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Abstract: This article deals with a local improvement of domain decomposition methods

for 2-dimensional elliptic problems for which either the geometry or the domain decomposi-

tion presents conical singularities. The problems amounts to determining the coefficients of

some interface boundary conditions so that the domain decomposition algorithm converges

rapidly. Specific problems occur in the presence of conical singularities. Starting from the

method used for regular interfaces, we derive a local improvement by matching the singu-

larities, that is the first terms of the asymptotic expansion around the corner, provided by

Kondratiev theory. This theoretical approach leads to the explicit computation of some co-

efficients in the interface boundary conditions, to be tested numerically. This final numerical

step is presented in a companion article. This part focuses on the method used to compute

these coefficients and provides detailed examples on a model problem.
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1 Introduction.

Domain decomposition methods constitute a very active research field in numerical analy-

sis. They are now well understood in the case of a regular domain decomposed into regular

subdomains, see for example [2], [10], [14], [19], [21] and [22]. A significant challenge for

the applications is a good understanding of the singular cases, for example problems with

corners in 2D. The general principle of those methods is as follows:

1. For an elliptic differential operator L, a domain Ω and a given right hand side f ,

consider the problem of finding u such that

{
Lu = f in Ω

+B.C. on ∂Ω .
(1)

2. When the domain Ω is large from the numerical complexity point of view or complex

from the modeling or geometrical point of view, it can be decomposed into subdomains,

Ω = ∪i=N
i=1 Ωi where each Ωi is an open subdomain of Ω.

3. The initial problem (1) is then approximated by an iterative process: the step n+ 1 is

determined by solving






Lun+1
i = f in Ωi

Bijγiju
n+1
i = Bijγiju

n
j on ∂Ωi ∩ Ωj(i 6= j)

+B.C. on ∂Ωi ∩ ∂Ω
(2)

simultaneously in all subdomains Ωi, i = 1, . . . , N .

The interface operators Bij can be differential or pseudodifferential matricial operators ap-

plied to some trace vector γiju. The choice of the interface operators has a very great

influence on the speed of convergence of the algorithm. Cases are known where for a given

geometry the change of Bij transforms the absence of convergence into the exact convergence

after a finite number of iterations. Within the framework of the regular interfaces, this anal-

ysis has already been done theoretically and numerically. A good final choice actually relies

on a compromise between the theoretical optimality and the ease of implementation, see

[12][19].

In a domain with a conical singularity (corner), it is known after Kondratiev [13] that even
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when the left-hand side of (1) vanishes at infinite order at the corner the solution may have

singularities or more generally a non trivial asymptotic expansion. Moreover the first term

of this asymptotic expansion at the corner depends strongly on the operator L, the geometry

which is reduced to the corner angle as a first approximation, and the boundary conditions.

A priori the singularities of the solutions to the elliptic boundary value problem in the sub-

domains Ωi, i = 1 . . .N , do not coincide with the ones corresponding to the problem in the

whole domain Ω. The diagnosis of a locally slower convergence of domain decomposition

algorithm in the presence of conical singularities in [21] invoked this bad matching. Again

the first terms of the asymptotic expansion around the corner of a solution to an elliptic

boundary problem depends on the boundary conditions, namely the operators Bij occur-

ring in the subdomain problems. The present work again makes use of the flexibility in the

choice of the interface boundary conditions Bij, on which the singularities depend, in order

to improve the convergence in such cases.

The leading idea is that the iterative process must not produce artificial singularities at

the step n + 1 if the approximate solutions (un
i )i=1...N at step n have the right asymptotic

expansion corresponding to the whole domain Ω.

A short review of Kondratiev theory for elliptic boundary value problems in domain

with conical singularities (see for example [5],[9], [13]), provides the accurate meaning to

“singularities”, “asymptotic expansion” or “asymptotic type”. The matching of the first

terms of the asymptotic expansion around the corner between the whole domain problem and

the subdomain problems leads to some relations which have to be fulfilled by the coefficients

of the interface boundary conditions Bij◦γij. This article focuses on the computation of these

relations and presents the general strategy for the improvement of the efficiency of domain

decomposition methods around corners. The numerical tests which validate definitely this

approach will be given in a forthcoming article.

For the sake of simplicity, our analysis will be restricted to the model operator η − ∆

in a sectorial domain R∗
+ × (θ0, θ+) = Ω ⊂ R2 or Ω = R2. A more general polygonal

domain would not change the analysis which is local around every corner. Every new case

requires some specific calculations which can be far from explicit in a general framework.

We preferred to make the strategy more obvious by treating as accurately as possible those
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specific examples. The method can be extended to other cases and some other problems

motivated by numerical applications are deferred to another article.

The article is organized as follows: After the presentation of the asymptotic point of view

which support the whole analysis (Section 2), we check that the variational formulation of

subdomain problems makes sense for some quite general second order interface boundary

conditions (Section 3). Then we review the main theoretical tools related with Kondratiev

theory (Section 4 and 5). The Section 6 presents roughly the general strategy and provides

some definition. The rest of the article (Section 7) is devoted to the full treatment of some

specific domain decomposition problems with this approach.

2 The problem.

We work in the sectorial domain Ω ⊂ R2 written in polar coordinates Ω = R∗
+ × (θ0, θ+), or

Ω = R2 = R∗
+×S1∪{O} where the origin O corresponds to r = 0. On this simple geometry,

we consider the model boundary value problem (1) with L = η−∆, η > 0 . For such order 2

elliptic partial differential operators and when the interfaces are regular, the practically used

and efficient interface boundary conditions involve the second order tangential derivative

according to

Bij(
∂u

∂ν
, u) =

∂u

∂ν
+ βu−

∂

∂τ
(
α

2

∂

∂τ
)u

where ∂
∂ν

and ∂u
∂τ

, are the normal derivative and the tangential derivative respectively.

When Ω = R
2 is split into two half-planes and for a given bounded set of frequencies

in the tangential variable, proportional to 1/h when h is the characteristic mesh size of

the numerical discretization, there is an optimal choice of (α, β) for the convergence of the

domain decomposition process (2). By introducing the error at step n, en
i (x, τ) = un

i −u and

its Fourier transform in the tangential variable ên
i (x, k), the optimized coefficients αopt > 0

and βopt > 0 are determined according to [12] by the max-min principle

min
α,β∈R

max
|k|≤π

h

|ρ(k;α, β)| (3)

with ρ(k;α, β) =
den+2
i (0,k)

cen
i (0,k)

.
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Here our domain Ω = R
∗
+ × (θ0, θ+) or Ω = R

2, is decomposed into tow sectors Ω1 =

R
∗
+ × (θ−, θ+) and Ω2 = R

∗
+ × (θ0, θ−) (with the convention θ0 = θ+ − 2π when Ω = R

2). We

shall use polar coordinates (r, θ) ∈ R
∗
+ × [θ0, θ+] in order to develop the analysis around the

corner, r = 0, of this domain decomposition. The previous boundary operator now takes

the form

Bij(±
∂

r∂θ
u, u) = ±

∂

r∂θ
u+ βoptu−

αopt

2

∂2

∂r2
u . (4)

More precisely, the boundary problem in Ω1 with the interface condition (4) solved by the

error en+1
1 = un+1

1 − u reads






(
η − 1

r2 ((r∂r)
2 + ∂2

θ )
)
en+1
1 (r, θ) = 0

(
− 1

r
∂θ − βopt + 1

2
∂r(αopt∂r)

)
en+1
1 (r, θ+) =

(
− 1

r
∂θ − βopt + 1

2
∂r(αopt∂r)

)
en
2 (r, θ+)

(
− 1

r
∂θ + βopt −

1
2
∂r(αopt∂r)

)
en+1
1 (r, θ−) =

(
− 1

r
∂θ + βopt −

1
2
∂r(αopt∂r)

)
en
2 (r, θ−)

(5)

One boundary condition (Bij ◦γij) is possibly replaced by the global one along ∂Ω\∂Ω1.

The same is done in Ω2 (and all other subdomains).

