical
from the previous one.

3 C1-convergence of the algorithm

We say that the scheme is C1-convergent if, for any initial data, the functions
f , p, and q can be extended from P ×Q to continuous functions on [a, b]× [c, d]
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with p = fx and q = fy. We call f defined either on P × Q or on [a, b] × [c, d]
the HRC1-interpolant to the data.

For the study of C1-convergence it is enough to consider the construction on
the unit square [0, 1]2. To see this, let h = b−a, k = d− c and let again (a, c) be
the south-west vertex of the initial rectangle [a, b] × [c, d]. On [0, 1]2, we define
the initial data g(u, v) := f(a + uh, c + vk), gx(u, v) := hfx(a + uh, c + vk),
gy(u, v) := kfy(a + uh, c + vk), (u, v) ∈ {0, 1}2. The constructions of f or g
by formulas (2.1), (2.2), (2.3) and (2.4) are equivalent and at each step, we
obtain g(u, v) = f(a+ uh, c+ vk), gx(u, v) = hfx(a+ uh, c+ vk) and gy(u, v) =
kfy(a+uh, c+vk), (u, v) ∈ {0, 1/2n, . . . , �/2n, . . . , 1}2. Thus the C1-convergence
of f on [a, b] × [c, d] is equivalent to the C1-convergence of g on [0, 1]2.

So let us begin with data on the vertices of the unit square [0, 1]2. For n ≥ 0
and i, j = 0, 1, . . . , 2n − 1 we define vectors of differences Un

ij ∈ R
12 as follows:

Un
ij :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qn
i+1,j − qn

i,j

pn
i+1,j+1 − pn

i+1,j

qn
i+1,j+1 − qn

i,j+1

pn
i,j+1 − pn

i,j

pn
i+1,j − pn

i,j

qn
i+1,j+1 − qn

i+1,j

pn
i+1,j+1 − pn

i,j+1

qn
i,j+1 − qn

i,j
fn

i+1,j − fn
i,j

hn
−

pn
i+1,j + pn

i,j

2
fn

i+1,j+1 − fn
i+1,j

hn
−

qn
i+1,j+1 + qn

i+1,j

2
fn

i+1,j+1 − fn
i,j+1

hn
−

pn
i+1,j+1 + pn

i,j+1

2
fn

i,j+1 − fn
i,j

hn
−

qn
i,j+1 + qn

i,j

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We then have
Lemma 3.1. Suppose we can find a vector norm ‖·‖ on R

12 and positive
constants c, ρ with ρ < 1 such that

‖Un
ij‖ ≤ cρn, for i, j = 0, . . . , 2n − 1.

Then the HRC1-algorithm is C1-convergent.
Proof. The proof of the C1-convergence on [0, 1]2 is detailed in [7]. To

summarize, with the hypothesis, it can be proved that p and q are uniformly
continuous on the dyadic points so that they can be extended into continuous
functions on [0, 1]2. Then we extend f and prove that fx = p and fy = q using
the four last components of Un

i,j .
To bound the vectors Un

ij we will use the following recurrence relations.
Proposition 3.2. We have

Un+1
ij = Λ(1)Un

ij , U
n+1
i+1,j = Λ(2)Un

ij ,

Un+1
i+1,j+1 = Λ(3)Un

ij , U
n+1
i,j+1 = Λ(4)Un

ij ,

where Λ(1),Λ(2),Λ(3),Λ(4) are 4 matrices in R
12×12 depending only on the 2 pa-

rameters α, β of algorithm HRC1. Explicit formulas for the matrices are as
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follows:

Λ(i) =

⎡
⎢⎣Λ(i)

11 Λ(i)
12 Λ(i)

13

0 Λ(i)
22 Λ(i)

23

0 Λ(i)
32 Λ(i)

33

⎤
⎥⎦ =

[
Λ(i)

11 . . .
0 M (i)

]

with Λ(i)
jk ∈ R

4×4 and M (i) ∈ R
8×8. More specifically:

Λ
(1)
11 =

⎡
⎢⎢⎣

1
2

0 0 0
0 1

4
0 1

4
1
4

0 1
4

0
0 0 0 1

2

⎤
⎥⎥⎦ , Λ(2)

11 =

⎡
⎢⎢⎣

1
2

0 0 0
0 1

2
0 0

1
4

0 1
4

0
0 1

4
0 1

4

⎤
⎥⎥⎦ ,

Λ
(3)
11 =

⎡
⎢⎢⎣

1
4

0 1
4

0
0 1

2
0 0

0 0 1
2

0
0 1

4
0 1

4

⎤
⎥⎥⎦ , Λ

(4)
11 =

⎡
⎢⎢⎣

1
4

0 1
4

0
0 1

4
0 1

4

0 0 1
2

0
0 0 0 1

2

⎤
⎥⎥⎦ ,

(Λ
(1)
12 Λ

(1)
13 ) =

⎡
⎢⎢⎣

0 0 0 0 0 0 0 0

0 β/4 0 −β/4 β−1
2

0 1−β
2

0

−β/4 0 β/4 0 0 1−β
2

0 β−1
2

0 0 0 0 0 0 0 0

⎤
⎥⎥⎦ .

M (1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

0 0 0 1 − β 0 0 0

−β
4

1
4

β
4

1
4

0 1−β
2

0 1−β
2

1
4

β
4

1
4

−β
4

1−β
2

0 1−β
2

0
0 0 0 1

2
0 0 0 1 − β

1
4

+ 2α 0 0 0 1+β
2

0 0 0

+β
8
− α 1

8
+ α α− β

8
1
8

+ α 0 1+β
4

0 1+β
4

1
8

+ α α− β
8

1
8

+ α β
8
− α 1+β

4
0 1+β

4
0

0 0 0 1
4

+ 2α 0 0 0 1+β
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M (2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

0 0 0 β − 1 0 0 0
0 1

2
0 0 0 1 − β 0 0

1
4

−β
4

1
4

β
4

β−1
2

0 β−1
2

0

−β
4

1
4

β
4

1
4

0 1−β
2

0 1−β
2

− 1
4
− 2α 0 0 0 1+β

2
0 0 0

0 1
4

+ 2α 0 0 0 1+β
2

0 0

− 1
8
− α −β

8
+ α − 1

8
− α −α+ β

8
1+β

4
0 1+β

4
0

β
8
− α 1

8
+ α α− β

8
1
8

+ α 0 1+β
4

0 1+β
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M (3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4

