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Abstract

The recognition of facial gestures and expressions in im-
age sequences is an important and challenging problem.
Most of the existing methods adopt the following paradigm.
First, facial actions/features are retrieved from the images,
and then facial expressions are recognized based on the re-
trieved temporal parameters. Unlike this main stream, this
paper introduces a new approach allowing the simultaneous
recovery of facial actions and expression using a particle
filter adopting multi-class dynamics that are conditioned on
the expression. For each frame in the video sequence, our
approach is split in two consecutive stages. In the first stage,
the 3D head pose is recovered using a deterministic regis-
tration technique based on Online Appearance Models. In
the second stage, the facial actions as well as the facial ex-
pression are simultaneously recovered using the stochastic
framework with mixed states. The proposed fast scheme is
either as robust as existing ones or more robust with respect
to many regards. Experimental results show the feasibility
and robustness of the proposed approach.

1. Introduction

Computational facial expression analysis is a challeng-
ing research topic in computer vision. It is required by
many applications such as human-computer interaction and
computer graphic animation. Automatic facial expression
recognition did not really start until the 1990s. To clas-
sify expressions in still images, many techniques have been
proposed such as those based on Neural Nets and Gabor
wavelets [1]. Recently, more attention has been given to
modeling facial deformation in dynamic scenarios. Still im-
age classifiers use feature vectors related to a single frame
to perform classification. Temporal classifiers try to cap-
ture the temporal pattern in the sequence of feature vectors

related to each frame such as the Hidden Markov Models
based methods [3]. A survey on facial expression recog-
nition methods can be found in [7]. Many developed sys-
tems have relied on the facial motion encoded by a dense
flow between successive image frames. However, flow esti-
mates are easily disturbed by the illumination changes and
non-rigid motion. The dominant paradigm involves com-
puting a time-varying description of facial actions/features
from which the expression can be recognized, that is, the
tracking process is first performed before the recognition
process [5, 11]. However, the results of both processes af-
fect each other in some way. Therefore, one expects to gain
more robustness if both tasks are simultaneously performed.
Such robustness is required when perturbing factors may
affect the input data such as partial occlusions, ultra rapid
motions, and video streaming discontinuity. Although the
idea of merging tracking and recognition is not new, our
work addresses two complicated tasks, namely tracking the
facial actions and recognizing the expression over time in
a monocular video sequence. In the literature, the simul-
taneous tracking and recognition was used in simple cases.
For example, [10] employs a particle filter-based algorithm
for tracking and recognizing the motion class of a juggled
ball in 2D. Another example is given in [12]. This work
proposes a framework allowing the simultaneous tracking
and recognizing of human faces using a particle filtering
method. The recognition consists in determining the per-
son identity which is fixed for the whole probe video. They
utilized a mixed state vector formed by the 2D global face
motion (affine transform) and an identity variable. How-
ever, this work does not address the facial deformation nor
the facial expression recognition.

The rest of the paper is organized as follows. Section
2 describes the deformable 3D face model that we use to
create shape-free facial patches from input images. Sec-
tion 3 describes the problem we are focusing on. It presents
the adaptive observation model as well as the facial action



dynamical models. Section 4 describes the proposed ap-
proach, that is, (i) the recovery of the 3D head pose by a de-
terministic registration technique, and (ii) the simultaneous
recovery of facial actions and expression using a stochastic
framework. Experimental results are given in Section 5.

2. Modeling faces

A deformable 3D model. In our study, we use the 3D
face modelCandide. This 3D deformable wireframe model
was first developed for the purpose of model-based image
coding and computer animation. The 3D shape of this wire-
frame model is directly recorded in coordinate form. It is
given by the coordinates of the 3D verticesPi, i = 1, . . . , n
wheren is the number of vertices. Thus, the shape up to a
global scale can be fully described by the3n-vectorg; the
concatenation of the 3D coordinates of all verticesPi. The
vectorg is written as:

g = gs + A τa (1)

wheregs is the static shape of the model, andτa is the an-
imation control vector. Thus, the state of the 3D wireframe
model is given by the 3D head pose parameters (three ro-
tations and three translations) and the control vectorτa. In
this study, we use six modes for the facial Animation Units
(AUs) matrixA: lower lip depressor, lip stretcher, lip corner
depressor, upper lip raiser, eyebrow lowerer and outer eye-
brow raiser. These AUs are enough to cover most common
facial animations (mouth and eyebrow movements). More-
over, they are essential for conveying emotions.