2.1 Principal part and homogeneity.

The aim of the analysis is made in order to improve locally around the corner of subdomains

the behavior of domain decomposition algorithms. Hence we will work with the asymptotic

expansions as r → 0 of the solutions to the global problem (1) and to the subdomain

problems (2). It is known that the main term of such asymptotic expansions are determined

by the principal part of the boundary problem determined after the homogeneity degree of

the operator and boundary conditions as r → 0 (see [13] and Section 5). Concerned with

the homogeneity degree, the operators r∂r and ∂θ are operators of order 0, ∂r = 1
r
r∂r and

1
r
∂θ of order −1 and ∂2

r = 1
r2

[
(r∂r)

2 − r∂r

]
has the order −2. Hence the principal part of the

operator L = (η − ∆) is nothing but

−∆ = −
1

r2

(
(r∂r)

2 + ∂2
θ

)

where the term of order 0 has been neglected.
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The same has to be done for the interface boundary condition Bij ◦ γij which occur in

the subdomain problems. If one starts with the subdomain problem (5) in Ω1, the principal

part is 




(
(r∂r)

2 + ∂2
θ )

)
en+1
1 (r, θ) = 0

(1
2
∂2

r )e
n+1
1 (r, θ+) (1

2
∂2

r )e
n
2 (r, θ+)

(−1
2
∂2

r )e
n+1
1 (r, θ−) = (−1

2
∂2

r )e
n
2 (r, θ−)

The absence of a normal derivative in this principal part means that asymptotically the

interface conditions behave like Dirichlet interface conditions and do not transmit well the

information from one subdomain to its neighboring ones. This was considered in [21] as the

explanation of a slow convergence of domain decomposition algorithm around corners. One

way to solve this problem is by forcing all the terms of the boundary interface operators to

have the same homogeneity degree. We will take interface boundary condition which look

like ± ∂
r∂θ

+ β±

r
− ∂

∂r
α±r

2
∂
∂r

around the corner r = 0 with α± and β± constant. Far from the

corner, the interface boundary must keep the optimal form (4). A synthesis of this is done

by taking

Bij(±
∂

r∂θ
u, u) = ±

∂

r∂θ
u+ β̃±(r)u−

∂

∂r

α̃±(r)

2

∂

∂r
u (6)

with α̃±(r) =






α±r if r ≤ αopt

α±

αopt if r ≥ αopt

α±

β̃±(r) =






β±

r
if r ≤ β±

βopt

βopt if r ≥ β±

βopt

(7)

with α± > 0 and β± ≥ 0 .

A first practical constraint for the choice of α± and β± is that the matching point has

to be far enough from r = 0 in order to be effective in numerical computation. This can be

written with the additional condition

min

{
αopt

α±
,
β±
βopt

}
= Φ(h) or

(
αopt

α±
≥ Φ(h) for β± = 0

)
(8)

where the numerical discretization is represented here by the average mesh diameter h > 0

and the form function Φ. For example, one can consider here Φ(h) = 3h for a uniform grid

or Φ(h) = o(h) as h→ 0 when the mesh is refined around the corner r = 0.

In the case where β± = 0, the coefficient α± is fully determined by the subsequent analysis

and the mesh size h is chosen afterwards small enough so that αopt ≥ α±Φ(h).
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Finally in a subdomain Ω1, we have to consider the boundary value problem






(
η − 1

r2 ((r∂r)
2 + ∂2

θ )
)
en+1
1 (r, θ) = 0

(
− 1

r
∂θ − β̃+(r) + 1

2
∂r(α̃+(r)∂r)

)
en+1
1 (r, θ+) =

(
− 1

r
∂θ − β̃+(r) + 1

2
∂r(α̃+(r)∂r)

)
en
2 (r, θ+)

(
− 1

r
∂θ + β̃−(r) − 1

2
∂r(α̃−(r)∂r)

)
en+1
1 (r, θ−) =

(
− 1

r
∂θ + β̃−(r) − 1

2
∂r(α̃−(r)∂r)

)
en
2 (r, θ−)

(9)

whose principal homogeneous part is






(
(r∂r)

2 + ∂2
θ )

)
en+1
1 (r, θ) = 0

(
− ∂θ − β+ + α+

2
(r∂r)

2
)
en+1
1 (r, θ+) =

(
− ∂θ − β+ + α+

2
(r∂r)

2
)
en
2 (r, θ+)

(
− ∂θ + β− − α−

2
(r∂r)

2
)
en+1
1 (r, θ−) =

(
− ∂θ + β− − α−

2
(r∂r)

2
)
en
2 (r, θ−) .

(10)

Like in (5), one boundary condition (Bij ◦ γij) is possibly replaced by the global one along

∂Ω \ ∂Ω1. The same is done in Ω2.

3 Variational formulation.

We specify the variational space and the variational formulation of the subdomain problem

(9). Let us note that two cases will be distinguished β± = 0 and β± 6= 0 depending on

Ω = R∗
+ × (θ0, θ−) or Ω = R2 and the boundary conditions. Natural variational spaces

are distinct in both cases. The case β± 6= 0 is not permitted in interior corner Ω = R2 or

more generally when the general solution of the complete problem does not vanish at r = 0.

Nevertheless considering β± 6= 0 makes sense for example when one puts homogeneous

Dirichlet boundary condition on the complete problem with Ω = R
∗
+ × (θ0, θ+) and provides

an additional flexibility in the choice of the pairs (α±, β±) . 1

Let Ω1 be a sector of R
2, Ω1 = R

∗
+×(θ−, θ+) and we note Ω1 its closure in R

2. The spaces

of regular test functions are C∞
0 (Ω1), which is the space of the restrictions to Ω1 of function

C∞ with compact support in R
2, and C∞

0 (Ω1 \ {O}) the space of the elements of C∞
0 (Ω1)

whose support does not meet the corner O. These two spaces contain the space C∞
0 (Ω1)

1Practically, the case β± = 0 is implemented by keeping a constant coefficient β̃(r) = βopt along the
whole interface.
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of interior test functions and permit the analysis of weak formulations up to the boundary

(except at the corner).

The variational spaces in order to estimate all the terms involved in the variational

formulation of (9) are defined according to:

• G1 is the completion of C∞
0 (Ω1) for the norm ‖ ‖G1 given by

‖u‖2
G1 =

∫

Ω1

|u|2 (x) + |∇u|2 (x) dx+

∫

∂Ω1

|(r∂r)u|
2(r)

dr

r
.

This norm makes G1 a Hilbert space in which C∞
0 (Ω1) is dense.

• G1
0 is the completion of C∞

0 (Ω1 \ {O}) for the norm ‖ ‖G1
0

given by

‖u‖2
G1

0
=

∫

Ω1

|u|2 (x) + |∇u|2 (x) dx+

∫

∂Ω1

|(r∂r)u|
2(r) + |u|2

dr

r
.

It makes G1
0 a Hilbert space in which C∞

0 (Ω1 \ {O}) is dense.

The definition of these spaces lead moreover to the following properties:

• G1
0 ⊂ G1 ⊂ H1(Ω1).

• Hence, any u ∈ G1 (or u ∈ G1
0) admits a trace in H

1
2
loc(∂Ω1 \ {O}). The boundary

terms contained in the norm of G1 and G1
0 specify some additional regularity and the

behaviour in the vicinity of the corner for these traces.

• The inclusion G1
0 ⊂ G1 is strict. In fact G1

0 does not even contain C∞
0 (Ω1) since

∫
∂Ω1

|u(r)|2 dr
r

= +∞ for a smooth function which does not vanish in r = 0.