−β
4

1
4

β
4

β−1
2

0 β−1
2

0
0 1

2
0 0 0 β − 1 0 0

0 0 1
2

0 0 0 β − 1 0
β
4

1
4

−β
4

1
4

0 β−1
2

0 β−1
2

− 1
8
− α −β

8
+ α − 1

8
− α −α+ β

8
1+β

4
0 1+β

4
0

0 − 1
4
− 2α 0 0 0 1+β

2
0 0

0 0 − 1
4
− 2α 0 0 0 1+β

2
0

−α+ β
8

− 1
8
− α −β

8
+ α − 1

8
− α 0 1+β

4
0 1+β

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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M (4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4

β
4

1
4

−β
4

1−β
2

0 1−β
2

0
β
4

1
4

−β
4

1
4

0 β−1
2

0 β−1
2

0 0 1
2

0 0 0 1 − β 0
0 0 0 1

2
0 0 0 β − 1

1
8

+ α α− β
8

1
8

+ α β
8
− α 1+β

4
0 1+β

4
0

−α+ β
8

− 1
8
− α −β

8
+ α − 1

8
− α 0 1+β

4
0 1+β

4

0 0 1
4

+ 2α 0 0 0 1+β
2

0

0 0 0 − 1
4
− 2α 0 0 0 1+β

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. These relations were shown in [7] using a a computer algebra system.

We will not need the explicit form of the matrices [Λ(i)
12 Λ(i)

13 ] for i ∈ {1, 2, 3, 4}.
One can obtain all of them from [Λ(1)

12 Λ(1)
13 ] by permutations of rows and columns.

We mention that in [7] it was proved that the scheme is C1-convergent if
and only if the generalized spectral radius of Σ = {Λ(1),Λ(2),Λ(3),Λ(4)} satisfies
ρ̂(Σ) < 1. The following analysis is maybe somewhat simpler. We start with a
proposition.

Proposition 3.3. If there exists a vector norm ‖ · ‖ on R
12 and a number

ρ < 1 such that the associated matrix operator norm satisfies ‖Λ(i)‖ ≤ ρ for
i = 1, 2, 3, 4 then the scheme is C1-convergent. Moreover the functions p and q
are Hölder continuous with exponent −log2(ρ).

Proof. It is enough to prove the Proposition on the square [0, 1]2. That the
scheme is C1-convergent follows immediately from Lemma 3.1.

The proof that p and q are Hölder continuous is similar to a proof in dimension
one in [17]. In the following proof we will use the function notation for the
sequences {Un

ij}i,j , {fn
ij}i,j, {pn

ij}i,j , and {qn
ij}i,j . Thus if x := i2−n and y :=

j2−n then we write Un
ij and pn

ij as Un(x, y) and pn(x, y). We recall that P� =
{k2−�, k = 0, . . . , 2�}, � ∈ N is the set of dyadic points at step � on [0, 1] and we
write h� = 1/2�. With the hypothesis, for (x, y) ∈ P�

2, x �= 1, y �= 1, we have
‖U �(x, y)‖ ≤ ρ�‖U0(0, 0)‖ for � ≥ 0. Using the equivalence of the norms in R

12,
this implies that ‖U �(x, y)‖∞ ≤ c2ρ

� for some positive constant c2 independent
of U �. In particular, this holds for components 4 and 5 of U �(x, y) and we deduce
that

(3.1) |p(x± h�, y) − p(x, y)| ≤ c2ρ
�, with (x, y), (x ± h�, y) ∈ P�

2

|p(x, y ± h�) − p(x, y)| ≤ c2ρ
�, with (x, y), (x, y ± h�) ∈ P�

2.

Suppose that P1 = (x1, y1) and P2 = (x2, y2) are 2 points in [0, 1]2. Let
n be the unique nonnegative integer such that 2−n−1 < ‖P1 − P2‖∞ ≤ 2−n.
Then |x2 − x1| ≤ 2−n and |y2 − y1| ≤ 2−n and there exist x, y ∈ Pn such that
|xj − x| ≤ 2−n and |yj − y| ≤ 2−n for j = 1, 2. Thus P := (x, y) ∈ Pn

2 is such
that ‖Pj − P‖∞ ≤ 2−n for j = 1, 2.

To prove that |p(P1) − p(P )| ≤ c3ρ
n for some constant c3 we write P1 =

P +
∑∞

i=1(ui, vi)2−i−n with ui and vi in {0, 1,−1}. We define the sequence
{P̂j} := {(x̂j , ŷj)} by P̂0 = P and P̂j = P̂j−1 + (uj , vj)2−j−n, for j ≥ 1. Then
P̂j ∈ Pn+j

2 and

|p(P̂j) − p(P̂j−1)| ≤ |p(x̂j , ŷj) − p(x̂j , ŷj−1)| + |p(x̂j , ŷj−1) − p(x̂j−1, yj−1)|.
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Since (x̂j , ŷj), (x̂j , ŷj−1) and (x̂j−1, ŷj−1) are in Pn+j
2 we can bound them using

(3.1) with � = n+ j and we obtain |p(P̂j)− p(P̂j−1)| ≤ 2c2ρn+j so that |p(P1)−
p(P )| ≤ ∑∞

j=1 2c2ρn+j = 2c2
1−ρρ

n+1.
With the same upper bound for |p(P2)−p(P )|, we deduce that |p(P2)−p(P1)| ≤

c4ρ
n+1 with c4 = 4c2

1−ρ .
To conclude, notice that since ‖P1 − P2‖∞ > 2−n−1 then

|p(P2) − p(P1)| ≤ c4ρ
n+1 = c42(−n−1)(− log2 ρ) < c4‖P1 − P2‖− log2(ρ)

∞ .

A similar inequality holds for the function q.

To find a good norm on R
12, we use the following well known result:

Lemma 3.4. Corresponding to a positive integer d, a nonsingular matrix
P ∈ R

d×d and a vector norm ‖ · ‖ on R
d we define a vector norm on R

d by
‖V ‖1 := ‖P−1V ‖. Then the associated matrix operator norm ‖·‖ is given by
‖A‖1 = ‖P−1AP‖ for any matrix A ∈ R

d×d.
Proof. Clearly ‖ · ‖1 defines a norm on R

d. Now if A ∈ R
d×d then

‖A‖1 := max
V �=0

‖AV ‖1

‖V ‖1
= max

V �=0

‖P−1AV ‖
‖P−1V ‖ = max

U �=0

‖P−1APU‖
‖U‖ = ‖P−1AP‖.