The state is given by the 12-dimensional vectorb:

b = [θx, θy, θz, tx, ty, tz, τa
T ]T (2)

= [hT , τa
T ]T (3)

where the vectorh represents the six degrees of freedom
associated with the 3D head pose.

Shape-free facial patches. A face texture is represented
as a shape-free texture (geometrically normalized image).
The geometry of this image is obtained by projecting the
static shapegs using a centered frontal 3D pose onto an im-
age with a given resolution. The texture of this geomet-
rically normalized image is obtained by texture mapping
from the triangular 2D mesh in the input image (see fig-
ure 1) using a piece-wise affine transform,W. The warping
process applied to an input imagey is denoted by:

x(b) = W(y, b) (4)

wherex denotes the shape-free texture patch andb denotes
the geometrical parameters. Several resolution levels canbe
chosen for the shape-free textures. The reported results are

obtained with a shape-free patch of 5392 pixels. Regard-
ing photometric transformations, a zero-mean unit-variance
normalization is used to partially compensate for contrast
variations. The complete image transformation is imple-
mented as follows: (i) transfer the texturey using the piece-
wise affine transform associated with the vectorb, and (ii)
perform the grey-level normalization of the obtained patch.

(a) (b)

Figure 1. (a) an input image with correct adaptation.(b)
the corresponding shape-free facial image.

3. Background and problem formulation

Given a video sequence depicting a moving head/face,
we would like to recover, for each frame, the 3D head pose,
the facial actions encoded by the control vectorτa as well
as the facial expression. In other words, we would like to
estimate the vectorbt (equation 3) at timet in addition to
the facial expression given all the observed data until time
t, denotedy1:t ≡ {y1, . . . , yt}. In a tracking context, the
model parameters associated with the current frame will be
handed over to the next frame. Since the facial expression
can be considered as a random discrete variable, we should
append to the continuous state vectorbt, a discrete state
componentγt to make a mixed state:

(

bt

γt

)

(5)

γt ∈ E = {1, 2, . . . , Nγ} is the discrete component of the
state, drawn from a finite set of integer labels. Each integer
label represents one of the six universal expressions: sur-
prise, disgust, fear, joy, sadness and anger. In our study we
adopt these facial expressions together with the neutral one,
that is,Nγ is set to 7. There is another useful representation
of the mixed state which is given by:

(

ht

at

)

(6)

whereht denotes the 3D head pose parameters, andat the
facial actions appended with the expression labelγt, i.e.
at = [τa

T , γt]
T .



3.1. Adaptive observation model

For each input frameyt, the observation is simply the
warped texture patch (the shape-free patch) associated with
the geometric parametersbt. We use theHAT symbol for
the tracked parameters and textures. For a given framet, b̂t

represents the computed geometric parameters andx̂t the
corresponding shape-free patch, that is,

x̂t = x(b̂t) = W(yt, b̂t) (7)

The estimation of̂bt from the sequence of images will
be presented in the next Section.b̂0 is initialized manually,
according to the face in the first video frame.

The appearance model associated to the shape-free facial
patch at timet, At, is time-varying on that it models the ap-
pearances present in all observationsx up to time(t − 1).
The appearance modelAt obeys a Gaussian with a center
µ and a varianceσ. Notice thatµ andσ are vectors com-
posed ofd components/pixels (d is the size ofx) that are
assumed to be independent of each other. In summary, the
observation likelihood at timet is written as

p(yt|bt) = p(xt|bt) =

d
∏

i=1

N(xi;µi, σi) (8)

whereN(x;µi, σi) is the normal density.
It can be shown that the appearance model parameters,

i.e., µ andσ can be updated using the following equations
(see [9] for more details on Online Appearance Models):

µt+1 = (1 − α)µt + α x̂t (9)

σ2
t+1 = (1 − α)σ2

t + α (x̂t − µt)
2 (10)

In the above equations, allµ’s andσ2’s are vectorized and
the operation is element-wise. This technique, also called
recursive filtering, is simple, time-efficient and therefore,
suitable for real-time applications. The effect of the above
equations is that the appearanceAt summarizes the past ob-
servations under an exponential envelop [12].