On these spaces we consider the following weak formulations where the right hand-sides

f , g± define a linear continuous form on G1 (resp. G1
0):

β± = 0 :

∀v ∈ G1, aα±,0(u, v) = Lf,g−,g+(v) (11)

with aα±,0(u, v) =

∫

Ω1

ηu(x)v(x) + ∇u(x)∇v(x) dx+

∫ +∞

0

α+

2
(r∂r)u(r, θ+)(r∂r)v(r, θ+)

dr

r
+

∫ +∞

0

α−
2

(r∂r)u(r, θ−)(r∂r)v(r, θ−)
dr

r

and Lf,g−,g+(v) =

∫

Ω1

f(x)v(x) dx−

∫ +∞

0

g+(r)v(r, θ+) dr +

∫ +∞

0

g−(r)v(r, θ−) dr .
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β± 6= 0 :

∀v ∈ G1
0, aα±,β±

(u, v) = Lf,g−,g+(v) (12)

with aα±,β±
(u, v) =

∫

Ω1

ηu(x)v(x) + ∇u(x)∇v(x) dx+

∫ +∞

0

α+

2
(r∂r)u(r, θ+)(r∂r)v(r, θ+)

dr

r
+

∫ +∞

0

β+

r
u(r, θ+)v(r, θ+) dr

+

∫ +∞

0

α−
2

(r∂r)u(r, θ−)(r∂r)v(r, θ−)
dr

r
+

∫ +∞

0

β−
r
u(r, θ−)v(r, θ−) dr

and Lf,g−,g+(v) =

∫

Ω1

f(x)v(x) dx−

∫ +∞

0

g+(r)v(r, θ+) dr +

∫ +∞

0

g−(r)v(r, θ−) dr .

Lax-Milgram theorem provides the existence and the uniqueness of a solution.

Proposition 3.1. For α± > 0 and β± = 0 (resp. α± > 0 and β± > 0) and for data

(f, g−, g+) such as Lf,g−,g+ define a linear continuous form on G1 (resp. G1
0) the problem

(11) (resp. (12)) admits a unique solution in G1 (resp. G1
0). It is a weak solution to the

boundary value problem






(η − ∆)u = f

(
−1

r
∂θ −

β+

r
+ 1

2
∂r(α+r∂r)

)
u(r, θ+) = g+(r)

(
−1

r
∂θ + β−

r
− 1

2
∂r(α−r∂r)

)
u(r, θ−) = g−(r) .

(13)

What occurs in the neighborhood of the corner is contained in Kondratiev theory which

is summarized in the next two sections.

4 The Mellin transform and weighted Sobolev spaces.

In this section, the Mellin transform and the weighted Sobolev spaces are introduced. We

point out the links with the usual Sobolev spaces. Here Ω = R∗
+ × ω will denote a sectorial

subset of Rn, n ≥ 1, where ω is a regular open set of Sn−1.

4.1 The Mellin transform.

The Mellin transform is nothing but the Fourier transformation associated with the multi-

plicative group (R⋆
+, .). The change of variable r = e−t, t ∈ R makes the connection with the
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usual Fourier transform. It is normalized according to :

M(u)(τ) =

∫ ∞

0

riτu(r)
dr

r

Proposition 4.1. 1. The Mellin transform is an isometry from L2(R+,
dr
r
) onto L2(R, dτ

2π
) .

2. Translation in the τ -variable: M(riαf)(τ) = M(f)(τ + α) for α ∈ R .

3. Mellin transform and derivative:

M(ir ∂rf)(τ) = τM(f)(τ), M(i ln(r)f)(τ) = ∂τM(f)(τ). (14)

4. Mellin transform and dilations:

M(f(rc))(τ) = c−1M(f)(c−1τ), M(f(c r)(τ) = c−iτM(f)(τ), c ∈ R
⋆
+. (15)

When f is compactly supported in R∗
+ the Mellin transform makes sense for any τ ∈ C

and the second formula can be extended to any α ∈ C .

Definition 4.2. By setting C− = {z ∈ C, Im z < 0}, the space of holomorphic functions

H2(C−) is defined by:

H2(C−) =
{
u; u holomorphic in C−, sup

y<0

∫ +∞

−∞
|u(x+ iy)|2dx < +∞

}
.

In R∗
+ × ω = Ω ⊂ Rn and γ ∈ R, the weighted L2 space L2,γ(Ω) is defined by L2,γ(Ω) =

L2(Ω, |x|−2γ dx) .

The connection between the two above spaces can be made via the Mellin transform with

the help of Paley-Wiener theorem (see [23]).

Proposition 4.3. 1. In dimension 1, the Mellin transform

M : L2(]0, 1], r−2γ dr

r
) −→ H2(C− + iγ)

is an isometry.

2. In the sectorial domain Ω = R∗
+ × ω, the Mellin transform in the radial variable still

denoted by M :

M : L2
(
Ω ∩ {r ≤ 1}, |x|−2γdx

)
−→ H2

(
C− + i(γ −

n

2
);L2(ω)

)

is an isometry.

10



4.2 The Sobolev spaces Hs,γ.

The general definition of the weighted Sobolev spaces Hs,γ(Ω), Ω = R∗
+ × ω is conveniently

written in dimension n > 1 after introducing the Laplace-Beltrami operator ∆S on Sn−1.

The operator Λ = (1 − ∆S)
1
2 , is a self-adjoint operator bounded from below by 1. Note

that for λ ≥ 1 the function z → (λ + i(z − i(γ − n
2
)))s admits a holomorphic realization in

{z, Im(z) < γ − n
2
} for any s ∈ R .

Definition 4.4. For s ∈ R+ and γ ∈ R, a distribution u ∈ D′(Ω) belongs to Hs,γ(Ω) if its

radial Mellin transform Mu is the restriction to [R + i(γ − n
2
)] × ω of a function v(z, θ) on

R × Sn−1 checking

(
Λ + i(z − i(γ −

n

2
))

)s

v ∈ L2(R + i(γ −
n

2
);L2(Sn−1)) .

The support condition supp u ⊂ {r ≤ 1} again has a simple translation due to Paley-

Wiener theorem.

Proposition 4.5. A distribution u ∈ D′(Ω) satisfies u ∈ Hs,γ(R∗
+×ω) with supp u ⊂ {r ≤ 1}

if and only if its Mellin transform Mu is the restriction to [R + i(γ − n
2
)] × ω of a function

v(z, θ) on R × Sn−1 checking

(
Λ + i(z − i(γ −

n

2
))

)s

v ∈ H2(C− + i(γ −
n

2
);L2(Sn−1)) .

In the case when s ∈ N, the definition of spaces Hs,γ can be given in a simpler form:

Hs,γ = {u ∈ L2
loc(Ω), (r∂r)

α1(∂θ)
α2u ∈ L2(Ω, r−2γdx) = L2,γ ;α1 + |α2| ≤ s}

= {u ∈ L2
loc(Ω), r|α|Dαu ∈ L2,γ}, D =

1

i
(∂r,

1

r
∂θ),

‖u‖2
Hs,γ =

∑

α1+|α2|≤s

‖(r∂r)
α1∂α2

θ u‖2
L2,γ , (s ∈ N) .

Remark 4.6. Although the notations are slightly different, the spaces
◦
W

m

α , m ∈ N, α ∈ R,

of Kondratiev in [13] and their generalization Hs
γ introduced by Dauge in [5] are among our

spaces Hs,γ.

1. For m ∈ N and α ∈ R, we have
◦
W

m

α (Ω) = Hm
α/2(Ω) .
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2. The relationship between our spaces Hs,γ(Ω) and the spaces Hs
γ(Ω) in [5] in the case

s ∈ N can be obtained by induction on s owing to (r∂r)(r
γu) = γrγu + rγ(r∂r)u. The

general result is then obtained by complex interpolation and states Hs,γ(Ω) = Hs
s−γ(Ω).

3. In particular, notice the relationships

L2,γ = H0,γ, L2,0 = L2, u ∈ L2,γ ⇔ u ∈ H0
−γ .

4.3 Link with the usual Sobolev spaces.

We work again in Ω = R∗
+×ω where ω is a regular domain in Sn−1. We are mainly interested

in the behavior of functions in the neighborhood of the corner r = 0. Therefore, we focus on

functions supported in {r ≤ 1}. With this support condition, the usual Hs, s ≥ 0 regularity

can be interpreted in terms of meromorphic Mellin transforms with the help of the weighted

Sobolev spaces introduced before.

Proposition 4.7. For every s ∈ R+ such that s− n
2
6∈ N, we have the following properties. If

u belongs to Hs(Ω) and has a support included in {r ≤ 1} then for all α′ ∈ Nn−1, |α′| ≤ [s],

M(∇α′

θ u) admits a meromorphic extension in the complex half-plane
{
Im(z) < s− n

2

}
. Its

poles are simple poles at zk = ik, |α′| ≤ k ≤ [s− n
2
] with the residues

Res(M(∇α′

θ u), ik) = −
i

(k − |α′|)!
∂k−|α′|

r (
1

r
∇θ)

α′

u(0) .