Let ‖ · ‖1 and ‖ · ‖2 be two vector norms on R
d1 and R

d2 respectively. For
a matrix A ∈ R

d1×d2 we write ‖A‖12 for the associated mixed matrix operator

norm ‖A‖12 := max
V ∈Rd2 ,V �=0

‖AV ‖1

‖V ‖2
.

Lemma 3.5. Suppose for positive integers d1 and d2 that Σ is a set of square
matrices {A} of order d := d1 + d2 that are written by blocks as

(3.2) A =
[
A11 A12

A21 A22

]

with diagonal blocks Aii ∈ R
di×di for i = 1, 2. For i = 1, 2, let ‖ ·‖i be two vector

norms on R
di and for i, j = 1, 2, let γij be positive constants such that for any

A ∈ Σ the estimates ‖Aij‖ij ≤ γij hold. If

γ11 < 1, γ22 < 1, and γ21γ12 < (1 − γ11)(1 − γ22)

then we can find a matrix norm on R
d×d such that any A ∈ Σ has norm less

than 1.
Proof. On R

d, we define a norm ‖ · ‖θ depending on a parameter θ > 0. If
V = (X,Y )T with X ∈ R

d1 and Y ∈ R
d2 then ‖V ‖θ := ‖X‖1 + θ‖Y ‖2.

Then for any matrix A ∈ R
d×d, we have:

‖AV ‖θ = ‖A11X +A12Y ‖1 + θ‖A21X +A22Y ‖2

≤ ‖A11‖11‖X‖1 + ‖A12‖12‖Y ‖2 + θ‖A21‖21‖X‖1 + θ‖A22‖22‖Y ‖2

= (‖A11‖11 + θ‖A21‖21)‖X‖1 + (‖A12‖12/θ + ‖A22‖22)(θ‖Y ‖2)
≤ max(‖A11‖11 + θ‖A21‖21, ‖A12‖12/θ + ‖A22‖22)‖V ‖θ.
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We deduce that

(3.3) ‖A‖θ ≤ max(‖A11‖11 + θ‖A21‖21, ‖A12‖12/θ + ‖A22‖22), A ∈ R
d×d.

‖A‖θ < 1, as soon as ‖A11‖11 + θ‖A21‖21 < 1 and ‖A12‖12/θ + ‖A22‖22 < 1.
Since, for any A ∈ Σ, ‖Aij‖ ≤ γij , i, j = 1, 2, it suffices that γ11 + θγ21 < 1
and γ12/θ + γ22 < 1. If γ11 < 1 and γ22 < 1, these conditions are satisfied
whenever there exists a real number θ > 0 such that γ12

1−γ22
< θ < 1−γ11

γ21
. Since

γ21γ12 < (1 − γ11)(1 − γ22) we can find such a θ.
Lemma 3.6. Suppose in Lemma 3.5 that Σ is a finite family of matrices of

the form (3.2) with A21 = 0. If there exists a real number c > 0 such that for
any A ∈ Σ, ‖A11‖11 ≤ c and ‖A22‖22 < c then there exists a matrix norm such
that for all A ∈ Σ, we have ‖A‖ ≤ c .

Proof. Using (3.3) in the previous Lemma, ‖A‖θ ≤ max(‖A11‖11, ‖A12‖12/θ+
‖A22‖22). Now ‖A11 ≤ c and ‖A22‖22 < c. Since the set Σ is finite, we can find
a real number θ > 0 such that for any A ∈ Σ, ‖A12‖12/θ is small enough to get
‖A‖θ ≤ c.

Now we have the tools to study the C1-convergence of the algorithm.

−1/4 −1/6 −1/8 0 

−5/3

−1  

0   

1   

α

β

Figure 3.1: The region R in Theorem 3.7 together with the curve α = β/(4(1 − β)).

Theorem 3.7. The algorithm HRC1 is C1 convergent if (α, β) belongs to the
region

(3.4) R := {(α, β) : −1
4
< α < 0 and l(α) < β < u(α)},

where

l(α) :=

⎧⎪⎨
⎪⎩

8α− 2 +
√

(8α+ 1)(8α− 7) if − 1
4 ≤ α < − 1

6 ,

− 5
3 if − 1

6 ≤ α < − 1
8 ,

2α−1
2α+1 if − 1

8 ≤ α ≤ 0,
(3.5)

u(α) :=

{
16α+ 3, if − 1

4 ≤ α < − 1
8 ,

1 if − 1
8 ≤ α ≤ 0,

(3.6)
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Proof. Let ‖A‖∞ = maxi=1,...,d(
∑d

j=1 |aij |) be the matrix norm on R
d×d as-

sociated with the vector norm ‖V ‖∞ = maxk=1,...,d(|vk|) on R
d. By Lemma 3.6,

since ‖Λ(�)
11 ‖∞ = 1/2, with we get a matrix norm such that ‖Λ(�)‖ < 1 as soon

as there exists a matrix norm such that ‖M (�)‖ < 1, � = 1, . . . , 4.

Let P1 =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ and P =

[
P1 0
0 P1

]
. We compute

N (�) := P−1M (�)P =

[
N

(�)
11 N

(�)
12

N
(�)
21 N

(�)
22

]
for � = 1, . . . , 4. By Lemma 3.4 we know

that it suffices to find a matrix norm such that ‖N (�)‖ < 1, for � = 1, 2, 3, 4. The
computation gives:

N
(1)
11 = 1

4

⎡
⎢⎢⎣

2 0 1 β
0 2 −β −1
0 0 1 −β
0 0 −β 1

⎤
⎥⎥⎦ N

(1)
12 = 1−β

2

⎡
⎢⎢⎣

2 0 1 0
0 2 0 −1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

N
(1)
21 =

⎡
⎢⎢⎣

1/4 + 2α 0 1/8 + α α − β/8
0 1/4 + 2α −α + β/8 −1/8 − α
0 0 1/8 + α −α + β/8
0 0 −α + β/8 1/8 + α