3.2. Facial action dynamical models

Corresponding to each basic expression class,γ, there
is a stochastic dynamical model describing the temporal
evolution of the facial actionsτa(t). It is supposed to be
a second-order Markov model. For each basic expression
γ, we associate a Gaussian Auto-Regressive Process (ARP)
defined by

τa(t) = Aγ
2 τa(t−2) + Aγ

1 τa(t−1) + dγ + Bγ w(t) (11)

in which w(t) is a vector of 6 independent randomN (0, 1)
variables. The dynamical parameters of the model are: (i)

Figure 2. The proposed two-stage approach. In the first
stage, the 3D head pose is computed using a deterministic
registration technique. In the second stage, the facial ac-
tions and expression are simultaneously estimated using a
stochastic technique involving multi-class dynamics.

deterministic parametersAγ
1 , Aγ

2 , anddγ , and stochastic pa-
rametersBγ , which determine the coupling ofw(t) into the
vector τa(t). The above model can be used in predicting
the process from the two most recent values. The predicted
value at timet obeys a multivariate Gaussian centered at the
deterministic value of (11) withBγBγT being its covariance
matrix.

Learning the second-order auto-regressive models
Given a training sequenceτa(1), · · · , τa(T ) (provided for in-
stance by our deterministic tracker [6]), belonging to the
same expressionγ, it is well-known that a Maximum Like-
lihood estimator provides a closed-form solution for the cor-
responding model parametersAγ

1 , Aγ
2 , dγ , andBγ [2, 10].

3.3. The transition matrix

Our framework requires a transition matrixT whose en-
triesTγ′,γ describe the probability of transition between two
expression labelsγ′ andγ. Although these entries can be
learned from training videos, we have found that a realis-
tic setting works well. We adopt a 7× 7 symmetric matrix
whose diagonal elements are close to one. The rest of the
percentage is distributed equally among the expressions. In
this model, transitions from one expression to another ex-
pression without going through the neutral one are allowed.

4. Approach

Since at any given time, the 3D head pose parameters are
independent from the facial expression and its actions, our
basic idea is to split the estimation of the unknown param-
eters into two main stages. For each input video frameyt,
these two stages are invoked in order to recover the mixed



state[ hT
t , aT

t ]T . Our proposed approach is illustrated
in Figure 2. In the first stage, the six degrees of freedom as-
sociated with the 3D head pose (encoded by the vectorht)
are recovered using a deterministic registration technique
similar to our proposed appearance-based tracker [6]. In
the second stage, the facial actions and the facial expression
(encoded by the vectorat = [τT

a(t), γt]
T ) are simultaneously

estimated using a stochastic framework based on a particle
filter. Sinceτ

a(t) andγt are highly correlated, their simul-
taneous estimation will be more robust and accurate than
methods estimating them in sequence. In the following, we
present the estimation of the parameters associated with the
current frameyt.

4.1. 3D head pose

The purpose of this stage is to estimate the six degrees of
freedom associated with the 3D head pose at framet, that
is, the vectorht. Our basic idea is to recover the current 3D
head pose parameters from the previous 12-vectorb̂t−1 =
[θ̂x(t−1), θ̂y(t−1), θ̂z(t−1), t̂x(t−1), t̂y(t−1), t̂z(t−1), τ̂a(t−1)]

T

= [ ĥt−1, τ̂
a(t−1) ]T using a region-based registration

technique. In other words, the current input imageyt is
registered with the current appearance modelAt. For this
purpose, we minimize theMahalanobisdistance between
the warped texture and the current appearance mean,

min
h

e(ht) = min d [x(bt), µt] =

d
∑

i=1

(

xi − µi

σi

)2

(12)

The above criterion can be minimized using an iterative
gradient-like descent method where the starting solution is
set to the previous solution̂ht−1. The appearance param-
eters, i.e. the vectorsµt andσt, are known using the re-
cursive equations (9) and (10). During the above optimiza-
tion process the facial actions are set to the constant values
τ̂
a(t−1). Handling outlier pixels (caused for instance by oc-

clusions) is performed by replacing the quadratic function
by the Huber’s cost function [6, 8]. More details about this
type of optimization can be found in [6].