Moreover if Pu,[s−n
2
] denotes the Taylor expansion up to the order [s− n

2
] and if χ ∈ C∞

0 (R+)

with suppχ ⊂ {r ≤ 1} and χ ≡ 1 in a neighborhood of r = 0, then the remainder u −

χ(r)Pu,[s−n/2] satisfies

u− χ(r)Pu,[s−n
2
] ∈ Hs,s(Ω) .

Remark 4.8. 1. The Proposition 4.7 is given with the notation Hs,s, which correspond

to Hs
0 in [5] (see Proposition AA.29 p 228).

2. In dimension n, the case s − n
2
∈ N is more delicate. We will always avoid these

critical situations while working under the assumption of a little more or a little less

regularity. As we will see it in Section 6, the idea is to work on the asymptotic types

which generalize the Taylor expansion. We are mainly interested in the position of the

poles which are here at z = itk with tk
{
0, 1, . . . [s− n

2
]
}
.
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5 A summary of Kondratiev theory and framework.

After reviewing some results of Kondratiev, the definition of the generalized asymptotic

expansion is specified. This notion will be used in the presentation of our strategy in the

next section.

5.1 Kondratiev results.

We adapt to our specific 2-dimensional framework with second order differential operators

and with our notations, the general result of Kondratiev in [13]. We recall 2 that Ω =

R∗
+ × (θ−, θ+) or Ω = R2.

The second order differential operator reads

L(x, ∂x) =
∑

|α|≤2

aα(x)∂α
x

with coefficients aα ∈ C∞(Ω). The operators involved in the boundary conditions are given

by

B±(x, ∂x) =
∑

|β|≤m±

bβ(x)

|x|µβ
∂β

x

with µβ ≤ m± − |β| and we assume that everywhere the coefficients of the operators B± are

infinitely differentiable.

We consider the problem






L(x, ∂x)u = f
B−(x, ∂x)u

∣∣
θ=θ−

= g−

B+(x, ∂x)u
∣∣
θ=θ+

= g+

(16)

It is assumed that this boundary value problem satisfies the Lopatinskii conditions along

∂Ω \O. This is true for example with the boundary conditions (6)(7).

We denote by L0, B0,± the principal parts of the operators L, B± with coefficients fixed

at the origin. We write then the operators L0, B0,± in polar coordinate

L0(x, ∂x) = r−2L̃0(r∂r, ∂θ), B0,±(x, ∂x) = r−m±B̃0,±(r∂r, ∂θ).

2Actually these general results will be applied in the full domain Ω and in the subdomains Ω1 and Ω2.
The notation θ± for the possible limiting angles actually refers to Ω1 in our presentation of the domain
decomposition algorithm.
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According to the analytic Fredholm theory (see for example [23]), the system






L̃0(iz, ∂θ)v = ϕ

B̃0,−(iz, ∂θ)v(θ−) = γ−
B̃0,+(iz, ∂θ)v(θ+) = γ+

(17)

admits a meromorphic resolvent denoted by R(z) such that for given (ϕ, γ−, γ+) the solution

v = v(z) equals

v(z) = R(z)(ϕ, γ−, γ+)

as an L2((θ−, θ+))-valued meromorphic function of z ∈ C.

The poles of the resolvent R(z) for the principal part and its residues play an important role

in Kondratiev theory.

The first result is concerned with the case when the operators L(x, ∂x) and B±(x, ∂x) are

homogeneous operators.

Proposition 5.1. Assume that u ∈ Hk+2,k+2−α
2 (Ω) solves (16) with L replaced by L0, B±

replaced by B0,±, with f ∈ Hk1,k1−α1
2 (Ω) and g± ∈ Hk1+2−m±− 1

2
,k1+2−m±− 1

2
−α1

2 (R∗
+) . Assume

moreover the condition

h1 =
2k1 + 4 − 2 − α1

2
>

2k + 4 − 2 − α

2
= h, k1 ≥ k

and that the resolvent R(z) of the problem (17) has no poles on the straight line Im(z) = h1.

Then u satisfies

u =
∑

j

µj−1∑

ν=0

aj,νr
−iλj lnν(r)ψν,j(θ) + w,

where

• ψν,j are infinitely differentiable functions independent of u(x), and λj are poles of

multiplicity µj of the function R(z) such that h < Im(λj) < h1;

• the remainder w belongs to Hk1+2,k1+2−α1
2 with

‖w‖
Hk1+2,k1+2−

α1
2
≤ C

[
‖u‖

Hk+2,k+2−α
2

+ ‖f‖
Hk1,k1−

α1
2

+ ‖g±‖
Hk1+2−m±−

1
2 ,k1+2−m±−

1
2−

α1
2

]
.

In the second statement which is for general L and B± in (16), there are additional

constraint on the pairs (α, k) and (α1, k1). Contrary to the homogeneous case, it is not

14



possible to get an asymptotic expansion at any order by simply looking at the principal part

of the operators. Nevertheless the study of the principal part provides the first terms of

the asymptotic expansion, which the meaning on the limitation on (α, k). For the sake of

simplicity the result is stated with k1 = k.

Proposition 5.2. Assume that u ∈ Hk+2,k+2−α
2 (Ω), solves (16) with f ∈ Hk,k−α1

2 (Ω) and

g± ∈ Hk+2−m±− 1
2
,k+2−m±− 1

2
−α1

2 (R∗
+), α−2 ≤ α1 < α, and with supp f and supp g± contained

in {r ≤ ρ0}, ̺0 > 0. Assume moreover that the resolvent R(z) of the principal part (17) has

no pole on the straight line h1 = −2−α1+2k+4
2

. Then the solution u(x) has the form

u =
∑

j

µj−1∑

ν=0

aj,νr
−iλj lnν(r)ψν,j(θ) + w (18)

where λj are the poles of R(z) contained in the strip {h < Im z < h1}, h = −2−α+2k+4
2

, µj

is the multiplicity of λj and w belongs to Hk+2,k+2−α1
2 with the inequality

‖w‖
Hk+2,k+2−

α1
2
≤ C

[
‖u‖

Hk+2,k+2−α
2

+ ‖f‖
Hk,k−

α1
2

+ ‖g±‖
Hk+2−m±− 1

2 ,k+2−m±− 1
2−

α1
2

]
.

Remark 5.3. In [13] these results are stated in weighted spaces denoted by
◦
W

m

α , m ∈ N,

α ∈ R. With our notations, they coincide with Hm,m−α
2 .

5.2 An example.

Here is a classical example which will motivate our general definition.

Consider first in Ω = R∗
+ × (θ−, θ+) 3 a solution u ∈ H1(Ω) such that supp u ⊂ {r ≤ 1}, to

the homogeneous boundary value problem:

{
−∆u = f ∈ L2,γ(Ω)

u(r, θ±) = g±(r) ∈ L2,γ+2− 1
2 (R∗

+) .
(19)

The conditions on u implies that its Mellin transform is holomorphic in {Im z < 0}. Since

the support conditions are transmitted to f, g±, the Mellin transforms of f and g± belong

respectively to H2(C−+ i(γ−1);L2(θ−, θ+)) and H2(C−+ i(γ+1)) according to Proposition

3In the domain decomposition, the notations (θ−, θ+) are used for the subdomain Ω1. Here they are
convenient for a general sector Ω.
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4.3. We focus here on the case γ > −1. After taking the radial Mellin transform, the

equation becomes

{
[∂2

θ − z2] (Mu)(z, θ) = M [−r2f ](z, θ) = −(Mf)(z − 2i, θ)
Mu(z, θ±) = Mg±(z, θ±) .

(20)

By introducing the resolvent R(z), the solution writes:

Mu(z) = R(z)[−Mf(z − 2i),Mg−(z),Mg+(z)] . (21)

The resolvent R(z) is an operator valued meromorphic function which can be computed

explicitly here. One can determine R(z) by using the classical theory of ordinary differential

equations:

R(z)[ϕ, γ−, γ+] =
sinh(z(θ − θ−))

sinh(z(θ+ − θ−))
γ+ −

sinh(z(θ − θ+))

sinh(z(θ+ − θ−))
γ−

+
sinh(z(θ− − θ))

z sinh(z(θ+ − θ−))

∫ θ+

θ−

sinh(z(θ+ − s))ϕ(s)ds

+
1

z

∫ θ

θ−

sinh(z(θ − s))ϕ(s)ds .