⎤
⎥⎥⎦ N

(1)
22 = 1+β

4

⎡
⎢⎢⎣

2 0 1 0
0 2 0 −1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

N
(2)
11 = 1

4

⎡
⎢⎢⎣

2 0 1 −β
0 2 −β 1
0 0 1 β
0 0 β 1

⎤
⎥⎥⎦ N

(2)
12 = 1−β

2

⎡
⎢⎢⎣
−2 0 −1 0
0 2 0 1
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦

N
(2)
21 =

⎡
⎢⎢⎣
−1/4 − 2α 0 −1/8 − α α − β/8

0 1/4 + 2α −α + β/8 1/8 + α
0 0 −1/8 − α −α + β/8
0 0 α − β/8 1/8 + α

⎤
⎥⎥⎦ N

(2)
22 = 1+β

4

⎡
⎢⎢⎣

2 0 1 0
0 2 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

N
(3)
11 = 1

4

⎡
⎢⎢⎣

2 0 −1 −β
0 2 β 1
0 0 1 −β
0 0 −β 1

⎤
⎥⎥⎦ N

(3)
12 = 1−β

2

⎡
⎢⎢⎣
−2 0 1 0
0 −2 0 −1
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦

N
(3)
21 =

⎡
⎢⎢⎣
−1/4 − 2α 0 1/8 + α α − β/8

0 −1/4 − 2α −α + β/8 −1/8 − α
0 0 −1/8 − α α − β/8
0 0 α − β/8 −1/8 − α

⎤
⎥⎥⎦ N

(3)
22 = 1+β

4

⎡
⎢⎢⎣

2 0 −1 0
0 2 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

N
(4)
11 = 1

4

⎡
⎢⎢⎣

2 0 −1 β
0 2 β −1
0 0 1 β
0 0 β 1

⎤
⎥⎥⎦ N

(4)
12 = 1−β

2

⎡
⎢⎢⎣

2 0 −1 0
0 −2 0 1
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦

N
(4)
21 =

⎡
⎢⎢⎣

1/4 + 2α 0 −1/8 − α α − β/8
0 −1/4 − 2α −α + β/8 1/8 + α
0 0 1/8 + α α − β/8
0 0 −α + β/8 −1/8 − α

⎤
⎥⎥⎦ N

(4)
22 = 1+β

4

⎡
⎢⎢⎣

2 0 −1 0
0 2 0 −1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

In R
4, we use the norm ‖ · ‖θ, θ > 0 defined at the beginning of the proof

of Lemma 3.5, using ‖ · ‖∞ in R
4, i.e ‖U‖θ = ‖X‖∞ + θ‖Y ‖∞ where U =
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[
X
Y

]
, X, Y ∈ R

2. Using (3.3), we deduce that for A =
[
A11 A12

0 A22

]
∈ R

4×4 with

Aij ∈ R
2×2, we have ‖A‖θ ≤ max(‖A11‖∞, ‖A12‖∞/θ + ‖A22‖∞).

For � = 1, 2, 3, 4, we can then bound ‖N (�)
ij ‖θ. Let µ := 1 + 1

θ > 1 and assume
µ < 2. Then

‖N (�)
11 ‖θ ≤ 1

4 max(2, µ(1 − β)) =: γ11,

‖N (�)
12 ‖θ ≤ |1 − β| =: γ12,

‖N (�)
21 ‖θ ≤ max(|1/4 + 2α|, µ(| − α+ β/8| + |1/8 + α|)) =: γ21,

‖N (�)
22 ‖θ ≤ |1+β|

2 =: γ22.

−1/4 −3/16 −1/8 0    

−2

−1

0

1

α

β

R
1

R
2

R
3

R
4 R

5

R
6

Figure 3.2: The subsets R1, . . . , R6 used in the proof of Theorem 3.7.

We need to bound the γ′s. The analysis below shows that it is enough to
consider (α, β) in the rectangle [− 1

4 , 0] × [−2, 1]. To compute γ21, which is
the most difficult, we divide the rectangle [− 1

4 , 0] × [−2, 1] into open subsets
R1, . . . , R6 as shown in Figure 3.2. In these regions a lengthy, but straightforward
calculation gives the following values for the numbers γij and the quantity πγ :=
(1 − γ11)(1 − γ22):

R1 R2 R3 R4 R5 R6

γ11
1
2

1
2

1
2

µ
4
(1 − β) µ

4
(1 − β) µ

4
(1 − β)

γ22
1
2
(1 + β) 1

2
(1 + β) 1

2
(1 + β) - 1

2
(1 + β) - 1

2
(1 + β) - 1

2
(1 + β)

γ12 1 − β 1 − β 1 − β 1 − β 1 − β 1 − β

γ21 −µ(2α+ 1−β
8

) µ
8
(1 + β) 2α+ 1

4
−2α− 1

4
-µ
8
(1 + β) µ(2α+ 1−β

8
)

πγ
1
4
(1 − β) 1

4
(1 − β) 1

4
(1 − β) ν ν ν

where ν := 1
8 (3 + β)2 − ε, and where ε > 0 can be made arbitrary small by

choosing θ sufficiently big.
We need to compute subsets Sj of Rj so that γ12γ21 < πγ for (α, β) ∈ Sj ,

j = 1, . . . , 6.

• On R1, we need −µ(1−β)(2α+ 1−β
8 ) < 1−β

4 . This is satisfied if β < 16α+3.
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• On R2, the condition is µ(1 − β)1+β
8 < 1−β

4 which holds if β < 1.

• On R3, we should have (1 − β)(1
4 + 2α) < 1−β

4 . This is true for α < 0.

• On R4, the inequality is (1 − β)(− 1
4 − 2α) < (3+β)2

8 − ε. Since this should
hold for all ε > 0 we can drop the ε (this is also true for R5, and R6) and
we obtain

α <
11 + 4β + β2

16(1 − β)
or β < 8α− 2 +

√
(8α+ 1)(8α− 7).

• The condition on R5 takes the form (1 − β)1+β
8 < (3+β)2

8 which holds if
β > − 5

3 .

• Finally on R6, the inequality µ(1 − β)(2α + 1−β
8 ) < (3+β)2

8 is true for
β < 2α−1

2α+1 .