The gradient matrix associated with the 3D head pose

parameters,∂xt(bt)

∂h , is approximated by numerical differ-
ences similarly to [4]. It is computed for each input frame.

4.2. Simultaneous facial actions and expres-
sion

In this stage, our goal is to simultaneously infer the fa-
cial actions as well as the expression label associated with
the current framet given (i) the observation model (Eq.(8)),
(ii) the dynamics associated with each expression (Eq.(11)),
and (iii) the 3D head pose for the current frame computed
by the deterministic approach (see Section 4.1). This will

be performed using a particle filter paradigm. Thus, the sta-
tistical inference of such paradigm will provide a posterior
distribution for the facial actionsτ

a(t) as well as a Probabil-
ity Mass function for the facial expressionγt .

Since the 3D head pose,̂ht is already computed, we
are left with the mixed stateat = [τT

a(t), γt]
T . The di-

mension of the vectorat is 7. Here we will employ
a particle filter algorithm allowing the recursive estima-
tion of the posterior distributionp(at|x1:(t)) using a par-
ticle set. This is approximated by a set ofJ particles
{(a(0)

t , w
(0)
t ), . . . , (a(J)

t , w
(J)
t )}. Once this distribution is

known the facial actions as well as the expression can
be inferred using some loss function such as the MAP or
the mean. Figure 3 illustrates the proposed two-stage ap-
proach. More precisely, it shows how the current poste-
rior p(at|x1:(t)) can be inferred from the previous posterior
p(at−1|x1:(t−1)) using a particle filter algorithm.

On a 3.2 GHz PC, a non-optimized C code of the ap-
proach computes the 3D head pose parameters in 25 ms and
the facial actions/expression in 31 ms, if the patch resolu-
tion is 1310 pixels and the number of particles is 100.

5. Experimental results

Figure 4 displays the application of the proposed ap-
proach to a 748 frame-long test video sequence. The top
plot illustrates the probability of each expression as a func-
tion of time (frames). For the sake of clarity, only four of
seven curves are displayed. The bottom of this figure shows
the tracking results associated with three frames. The up-
per left corner of these frames depicts the appearance mean
and the current shape-free facial texture. The middle of this
Figure illustrates the segmentation of the used test video by
merging the frame-wise expression probabilities associated
with non-neutral frames. For this sequence, the maximum
probability was correctly indicating the actual displayedex-
pression.

In the above experiment, the total number of particles
is set to 200. We have found that there is no significant
difference in the estimated facial actions and expressions
when the tracking is run with 100 particles, which is due
to the use of learned multi-class dynamics. Figure 5 shows
the tracking results associated with two test video sequences
depicting out-of-plane head motions.

One class dynamics versus multi-class dynamics.In
order to show the advantage of using multi-class dynamics
and mixed states, we have conducted the following experi-
ment. We have used a particle filter for tracking the facial
actions. However, this time the state is only composed by
the facial actions and the dynamics are replaced with a sim-
ple noise model, i.e. motion is modelled as a random noise.
Figures 6.a and 6.b show the tracking results associated
with the same input frame:(a) displays the tracking results



1. Initialization. t = 0:

• Initialize the 3D head posêh0

• GenerateJ state samplesa(1)
0 , . . . , a(J)

0 according to
some prior densityp(a0) and assign them identical
weights,w(1)

0 = . . . = w
(J)
0 = 1/J

2. Tracking. At time stept ← t + 1, get the input frame
yt. Compute the corresponding 3D head pose,ĥt, using
the deterministic method outlined in Section 4.1. We have
J weighted particles(a(j)

t−1, w
(j)
t−1) that approximate the pos-

terior distributionp(at−1|x1:(t−1)) at previous time step

(a) Resample the particles proportionally to their weights,
i.e. particles with high weights are duplicated and par-
ticles with small weights are removed. Resampled par-
ticles have the same weights