Here ϕ(z, θ) = −Mf(z − 2i, θ), γ−(z) = Mg−(z, θ−) and γ+(z) = Mg+(z, θ+) .

It has simple poles at z = in π
θ+−θ−

, for n ∈ Z.

Taking into account the a priori information on u, f and g±, we conclude that the

Mellin transform Mu is an L2(θ−, θ+)-valued meromorphic function in {Im z < γ + 1}. By

assuming γ + 1 > 0 and γ + 1 6∈
{

nπ
θ+−θ−

, n ∈ N

}
it may have simple poles at the points

in π
θ+−θ−

, nπ
θ+−θ−

< (γ + 1), n ∈ N, with:

Res(Mu, in
π

θ+ − θ−
) = cn,u sin(n

π

θ+ − θ−
(θ − θ−)),

nπ

θ+ − θ−
< γ + 1 .

Actually the poles i nπ
θ+−θ−

with negative n < 0 are eliminated by the condition u ∈ H1(Ω),

supp u ⊂ {r ≤ 1}. One recovers the result of Proposition 5.1:

u = χ(r)
∑

n∈N, n<
(θ+−θ−)(γ+1)

π

icn,ur
nπ

θ+−θ− sin

(
nπ

θ+ − θ−
(θ − θ−)

)
+R

with χ ∈ C∞
0 (R+), suppχ ⊂ {r ≤ 1}, χ ≡ 1 in the neighborhood of 0, and R ∈ H2,γ+2(Ω) ⊂

L2,γ+2(Ω).
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We started with data f ∈ L2,γ(Ω) and g± ∈ L2,γ+3/2(R∗
+) so that their Mellin transforms

is holomorphic in {Im z < γ − 1} and {Im z < γ + 1}. For γ > −1 another interesting case

permitted by the assumption u ∈ H1(Ω), occurs when the Mellin transforms Mf(z − 2i)

and Mg± have poles in {0 ≤ Im z < γ + 1}. Then equation (21) implies

{poles (u)} ⊂ { poles (R(z))} ∪ { poles (−Mf(z − 2i),Mg±)} . (22)

We will discuss later general consequences in domain decomposition methods (see Section 6).

A specific case enlightens the limitation on the asymptotic expansion in non homogeneous

boundary value problems. Consider now the boundary value problem

{
ηu− ∆u = f ∈ L2,γ(Ω)

u(r, θ±) = g±(r) ∈ L2,γ+2− 1
2 (R∗

+) ,

with η > 0. We assume again that the (unique) solution u ∈ H1(Ω) is supported in {r ≤ 1}

and the number γ > −1 can be assumed to be a large positive number. After putting −ηu

with f in the right-hand side, equation (21) now implies

Mu(z) = R(z) [M [−f + ηu](z − 2i),Mg−,Mg+] .

Hence the poles of Mu in {0 ≤ Im z < 2} come only from the poles of the resolvent R(z)

while for Im z ≥ 2 the poles of Mu(z − 2i) have to be added to the one of R(z). Only the

first terms of the asymptotic expansion can be deduced from the poles of R(z). This is a

reason to the limitation α− 2 ≤ α1 < α in Proposition 5.2.

5.3 Generalization of the Taylor expansion.

The final aim of our work is to improve the convergence of domain decomposition methods

in the neighborhood of corners. The relevant analysis has to be done in a neighborhood of

r = 0, with several consequences:

1. First, it is sufficient to consider truncated solutions χ(r)u, with χ ∈ C∞
0 (R+), suppχ ⊂

{r ≤ 1} and χ ≡ 1 in a neighborhood of {r = 0}. One can even consider directly the

the situation u = χ(r)u. The variational formulation of Section 3 ensures that the

solution to a subdomain problem also satisfies u ∈ H1(Ω). Hence, the radial Mellin

transform M [u] = M [χu] is holomorphic in the half-plane {Im z < 0}. Since L(x, ∂x)
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and B±(x, ∂x) are differential operators, the initial data f ∈ L2(Ω) (resp. g±) have a

holomorphic Mellin transform in {Im z < −1} (resp. {Im z < 0}).

2. We are interested in the asymptotic expansion as r → 0 and all the interesting infor-

mation is contained in the exponent γ while the exponent s concerns an additional

radial regularity (with respect to the characteristic vector field r∂r). The next notion

will be reduced to the case s = 0.

3. According to (22), the poles of the Mellin transform of the solution can also be produced

by the ones of the data f , g±. This occurs even with regular data since these poles

encode the Taylor expansion according to Proposition 4.7.

The next definition gathers all these remarks by considering only Mellin transforms which

are meromorphic in {Im z < γ}. It permits to treat with the same language the Taylor

expansion of regular functions and the general asymptotic expansion given by Kondratiev

theory.

Definition 5.4. An asymptotic type in Ω = R∗
+ × (θ−, θ+) 4 (resp. on R∗

+) is a finite col-

lection T = ((λj, µj, ϕj,ν(θ), 0 ≤ ν ≤ µj − 1))j∈{1,...,N} (resp. T = ((λj, µj))j∈{1,...,N}) where

the λj are points of {Im z ≥ 0}, µj is the multiplicity of the pole λj and ϕj,ν ∈ L2((θ−, θ+)).

For γ ≥ 0, L2,γ
r≤1,T (Ω) (resp. L2,γ

r≤1,T (R∗
+)) will denote the set of the functions u ∈ L2(Ω) (resp.

u ∈ L2(R∗
+)) with support in {r ≤ 1} whose Mellin transform admits a meromorphic exten-

sion in {Im z < γ − 1} (resp
{
Im z < γ − 1

2

}
) with a trace in L2(R + i(γ − 1);L2(θ−, θ+))

(resp. L2(R + i(γ − 1
2
))), with poles and residues given by the asymptotic type T .

A simple elimination of the poles provides the writing

u(x) = 1[0,1](r)
∑

0≤Imλj<γ−1

µj−1∑

ν=0

cj,νr
−iλj lnν(r)ϕj,ν(θ) + w(x) , (23)

with w ∈ L2,γ(Ω), for any u ∈ L2,γ
r≥1,T (Ω).

6 Strategy.

The previous Section can be summarized by stating that the asymptotic type, introduced in

Definition 5.4, of the solution to a second order elliptic problem in a conical domain, depends

4possibly Ω = R∗
+ × S1
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on the interior operator, the geometry (angle) of the domain, the boundary operator and

the right-hand side.

The first observation concerned with the domain decomposition is that the asymptotic types

associated with the complete domain Ω boundary value problem has nothing to do with the

ones of the subdomain problems. After some numerical observations, it is considered here

and in [21] as the main (local) obstruction to a rapid convergence.

The second observation is that like in the case of smooth interfaces our class of interface

boundary conditions (7) permits some flexibility in the choice of the coefficients α±, β±.

Hence the question is whether in a subdomain Ω1 there is a choice of pairs (α±, β±) which

provides the best possible matching with the asymptotic type of the solution to the complete

domain problem.

As a third observation, notice that at each step of the domain decomposition algorithm (9)

(10), every subdomain problem as a nonzero right-hand side concentrated in the boundary

conditions. According to the general principle which says that the poles of the Mellin trans-

form Mu of the solution are produced by the poles of the resolvent and the poles of the

right-hand side, any new iteration n in the domain decomposition may produce new poles

or increase their multiplicity. Following completely the propagation of those poles through

the algorithm seems a complex task especially for more than 2 subdomains.

Starting from those three observations, our approach consists in determining the “best

pairs” (α±, β±) from necessary conditions and then hope that in practice this choice which

cannot be worse than the arbitrary one improves significantly the speed of convergence.

This last point will be shown in the subsequent numerical article. The general principle

which leads the next calculations is the following : Assume that at step n the error functions

en
j = un

j − u, j = 1, . . . , N , have the asymptotic type of the full domain Ω problem, then

the error functions en+1
j should keep this asymptotic type up to some large enough order as

r → 0. The better the matching is, the faster the convergence is expected.