This defines the subregions Sj of Rj for j = 1, . . . , 6. It remains to show that
the result also holds on the curve segments forming the interior boundaries
between the regions. These curves can be identified as β = −1, α = −1/8, and
β = 16α+ 1. We divide these curves into segments as follows:

C11 := {(α, β) : −1

4
< α <

1

8
, β = −1}, C12 := {(α, β) : −1

8
≤ α < 0, β = −1},

C21 := {(α, β) : α = −1

8
, −5

3
< β < −1}, C22 := {(α, β) : α = −1

8
, −1 ≤ β < ψ},

C23 := {(α, β) : α = −1

8
, ψ ≤ β < 1}, C31 := {(α, 16α+ 1) : −1

6
< α < −1

8
},

C32 := {(α, 16α+ 1) : −1

8
≤ α < − 1

8µ
}, C33 := {(α, 16α+ 1) : − 1

8µ
≤ α < 0},

where ψ := −1 + 2
1+θ . The values of γij and δ := (1− γ11)(1− γ22)− γ12γ21 on

the different segments are shown in the following table:

Segment γ11 γ22 γ12 γ21 δ

C11 µ/2 0 2 −2µ(α+ 1
8
) 1 + 4µα

C12 µ/2 0 2 2µ(α+ 1
8
) 1 − µ− 4µα

C21
µ
4
(1 − β) − 1+β

2
1 − β −µ

8
(β + 1) 1

4
(6 − µ+ β(µ+ 2))

C22
µ
4
(1 − β) 1+β

2
1 − β µ

8
(β + 1) 1

4
(1 − β)(2 − µ)

C23
1
2

1+β
2

1 − β µ
8
(β + 1) 1

8
(1 − β)(2 − µ− µβ)

C31 −4µα −1 − 8α −16α −µ
4
(1 + 8α) 2 + 4α(2 + µ)

C32 −4µα 1 + 8α −16α µ
4
(1 + 8α) −4α(2 − µ)

C33
1
2

1 + 8α −16α µ
4
(1 + 8α) 4(µ− 1)α+ 32µα2

where as before we set µ := 1
θ + 1.

We have C1-convergence for a specific value of (α, β) provided we can find a
θ > 0 so that δ > 0. This is always possible for any point in the open interval
(see Figure 3.3).

Corollary 3.8. For α = β
4(1−β) and β ∈ [−5/3, 0), the scheme HRC1 is

C1-convergent.
Proof. If β ∈ [−5/3, 0) and α = β

4(1−β) , then (α, β) ∈ R, see Figure 3.1.
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−1/4u 0   

0   

0.45

α

δ

−5/3 1 

0

0.45

β
−1/6 0   

0

0.45

α

Figure 3.3: The value of δ = (1− γ11)(1− γ22)− γ12γ21 on the curve segments defined
by β = −1 (left), α = − 1

8
(center) and β = 16α+ 1 (right) corresponding to θ = 10 or

µ = 1.1.

4 The control grid

In order to obtain a geometric formulation of the HRC1-algorithm we define
control coefficients aij and control points Aij relative to the rectangle R = [a, b]×
[c, d] as follows:

A00 = (a, c, a00), where a00 = f(a, c),

A10 = (a+
h

λ
, c, a10), where a10 = f(a, c) +

hp(a, c)
λ

,

A20 = (b − h

λ
, c, a20), where a20 = f(b, c) − hp(b, c)

λ
,

A30 = (b, c, a30), where a30 = f(b, c),

A31 = (b, c+
k

λ
, a31), where a31 = f(b, c) +

kq(b, c)
λ

,

A32 = (b, d− k

λ
, a32), where a32 = f(b, d) − kq(b, d)

λ
,

A33 = (b, d, a33), where a33 = f(b, d),

A23 = (b − h

λ
, d, a23), where a23 = f(b, d) − hp(b, d)

λ
,

A13 = (a+
h

λ
, d, a13), where a13 = f(a, d) +

hp(a, d)
λ

,

A03 = (a, d, a03), where a03 = f(a, d),

A02 = (a, d− k

λ
, a02), where a02 = f(a, d) − kq(a, c)

λ
,

A01 = (a, c+
k

λ
, a01), where a01 = f(a, c) +

kq(a, c)
λ

.

(4.1)

Here h := b − a, k := d − c and λ ≥ 2 is a real number to be chosen. The
12 control points are located on the boundary of R. We can obtain a control
polygon-like structure by adding the four interiour points A11 = A10+A01−A00,
A21 = A20 + A31 − A30, A22 = A23 + A32 − A33, and A12 = A13 + A02 − A03,
see Figure 4.1.
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Figure 4.1: Control Grid

If f is the HRC1-interpolant constructed from the given data at the vertices
of R then the parametric surface (x, y, f(x, y)) with (x, y) ∈ R interpolates the
corner control points A00, A03, A30, A33. Moreover each corner rectangle in the
control polygon defines a plane which is part of the tangent plane at that vertex.
For example the plane containing the four points A00, A10, A01, and A11 defines
the tangent plane to the surface at A00.

After one step of subdivision the rectangle R is divided into four subrectangles
(Cf. Figure 2.1). On each of the four sub-rectangles we can compute new control
points Āij . To compute these control points we can use (4.1) shifted to each
subrectangle. In particular, we replace h and k by h/2 and k/2 respectively.

By using (2.1), (2.2), (2.3) and (2.4) and inverting the formulas in (4.1) it
is possible to express the new control coefficients {āij} in terms of the original

(0,3)

(0,2)

(0,1)

(0,0)

(1,3)

(1,0)

(2,3)

(2,0)

(3,3)

(3,2)

(3,1)

(3,0)

Figure 4.2: The control points pro-
jected on the original rectangle
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Figure 4.3: The projected control
points after one subdivision
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control coefficients aij . We restrict attention to the one parameter family given
by α = β/(4(1 − β)). We also write λ = u(1 − β), where u is a free parameter
to be chosen later. With the aid of a computer algebra system it can be proved
that:

Proposition 4.1. Suppose α = β/(4(1 − β)) and λ = u(1 − β). With the
indexing used in Figures 4.2 and 4.3 we have⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ā0,0

ā1,0

ā2,0

ā3,0

ā4,0

ā5,0

ā6,0

ā0,1

ā3,1

ā6,1

ā0,2

ā3,2

ā6,2

ā0,3

ā1,3

ā2,3

ā3,3

ā4,3

ā5,3

ā6,3

ā0,4

ā3,4

ā6,4

ā0,5

ā3,5

ā6,5

ā0,6

ā1,6

ā2,6

ā3,6

ā4,6

ā5,6

ā6,6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0

a1,0

a2,0

a3,0

a0,1

a3,1

a0,2

a3,2

a0,3

a1,3

a2,3

a3,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

(4.2) γ := −β, v := u+ 1, w := u− 1, x := 1 + uβ, y := 2 + uβ.