(b) DrawJ particlesa(j)
t according to the dynamic model

p(at|at−1 = a(j)
t−1). The obtained new particles ap-

proximate the predicted distributionp(at|x1:(t−1)). For
multi-class dynamics and mixed states this is done in
two steps

Discrete: Draw an expression labelγ(j)
t = γ ∈

E = {1, 2, . . . , Nγ} with probability Tγ′,γ , where

γ′ = γ
(j)
t−1

Continuous: Computeτ (j)

a(t) as

τ
(j)

a(t) = Aγ
2 τ

(j)

a(t−2) + Aγ
1 τ

(j)

a(t−1) + dγ + Bγ w(j)

(t)

whereγ = γ
(j)
t andw(j)

(t) is a 6-vector of standard nor-
mal random variables

(c) Compute the shape-free texturex(b(j)
t ) according

to (4) whereb(j)
t = [ ĥ

T

t , τ
(j)T

a(t)
]T

(d) Weight each new particle proportionally to its likeli-
hood:

w
(j)
t =

p(xt|b
(j)
t )

∑J

m=1
p(xt|b

(m)
t )

The new set approximates the posteriorp(at|x1:t)

(e) Set the probability of each basic expressionγ⋆ ∈ E =
{1, 2, . . . , Nγ} to

P (γ⋆) =

J
∑

m=1

{

w
(m)
t if γ

(m)
t = γ⋆

0 otherwise

(f) Set the facial actions tôτ
a(t) =

∑J

m=1
w

(m)
t τ

(m)

a(t)

(g) Set the geometrical parameters aŝbt =

[ĥ
T

t , τ̂T
a(t)

]T

(h) Based on̂bt, update the appearance (Eqs. (7), (9), (10))
as well as the 3D pose gradient matrix. Go to 2.

Figure 3. Inferring the 3D head pose, the facial actions
and expression. A particle filter is used for the simultaneous
recovery of the facial actions and expression.

obtained with a particle filter adopting a single class dy-
namics.(b) displays the tracking results obtained with our
proposed approach adopting the six auto-regressive models.
As can be seen, by using the learned multi-class dynamics,
the facial action tracking becomes considerably more accu-
rate (see the adaptation of the mouth region in both figures).

A deterministic approach versus our proposed
stochastic approach. We have cut about 40 frames from
a test video. These frames overlap with a surprise transi-
tion. The altered video is then tracked using two different
methods: (i) a deterministic approach based on a registra-
tion technique estimating both the head and facial action pa-
rameters [6], and (ii) our stochastic approach. Figures 7.a
and 7.b show the tracking results associated with the same
input frame immediately after the cut. Note the difference
in accuracy between the stochastic approach(b) and the de-
terministic one(a) (see the eyebrow and mouth region in
both figures).

A challenging example.We have created a challenging
test video. For this 1600-frame long test video, we have
asked our subject to display facial gestures and expressions
in an arbitrary way, duration, and order. Figure 8 illustrates
the probability mass distribution as a function of time. As
can be seen, the surprise, joy, anger, disgust, and fear are
markedly and correctly detected.

6. Conclusion

In this paper, we have proposed a stochastic framework
for the simultaneous tracking of facial actions and recog-
nition of expression. Experiments show the robustness of
the proposed method. The method is view-independent and
does not require any learned facial texture. The latter prop-
erty makes it more flexible. The proposed method could
include other facial gestures in addition to the universal ex-
pressions.
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Figure 5. Simultaneous tracking and recognition asso-
ciated with two different video sequences depicting non-
frontal head poses.

(a) (b)

Figure 6. Method comparison: One class dynamics(a)
versus multi-class dynamics(b) (see Section 5).

(a) (b)

Figure 7. Method comparison: Deterministic approach
(a) versus our stochastic approach(b) after a simulated
video streaming discontinuity (see Section 5).
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