We will work in spaces L2,γ
T with 0 < γ < 2 by taking γ as large as possible so that

the asymptotic types T coincide in the complete domain Ω and in the subdomains Ωj ,

j = 1, . . . , N . When the subdomain boundary problem (9), or its principal part (10), is
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solved artificial poles occur in the Mellin transform of en+1
i . The analysis focuses on the first

artificial poles, which is the one with the smallest imaginary part and corresponds to the

biggest factor r−iλj in (23). The corresponding residue depends on the right-hand side in

(9) or (10) which at first order is given by the asymptotic type of the full domain problem.

The question now becomes: Is it possible to choose the pairs (α±, β±) in Ω1 so that if the

data involved in the right-hand side of (9)(10) have the right asymptotic type, then the first

artificial poles is canceled by a vanishing residue. Actually the computation will show that

such a choice of the pairs is not always possible and we finally have to choose between two

ways for every subdomain Ωj , j = 1, . . . , N :

1. First check if it is possible to cancel the first artificial pole according to the previous

process.

2. If the first approach has no solution, choose the pairs (α±, β±) so that the first artificial

pole has the largest possible imaginary part.

In the first case, the best exponent γ will be given by the imaginary part of the second

artificial pole. In the second case, it will be given by the imaginary part of the first artificial

pole pushed as far as possible from 0. After taking the minimal γ over all the subdomains

Ωj , j = 1, . . . , N , this provides an idea of the accuracy of the approximation by the domain

decomposition method around the corner.

We end this general presentation by two remarks.

1. We consider here differential operators with real coefficients. Hence the principal part

of the asymptotic expansion (18) must be real for real data. This implies that the

position of the poles of the resolvent R(z) must be symmetric with respect to the

imaginary axis iR. Actually, we check here in every cases that the poles of R(z) lie

exactly on the imaginary axis.

2. The variational formulation ensures that the solution belongs to H1 for the complete

problem or for the subdomain problems. Hence a multiple pole at z = 0 is not possible

because r lnk(r) 6∈ H1 in dimension 2 for k > 0. The simple pole at z = 0 corresponds

to the possibly non zero value of the solution u(O) when u ∈ H1+δ with δ > 0.
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Those two remarks suggest that we have to focus on the analysis of the poles z = it with

t > 0. This will be checked with details in the next Section.

7 Theoretical determination of good pairs (α±, β±) in a

subdomain for a model problem.

The strategy presented in Section 6 is now implemented in some specific cases.

The domain decomposition methods generates two types of corners: There are corners which

are in the interior of the global domain and other corners which are on the edge of the global

domain. The treatment of these two categories of corners is slightly different. The choice of

interface conditions takes into account the nature of the corners, by imposing β± = 0 or by

permitting any β± > 0. For the corners in the interior of the global domain, or on the edge

of the global domain with Neumann boundary condition, the coefficient β± has to be 0 in

order to make possible a non vanishing value u(O) 6= 0 (see Section 3). Meanwhile β± 6= 0

is possible when the corner is on the edge of the global domain with Dirichlet condition

(see Section 3). For this reason, the two types of corner will be treated separately in the

optimizing process of the coefficients (α±, β±).

7.1 Improved interface conditions for domain decomposition of

non-convex polygonal domain.

The sector Ω = {(r cos θ, r sin θ), r > 0, θ0 < θ < θ+}, with θ+ − θ0 ∈ (0, 2π), in polar coordi-

nates is decomposed into Ω1 = R∗
+ × (θ−, θ+) and Ω2 = R∗

+ × (θ0, θ−), with θ0 < θ− < θ+(see

Figure 1).

By considering Dirichlet problem in Ω, we carry out the general strategy (Section 6) with

details. We find an explicit linear relation which has to be satisfied by the pair (α−, β−) in

order to permit the matching of the asymptotic types.

7.1.1 The Dirichlet problem.

a) Asymptotic type in Ω.

Consider the homogeneous Dirichlet problem

(η − ∆)u = f u
∣∣
θ=θ0

≡ 0 u
∣∣
θ=θ+

≡ 0 , (24)
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Figure 1: Two domain decomposition.

which is well posed in H1(Ω) for f ∈ L2(Ω) . Assume that for an approximate solution v,

the consistency is well satisfied around r = 0. Namely, by setting e = v − u,

(η − ∆)e = ρ e
∣∣
θ=θ0

≡ 0 e
∣∣
θ=θ+

≡ 0,

with ρ(r, θ) = O(r∞). Then Proposition 5.2 says that even in this case the conclusion is

e(r, θ) = a1r
1

x0 sin

(
θ − θ0
x0

)
+ o(r

1
x0 ), a1 ∈ R, (25)

with x0 = θ+−θ0

π
. According to Definition 5.4, the asymptotic type in Ω for γ < 2

x0
is

T = ( i
x0
, 1, sin( θ−θ0

x0
)). It describes the first term in the asymptotic expansion u to (24) with

a right-hand side f rapidly vanishing as r → 0.

b) Subproblem in Ω1.

We focus on the subdomain Ω1. The treatment of Ω2 is similar. The boundary problem (1)

in Ω1 with the interface conditions (6) solved by the error en+1
1 = un+1

1 − u reads





(
η − 1

r2 ((r∂r)
2 + ∂2

θ )
)
en+1
1 (r, θ) = 0

en+1
1 (r, θ+) = 0(

− 1
r
∂θ + β̃−(r) − 1

2
∂r(α̃−(r)∂r)

)
en+1
1 (r, θ−) = g−(r)

(26)

where g−(r) =
(
− 1

r
∂θ + β̃−(r)− 1

2
∂r(α̃−(r)∂r)

)
en
2 (r, θ−) . This problem admits a well posed

variational formulation in a subspace ofH1(Ω1) with the sign conditions α−, β− > 0. Remind

that α̃− and β̃− are chosen so that variational problem is well posed according to (7) and

Section 3. Following Kondratiev (see Section 5), we are led to consider the z-dependent

problem derived from the principal part

(∂2
θ − z2)ê1(z, θ) = 0 ê1(z, θ+) = 0 (∂θ − β− −

α−
2
z2)ê1(z, θ−) = ĝ−(z) , (27)
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whose solution is

a(z)ez(θ−θ−) + b(z)e−z(θ−θ+)

a(z) = R(z)ĝ−(z), b(z) = −a(z)ez(θ+−θ−),

with R(z) =
[
(z − β− −

α−
2
z2) + (z + β− +

α−
2
z2)e2z(θ+−θ−)

]−1

.

We recall that u ∈ H1 implies that the multiplicity of the pole of Mu at z = 0 is 1 and

permits to focus on the poles with positive imaginary part.

Proposition 7.1. The poles with a positive imaginary part of the factor R(z) are the purely

imaginary complex numbers z = it, with t > 0 and

tan(πxt) =
2t

α−t2 − 2β−
, x =

θ+ − θ−
π

, (28)

whose positive solutions are denoted by tk, k ∈ N∗ in the increasing order.

Proof. In order to determine the poles of R(z), it is enough to solve the equation

(z − β− −
α−
2
z2) + (z + β− +

α−
2
z2)e2z(θ+−θ−) = 0 .

Therefore the poles are the solutions to

e2z(θ+−θ−) =
−z + β− + α−

2
z2

z + β− + α−

2
z2

. (29)

As z ∈ C, we note z = r + it with r, t ∈ R. Taking the module of (29) we obtain

e4r(θ+−θ−) = ψ(r) (30)

where

ψ(r) =
(−r + β− + α−

r2−t2

2
)2 + t2(−1 + α−r)

2

(r + β− + α−
r2−t2

2
)2 + t2(1 + α−r)2

.

The proof that r = 0 relies on the equality

ψ(r) − 1 =
−2r(2β− + α−|z|

2)

(r + β− + α−
r2−t2

2
)2 + t2(1 + α−r)2

.

which implies r(ψ(r) − 1) < 0 .

Since θ+ > θ− then we can deduce:
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• If r > 0 we get

e4r(θ+−θ−) > 1 and ψ(r) < 1

therefore one cannot have r > 0 .

• If r < 0 we get

e4r(θ+−θ−) < 1 and ψ(r) > 1

therefore we cannot have r < 0 .