We denote the transformation matrix by S.

5 Local shape constrains

We consider only the function case, where the starting data are values of
f, p and q on the vertices of a rectangle [a, b]× [c, d] in R

2. We consider the one



2D SUBDIVISION WITH SHAPE CONSTRAINTS 17

parameter family given by α = β
4(1−β) with β ∈ [−1, 0). Corollary 3.8 implies C1-

convergence for any β ∈ [−1, 0). We let λ = u(1−β), where u is a free parameter.
We also recall that for β = −1, the interpolant is the Sibson-Thomson element
which is piecewise quadratic.

5.1 Positive interpolants

We prove that if the control grid is positive, then the interpolant is positive.
We use this result to give an algorithm to get a positive interpolant whenever
the initial data make it possible.

Proposition 5.1. Suppose that 1 ≤ u ≤ −1/β. If the initial control grid is
positive, i.e. ak� ≥ 0 for all k, �, then the interpolant f is positive.

Proof. With the hypothesis 1 ≤ u ≤ −1/β and −1 ≤ β < 0 the quanti-
ties γ, v, w, x, y in (4.2) are nonnegative so that all entries in the matrix S in
Proposition 4.1 are nonnegative. In the subdivision process we apply the matrix
S recursively and it follows that all control coefficients on all levels are non-
negative. But then the values of the function f on ∪(Pn × Qn) = P × Q are
nonnegative. We have the result on [a, b] × [c, d] by continuous extension.

We describe an algorithm to build a nonnegative interpolant on [a, b] × [c, d].
Suppose that the initial data satisfy

f(a, c) ≥ 0 and (p(a, c) ≥ 0, q(a, c) ≥ 0 if f(a, c) = 0),

f(b, c) ≥ 0 and (p(b, c) ≤ 0, q(b, c) ≥ 0 if f(b, c) = 0),

f(a, d) ≥ 0 and (p(a, d) ≥ 0, q(a, d) ≤ 0 if f(a, d) = 0),

f(b, d) ≥ 0 and (p(b, d) ≤ 0, q(b, d) ≤ 0 if f(b, d) = 0).

(5.1)

Algorithm 5.1. Let h := b− a, k := d− c and choose λ ≥ 2 such that

(5.2)

a10 = f(a, c) + hp(a,c)
λ ≥ 0 , a01 = f(a, c) + k q(a,c)

λ ≥ 0,
a20 = f(b, c) − hp(b,c)

λ ≥ 0 , a31 = f(b, c) + k q(b,c)
λ ≥ 0,

a13 = f(a, d) + hp(a,d)
λ ≥ 0 , a02 = f(a, d) − k q(a,d)

λ ≥ 0,
a23 = f(b, d) − hp(b,d)

λ ≥ 0 , a32 = f(b, d) − k q(b,d)
λ ≥ 0.

Define β = 1
1−λ and α = β

4(1−β) .
Perform HRC1 defined by (2.1), (2.2), (2.3) and (2.4).
Since λ ≥ 2, we obtain β ∈ [−1, 0) so that the scheme is C1-convergent. In

view of (5.1), since a00 = f(a, c) ≥ 0, a30 = f(b, c) ≥ 0, a33 = f(b, d) ≥ 0 and
a03 = f(a, d) ≥ 0 it is possible to choose λ ≥ 2 so that the remaining control
coefficients are nonnegative. By Proposition 5.1 the interpolant f is nonnegative.

Example 5.1.
In Figure 5.1, we have computed three nonnegative HRC1-interpolants choos-

ing the same data on the vertices of [0, 1]2 except p(0, 1) which values are succes-
sively -1, -1.5 and -3. The values of λ are the smallest one so that (5.2) holds.
In the first case (f1, p1, q1), we have λ = 2 so that α = −1/8 and β = −1 and
we obtain the quadratic spline interpolant with piecewise linear derivatives.
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Figure 5.1: Nonnegative interpolants

5.2 Monotone interpolants

We prove that if the control polygon is increasing in the variable x then the
interpolant is an increasing function in x. We use this result to give an algorithm
to get an increasing interpolant in x as soon as the data make it possible.

Lemma 5.2. Suppose that u = −1/β with β ∈ [−1, 0).

If

⎧⎪⎪⎨
⎪⎪⎩

a00 ≤ a10 ≤ a20 ≤ a30,
a01 ≤ a31,
a02 ≤ a32,

a03 ≤ a13 ≤ a23 ≤ a33,

then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ā00 ≤ ā10 ≤ ā20 ≤ ā30 ≤ ā40 ≤ ā50 ≤ ā60,
ā01 ≤ ā31 ≤ ā61,
ā02 ≤ ā32 ≤ ā62,

ā03 ≤ ā13 ≤ ā23 ≤ ā33 ≤ ā43 ≤ ā53 ≤ ā63,
ā04 ≤ ā34 ≤ ā64,
ā05 ≤ ā35 ≤ ā65,

ā06 ≤ ā16 ≤ ā26 ≤ ā36 ≤ ā46 ≤ ā56 ≤ ā66.

Proof. We define (Cf. Figures 4.2 and 4.3) horizontal differences di,j :=
ai+1,j − ai,j for i = 0, 1, 2 and j = 1, 2, d0,j := a3,j − a0,j for j = 1, 2, d̄i,j :=
āi+1,j − āi,j for i = 0, 1, . . . , 5 and j = 0, 3, 6, and d̄i,j := āi+3,j − āi,j for i = 0, 3
and j = 1, 2, 4, 5. We use the results of Proposition 4.1 and a computer algebra
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system to obtain:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̄0,0

d̄1,0

d̄2,0

d̄3,0

d̄4,0

d̄5,0

d̄0,1

d̄3,1

d̄0,2

d̄3,2

d̄0,3

d̄1,3

d̄2,3

d̄3,3

d̄4,3

d̄5,3

d̄0,4

d̄3,4

d̄0,5

d̄3,5

d̄0,6

d̄1,6

d̄2,6

d̄3,6

d̄4,6

d̄5,6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

0 0 0 0 0 0 0
1+β

4
1+β

2
1+β

4
0 0 0 0 0

−β
4

−β
2

−β
4

0 0 0 0 0

−β
4

−β
2

−β
4

0 0 0 0 0
1+β

4
1+β

2
1+β

4
0 0 0 0 0

0 0 1
2

0 0 0 0 0
1
2

1
4

0 1
4

0 0 0 0
0 1

4
1
2

1
4

0 0 0 0
1−β

4
1−β

8
0 1−β

8
1+β

8
1+β

4
1+β

8
0

0 1−β
8

1−β
4

1−β
8

1+β
8

0 1+β
8

1+β
4

1
4

0 0 0 0 1
4

0 0

0 1+β
8

0 1+β
8

1+β
8

0 1+β
8

0

0 −β
8

0 −β
8

−β
8

0 −β
8

0

0 −β
8

0 −β
8

−β
8

0 −β
8

0

0 1+β
8

0 1+β
8

1+β
8

0 1+β
8

0
0 0 1

4
0 0 0 0 1

4
1+β

4
1+β

8
0 1+β

8
1−β

8
1−β

4
1−β

8
0

0 1+β
8

1+β
4

1+β
8

1−β
8

0 1−β
8

1−β
4

0 0 0 0 1
4

1
2

1
4

0
0 0 0 0 1

4
0 1

4
1
2

0 0 0 0 0 1
2

0 0

0 0 0 0 0 1+β
4

1+β
2

1+β
4

0 0 0 0 0 −β
4

−β
2

−β
4

0 0 0 0 0 −β
4

−β
2

−β
4

0 0 0 0 0 1+β
4

1+β
2

1+β
4

0 0 0 0 0 0 0 1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0,0

d1,0

d2,0

d0,1

d0,2

d0,3

d1,3

d2,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The hypothesis implies that dk� ≥ 0. Since −1 ≤ β < 0, we obtain d̄ij ≥ 0.
We can extend the result recursively on each sub rectangle of Pn × Qn. At

each step the control grid is increasing in the direction x so that the function p
is nonnegative on ∪(Pn×Qn) = P×Q By continuous extension p is nonnegative
on [a, b] × [c, d] and f is increasing in x.

Proposition 5.3. Suppose that u = −1/β with β ∈ [−1, 0). If the initial

grid is increasing in x, i.e.

⎧⎪⎪⎨
⎪⎪⎩

a00 ≤ a10 ≤ a20 ≤ a30,
a01 ≤ a31,
a02 ≤ a32,

a03 ≤ a13 ≤ a23 ≤ a33,

then the interpolant f is

increasing in x.
We define an algorithm to construct an interpolant on [a, b] × [c, d] that is

increasing in x. Suppose that the initial data satisfy
p(a, c) ≥ 0, p(b, c) ≥ 0, f(a, c) < f(b, c) and
p(a, d) ≥ 0, p(b, d) ≥ 0, f(a, d) < f(b, d).
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Figure 5.2: Increasing interpolants in the variable x

Algorithm 5.2. Let h := b− a, k =: d− c and choose λ ≥ 2 such that

(5.3)

a10 = f(a, c) + hp(a,c)
λ ≤ a20 = f(b, c) − hp(b,c)

λ ,

a01 = f(a, c) + k q(a,c)
λ ≤ a31 = f(b, c) + k q(b,c)

λ ,

a02 = f(a, d) − k q(a,d)
λ ≤ a32 = f(b, d) − k q(b,d)

λ ,

a13 = f(a, d) + hp(a,d)
λ ≤ a23 = f(b, d) − hp(b,d)

λ .

Define β = 1
1−λ and α = β

4(1−β) .
Perform HRC1 defined by (2.1), (2.2), (2.3), and (2.4).
Since the β used in this algorithm always belongs to the interval [−1, 0) the

interpolating scheme is C1-convergent. Morover, since a00 ≤ a10, a20 ≤ a30,
a03 ≤ a13, a23 ≤ a33, the control grid and the interpolant f are increasing in the
variable x.

Example 5.2. In the 3 following pictures (Figure 5.2), we have computed
three interpolants which are monotone in the x-direction. We choose the same
data on the vertices of [0, 1]2 except p(1, 0) which values are successively 0.3, 0.9
and 1.8. The values of λ are the smallest one satisfying (5.3). In the first case
(f1, p1, q1), we have λ = 2 so that α = −1/8 and β = −1 and we obtain the
quadratic spline interpolant with piecewise linear derivatives.
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6 Examples of global constrains

6.1 The First Example

We start with the grid defined by

{(xi, yj)} = {0, 0.25, 0.7, 0.92, 1}× {0, 0.2, 0.6, 1}
and sub-rectangles Ri,j , i = 1, . . . , 4, j = 1, . . . , 3. The initial data for the func-
tion f at the vertices of the grid are

x\y 0 0.2 0.6 1

0 0 −0.9511 0.5878 0.0000
0.25 0.0625 −0.8886 0.6503 0.0625
0.7 0.4900 −0.4611 1.0778 0.4900
0.92 0.8464 −0.1047 1.7000 1.7000
1 1.0000 0.0489 1.7000 1.7000

They are stricly increasing along x except that f(0.92, 0.6) = f(1, 0.6) = f(0.92, 1)
= f(1, 1). Since the initial data where sampled from the function f(x, y) =
x2 − sin(2πy), we compute the exact derivatives p and q and we add a random
number in [0, 0.2] for p. We have an exception for R4,3. We choose the example:

p q
x\y 0 0.2 0.6 1

0 0.0388 0.1098 0.1255 0.1675
0.25 0.6810 0.6863 0.6398 0.5743
0.7 1.5138 1.4670 1.4794 1.4851
0.92 1.9664 1.9711 0 0
1 2.0469 2.0784 0 0

x\y 0 0.2 0.6 1

0 −6.2832 −5.0832 1.9416 6.2832
0.25 −6.2832 −5.0832 1.9416 6.2832
0.70 −6.2832 −5.0832 1.9416 6.2832
0.92 −6.2832 −5.0832 0 0
1 −6.2832 −5.0832 0 0

All the derivatives p = fx are nonnegative except p(0.92, 0.6) = p(1, 0.6) =
p(0.92, 1) = p(1, 1) = 0. We add q(0.92, 0.6) = q(1, 0.6) = q(0.92, 1) = q(1, 1) =
0.