Therefore the equality (30) implies r = 0 .

The poles with a positive imaginary part have the form z = it, with t > 0 and

e2it(θ+−θ−) =
−it + β− + α−

2
(it)2

it+ β− + α−

2
(it)2

. (31)

Writing the second member of (31) in the exponential form

e2it(θ+−θ−) = eiπe−2i arctan(
α−

2
t−β−

t
), (32)

we deduce

2t(θ+ − θ−) = π − 2 arctan(
α−t

2 − 2β−
2t

)mod(2π).

Hence t satisfies (28) .

The best way to study the 2 first positive solutions of (28) is the graphical representation

of t → tan(πxt) and t → 2t
α−t2−2β−

. There are 2 different cases according to
√

2β−

α−
< 1

2x
or

√
2β−

α−
> 1

2x
which compares the positions of the first vertical asymptotes.

Below is the discussion between the two possible treatments of the first pole it1 according

to the general strategy presented in Section 6.

1. When the first pole (it1) can be canceled for well prepared data (first approach), the

first active artificial pole becomes it2 with

t2 > 1
x

if
√

2β−

α−
< 1

2x

t2 > 3
2x

if
√

2β−

α−
> 3

2x

t2 > 1
x

if
√

2β−

α−
> 1

2x
.

2. The second approach consists in pushing as far as possible the first pole it1 from z = 0.

A good choice is
√

2β−

α−
>> 1

2x
and t1 ≃

1
x
.
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tan(pi.*x.t)
2*t/alpha*t2−2*beta

t1 t2 

1/2x 1/x 2/x 3/2x 

t3 

Figure 2: Case of
√

2β−

α−
< 1

2x
.

tan(pi.*x.t)
2*t/alpha*t2−2*beta

1/2x 1/x 3/2x 

t1 t2 t3 

Figure 3: Case of
√

2β−

α−
> 1

2x
.

When it is possible the first approach with t2 >
1
x

is always better than the second one with

t1 <
1
x
.

c) Cancellation of the first artificial pole for well prepared data.

In the subdomain Ω1 and for a general right-hand side in (26), the first artificial term in

the asymptotic expansion of en+1
1 appears with the factor rt1 , with t1 defined in Proposition

7.1. The first (and most efficient) approach assumes that at step n the error as the natural

asymptotic type associated with the global problem:

en
2 (r, θ) = a1r

1
x0 sin(

θ − θ0
x0

) + o(r
1

x0 ). (33)

With an additional truncation in {r ≤ R}, we set like in the domain decomposition algorithm

g−(r) = 1{r≤R}

(
∂θ − β− +

α−
2

(r∂r)
2
)
en
2 (r, θ−) .

After forgetting the o(r
1

x0 ) remainder and taking the Mellin transform, this provides

ĝ−(z) =
R

1
x0

+iz

1
x0

+ iz
a1

[
1

x0
cos(

θ− − θ0
x0

) + (−β− +
α−
2x2

0

) sin(
θ− − θ0
x0

)

]
. (34)

Here the cancellation of the first artificial pole it1 is reduced to the simple condition

ĝ−(it1) = 0 (35)

Proposition 7.2. The equation (35) is satisfied if and only if the pair (α−, β−) ∈ R∗
+ × R∗

+

satisfies

−β− +
α−
2x2

0

=
1

x0 tan(πx
x0

)
, x =

θ+ − θ−
π

. (36)
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Proof. The equation (35) does not depend on the truncation parameter R and reads simply

1

x0

cos(
θ− − θ0
x0

) + (−β− +
α−
2x2

0

) sin(
θ− − θ0
x0

) = 0 .

This yields the result.

It was checked in many cases that the system (8) (36) admits a solution (α−, β−) ∈

R∗
+ × R∗

+ for many angles 0 < (θ+ − θ−) < (θ+ − θ0) < 2π and for various values of h. A

general argument can be given by looking in the (α−, β−) plane at the polygonal line

PLh := {(α−, β−);α− =
c1h

3/4

Φ(h)
, β− ≥

c2Φ(h)

h1/4
} ∪ {(α−, β−);α− ≤

c1h
3/4

Φ(h)
, β− =

c2Φ(h)

h1/4
}

for c1, c2 ∈ R∗
+ fixed5. Our framework where Φ(h) = 3h or Φ(h) = o(h) as h → 0 ensures

that PLh has a non empty intersection with the straight line (36) whose slope is 1
2x2

0
> 0, for

h > 0 small enough. Owing to 1
tan(πx

x0
)

= 0 for x = x0

2
, this discussion is even more convincing

when x lies in a neighborhood of x0

2
. Theoretically, a solution to the system (8) (36) can be

found as soon as the mesh size is small enough h < hδ when x ∈ [δx0, (1− δ)x0] with δ > 0.

Hence , the first approach can be implemented. It permits to expect after enough it-

erations a matching of the domain decomposition approximation and the full solution up

to O(rmin{t2(Ω2),t2(Ω1)}). The notation t2(Ωj) refers to the second positive solution to (28)

adapted to the domain Ωj , j = 1, 2.

7.1.2 The Neumann problem.

Consider now the Neumann problem with ∂nu = 0 on ∂Ω. In order to have a well posed

problem in Ω1 and Ω2 which permits non null values at the corner, we take β− = 0.

a) Asymptotic type in Ω.

Consider the Neumann problem

(η − ∆)u = f ∂nu
∣∣
θ=θ0

≡ 0 ∂nu
∣∣
θ=θ+

≡ 0 . (37)

Assume again that the consistency is well satisfied around r = 0. Namely, by setting

e = v − u,

(η − ∆)e = ρ ∂ne
∣∣
θ=θ0

≡ 0 ∂ne
∣∣
θ=θ+

≡ 0 ,

5The coefficients c1, c2 and the exponents of the parameter h are obtained by studying the asymptotics
of the optimal interface conditions in the regular case when the uniform mesh size h goes to 0. Those results
are detailed in [4].

26



with ρ(r, θ) = O(r∞). Then Proposition 5.2 says that even in this case

e(r, θ) = a0 + a1r
1

x0 cos

(
θ − θ0
x0

)
+ o(r

1
x0 ) (38)

with x0 = θ+−θ0

π
, and a0, a1 ∈ R. According to the definition 5.4, the asymptotic type in Ω

for γ < 2
x0

is T =
(
(0, 1, 1); ( i

x0
, 1, cos( θ−θ0

x0
))

)
. It describes the first term in the asymptotic

expansion of the solution u to (37) with a vanishing right-hand side f .

b) Subproblem in Ω1.

We focus on the subdomain Ω1. The treatment of Ω2 is similar. Like for the Dirichlet

problem, we are led to consider the homogeneous problem:





(
∂2

θ + (r∂r)
2
)
en+1
1 (r, θ) = 0

∂θe
n+1
1 (r, θ+) = 0(

∂θ + α−

2
(r∂r)

2
)
en+1
1 (r, θ−) = g−(r)

(39)

where g−(r) =
(
∂θ + α−

2
(r∂r)

2
)
en
2 (r, θ−) .

After taking the Mellin transform, we get the z-dependent problem derived from the

principal part

(∂2
θ − z2)ê1(z, θ) = 0 ∂θ ê1(z, θ+) = 0 (∂θ −

α−
2
z2)ê1(z, θ−) = ĝ−(z) , (40)

whose solution is

a(z)ez(θ−θ−) + b(z)e−z(θ−θ+)

a(z) = R(z)ĝ−(z), b(z) = a(z)ez(θ+−θ−),

with R(z) =
1

z

[
(1 −

α−
2
z) − (1 +

α−
2
z)e2z(θ+−θ−)

]−1

.

We recall that the solution u ∈ H1 implies that the multiplicity of the pole of Mu at

z = 0 is 1 and permits to focus on the poles with positive imaginary part.

Proposition 7.3. The poles with a positive imaginary part of the factor R(z) are the purely

imaginary complex numbers z = it, with t > 0 and

tan (πxt) = −
α−
2
t , x =

θ+ − θ−
π

, (41)

whose positive solutions are denoted by tk, k ∈ N∗, in the increasing order.
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Proof. In order to determine the poles of R(z), it is enough to solve the equation

(1 −
α−
2
z) − (1 +

α−
2
z)e2z(θ+−θ−) = 0 .