On each subrectangle Ri,j , we compute the smallest λi,j ≥ 2 which gives an
increasing control grid in the variable x. For the rectangle R4,3, we can built a
constant interpolant with any λ4,3. Let us choose λ4,3 = 2. Then we compute
λ = maxλi,j , β = 1

1−λ and α = β
4(1−β) . On each subrectangle, we perform

HRC1 defined by (2.1), (2.2), (2.3) and (2.4). See Figure 6.1.

6.2 The Second Example

This example was proposed in [2]. The initial grid is {−0.07, 0.33, 0.55, 0.69, 0.84,
0.93, 0.98, 1.02, 1.08, 1.13}× {−2.3,−1.61,−0.92,−0.51,−0.22, 0.0}, and we will
use the sub-rectangles Ri,j , i = 1, . . . , 9, j = 1, . . . , 5. The given data f0

i,j of the
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Figure 6.1: Increasing interpolant in the variable x on a mesh with , λ = 3.1843

function f are

x\y −2.3 −1.61 −0.92 −0.51 −0.22 0.0

−0.07 −34.5400 −13.8200 −10.1000 −7.2600 −5.6600 −4.5300
0.33 −34.5400 −13.8200 −10.1000 −7.2600 −5.6600 −4.1300
0.55 −34.5400 −13.8200 −10.1000 −7.2600 −4.8800 −3.3500
0.69 −34.5400 −13.8200 −10.1000 −4.8200 −3.3400 −2.7300
0.84 −34.5400 −13.8200 −2.5200 −2.2200 −1.9800 −1.7800
0.93 −34.5400 −2.6800 −1.8800 −1.5600 −1.4100 −1.2800
0.98 −3.0600 −2.2800 −1.6300 −1.3200 −1.1500 −1.0500
1.02 −2.8600 −1.9200 −1.3900 −1.1000 −0.9200 −0.8100
1.08 −2.3700 −1.6000 −1.1700 −0.9000 −0.7200 −0.6000
1.13 −1.8900 −1.3000 −0.9500 −0.7100 −0.5400 −0.4100

The data are increasing in the directions x and y (see Figure 6.2) so that we will
choose non negative derivatives p and q to get an increasing interpolant in both
directions. Notice that if f0

i,j = f0
i+1,j , we must choose p0

i,j = p0
i+1,j = 0 and

q0i,j = q0i+1,j and similarly on the other direction. With this exception, we can
choose any non negative derivatives p0

i,j and q0i,j to get an increasing interpolant
in both directions. Again on each sub-rectangle Ri,j , we compute the smallest
λi,j ≥ 2 which gives an increasing control grid in the variable x and in the
variable y. Then we compute λ = maxλi,j , β = 1

1−λ and α = β
4(1−β) . On each

sub-rectangle, we perform HRC1 defined by (2.1), (2.2), (2.3) and (2.4).
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Figure 6.2: Initial Mesh and Function.

Case 1: We have computed the initial derivatives p0
i,j and q0i,j using the

standard two point forward differences. The computed value is λ = 4.5455. See
Figure 6.3.

Case 2: We took random positive derivatives (between 0 and 2). The com-
puted value is λ = 4.9861. See Figure 6.4.

7 Final Remarks

1. In the shape preserving algorithms the subdivision was carried out using
the HRC1-algorithm. The control coefficients were used only to choose
parameters to ensure a final interpolant with the desired shape.

2. By applying Proposition 4.1 it is possible to reformulate the HRC1 scheme
as a stationary subdivision scheme working on points in R

s. We start with
12 control coefficients a0,0, a1,0, a2,0, a3,0, a0,1, a3,1, a0,2, a3,2, a0,3, a1,3, a2,3, a3,3

in R
s, s ≥ 1, (α, β) in the convergence region in Figure 3.1, and λ ≥ 2. Un-

der suitable restrictions on the ”rectangular structure” of the initial control
coefficients we could then define an algorithm SRC1 based on recursively
using the matrix S. However we will not consider this any further here.

3. We note that S has negative minors and thus is not a totally positive
matrix. For example the 2× 2 minor constructed from the entries in rows
2 and 8 and columns 1 and 2 has the value -1/4 for all values of α, β and
λ.

4. Unfortunately, the algorithm HRC1 is in general not able to give a convex
interpolant when starting with convex data. To see this we consider the
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Figure 6.3: Increasing interpolant using forward differences to estimate derivatives.

function given by

φ(x, y) :=
{

(1 − x− y)3 if 1 − x− y ≥ 0
0 if 1 − x− y ≤ 0

This function is C2 and convex on [0, 1]2. To construct a convex HRC1-
interpolant f we note that f must be convex along the diagonal δ :=
{(x, y) ∈ [0, 1]2 : x + y = 1}. Since φ and its partial derivatives vanish
at the two corners (1, 0) and (0, 1) the same holds true for f . This means
that f must vanish identically on δ. We now show that this is not possible
regardless of how we choose α and β.

At step 0, we sample the function and its derivatives on the vertices of
the square [0, 1]2 and we obtain f0

i,j = p0
i,j = q0i,j = 0 for (i, j) �= (0, 0)

and f0
0,0 = 1, p0

0,0 = q00,0 = −3. Using (2.4) we compute the values at
the midpoint (1/2, 1/2). We find f1

11 = 1
4 + 3α and p1

11 = q111 = − 1
2 − β.

Convexity on δ implies that α = −1/12 and β = −1/2. Moreover for these
values of the parameters we must have fn

ij = 0 for all points on δ. But
already the value f2

31 at the point (3/4, 1/4) on δ is nonzero. To see this
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Figure 6.4: Increasing interpolant with random derivatives.

we first compute f1
1,0 = 1/4, p1

1,0 = −3/4, q11,0 = −3/2 by (2.2), and then
f1
2,1 = p1

2,1 = q12,1 = 0 by (2.3). We now find f2
3,1 = 1/64 �= 0 using (2.4).

Thus the HRC1-interpolant is not convex.
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