Therefore the poles are solutions of

e2z(θ+−θ−) =
1 − α−

2
z

1 + α−

2
z
. (42)

As z ∈ C, we note z = r + it with r, t ∈ R. Taking the module of (42) we obtain

e4r(θ+−θ−) = ϕα−
(r) (43)

where

ϕα−
(r) =

(1 − α−

2
r)2 + (α−

2
)2t2

(1 + α−

2
r)2 + (α−

2
)2t2

.

Since θ+ > θ− then we can deduce:

• If r > 0 we get

e4r(θ+−θ−) > 1 and ϕα−
(r) < 1

therefore one cannot have r > 0 .

• If r < 0 we get

e4r(θ+−θ−) < 1 and ϕα−
(r) > 1

therefore we cannot have r < 0 .

Therefore the equality (43) implies r = 0 . The poles with a positive imaginary part have

the form z = it, with t > 0 and

e2it(θ+−θ−) =
1 − iα−

2
t

1 + iα−

2
t
. (44)

Writing the second member of (44) in the exponential form

e2it(θ+−θ−) = e−2i arctan(
α−

2
t) (45)

Hence t satisfies (41) .
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tan(pi.*x.t)
−alpha*t/2

1/2x 1/x 3/2x 

 t1 t2 t1(0) 

Figure 4: The first poles for the Neumann problem.

The best way to study the 2 first positive solutions of (41) is the graphical representation

of t → tan(πxt) and t → −α−

2
t (see Figure 4). Below is the discussion between the two

possible treatments of the first pole it1 according to the general strategy presented in Section

6.

1. If the first approach which consists in canceling the first pole (it1) is possible, the first

active artificial pole becomes it2 with t2 >
3
2x

.

2. The second approach consists in pushing as far as possible the first pole it1 from z = 0.

In practice α− > 0 is taken very small so that t1 ≃ 1
x

. Asymptotically this coincides

with the choice of Neumann interface boundary conditions in the vicinity of the corner

and the matching (7)(8) has to be modified.

When it is possible the first approach with t2 >
3
2x

is always better than the second one with

t1 <
1
x

.

c) Optimization of α− .

In the subdomain Ω1 and for a general right-hand side in (39), the first artificial term in

the asymptotic expansion of en+1
1 appears with the factor rt1 , with t1 defined in Proposition

7.3. The first (and most efficient) approach assumes that at step n the error as the natural

asymptotic type associated with the global problem:

en
2 (r, θ) = a0 + a1r

1
x0 cos(

θ − θ0
x0

) + o(r
1

x0 ) .

With an additional truncation {r ≤ R}, we set like in the domain decomposition algorithm

g−(r) = 1{r≤R}

(
∂θ +

α−
2

(r∂r)
2
)
en
2 (r, θ−) .
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After forgetting the o(r
1

x0 ) remainder and taking the Mellin transform, this provides

ĝ−(z) = a1
R

1
x0

+iz

1
x0

+ iz

[
−

1

x0
sin(

θ− − θ0
x0

) +
α−
2x2

0

cos(
θ− − θ0
x0

)
]
. (46)

Here the cancellation of the first pole it1 is reduced to the simple condition

ĝ−(it1) = 0 . (47)

Proposition 7.4. The equation (47) is satisfied if and only if the parameter α− ∈ R
∗
+ satisfy

α− = −2x0 tan(
πx

x0
),

x0

2
< x ≤ x0 . (48)

Proof. The equation (47) does not depend on the truncation parameter R and reads simply

−
1

x0
sin(

θ− − θ0
x0

) +
α−
2x2

0

cos(
θ− − θ0
x0

) = 0 .

This yields the result.

We conclude this paragraph with some remarks about the implementation in the domain

decomposition :

1. The solution (48) to the equation (47) can be non negative only when x0

2
< x ≤ x0 .

When the full domain Ω is split into two complementary sectorial domains Ω1 and Ω2,

the condition has to be tested for x = θ+−θ−
π

and x0 − x = θ−−θ0

π
. The answer can be

affirmative for only one of them by excluding the symmetric decomposition.

2. By assuming in Ω1, x < x0

2
, the first approach in Ω1 cannot be applied. With the

second one, i.e. by pushing as far as possible the first pole it1 from z = 0, we find

α− = 0 and t1 = 1
x(Ω1)

.

In practice it is enough to take α− small. Graphically, since the graph of tan(πxt) are

located below its tangent at the point ( 1
x
, 0) for t ∈ ( 1

2x
, 1

x
), it is seen that the first pole

t1 (in fact it1) appears for t1 > T1 with

πx(T1 −
1

x
) = −

α−
2
T1

or t1 > T1 >
2π

πx0 + α−
.

Hence taking α− < 2π − πx0 = 2π − (θ+ − θ0), implies t1 > T1 > 1, which is good

enough.
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3. The assumption x
x0
< 1/2 implies 1 ≥ x0−x

x0
> 1/2. Thus the first approach can be

used in the second subdomain Ω2 .

4. For the domain decomposition into two non symmetric domains, this combination of

the two approaches permits to expect after enough iterations a matching of the domain

decomposition approximation and the full solution up to O(rmin{t2(Ω2),t1(Ω1)}) .

7.2 Improved interface conditions for interior artificial corner.

The decomposition of a regular domain into non overlapping subdomains, can produce in-

terior artificial corners on the interfaces. This makes appear artificial singularities present

in the solution of the auxiliary limits problems. Meanwhile the interior regularity of elliptic

problems says here that u ∈ Hm+2(Ω) when f ∈ Hm(Ω) .

We also noticed in Section 3 that in this case the choice of the coefficients has to be done

with the condition β± = 0 .

Here the full domain Ω = R
2 = R

∗
+ × S1 ∪ {O} will be decomposed into two nonover-

lapping sectorial subdomains Ω = Ω1 ∪ Ω2 or three (or more) subdomains Ω1,Ω2 and Ω3,

Ω = Ω1 ∪ Ω2 ∪ Ω3.

We take again Ω1 = R
∗
+ × (θ−, θ+) with θ+ − θ− ∈]0, 2π[. With two domains, we have

Ω2 = R∗
+ × (θ0, θ−) with θ0 = θ+ − 2π .

a) Asymptotic type in Ω.

Consider the full domain problem

(η − ∆)u = f in Ω = R
2 . (49)

Assume again that the consistency is well satisfied around r = 0. Namely, by setting

e = v − u,

(η − ∆)e = ρ in Ω = R
2 ,

with ρ(r, θ) = O(r∞). Kondratiev theory (see Proposition 5.2) which coincides here with

the interior regularity analysis for elliptic equations says that the asymptotic type of the

solution is given by some Taylor expansion:

e(r, θ) = b0 + r
[
b1 cos(θ) + b2 sin(θ)

]
+ o(r), bi, i = 0 . . . 2 ∈ R . (50)
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According Definition 5.4 which contains the Taylor expansion of a function of class C∞ in

an interior point in open set. It is enough to replace the interval (θ−, θ+) by the circle S1.

The asymptotic type in Ω is T =
(
(0, 1, 1); (i, 2, (cos(θ), sin(θ)))

)
.

b) Subproblem in Ω1.

Again, we first focus on one subdomain Ω1, the treatment of the others ones Ω2 (Ω3,. . . )being

similar. In the two subdomains case, the error en+1
1 = un+1

1 − u solves a boundary value

problem with the selected interface conditions:






(
η − 1

r2 ((r∂r)
2 + ∂2

θ )
)
en+1
1 (r, θ) = 0

(
1
r
∂θ + 1

2
∂r(α̃−(r)∂r)

)
en+1
1 (r, θ−) = g−(r)

(
1
r
∂θ −

1
2
∂r(α̃+(r)∂r)

)
en+1
1 (r, θ+) = g+(r)

(51)

where
g−(r) =

(
1
r
∂θ + 1

2
∂r(α̃−(r)∂r)

)
en
2 (r, θ−) ,

g+(r) =
(

1
r
∂θ −

1
2
∂r(α̃+(r)∂r)

)
en
2 (r, θ+) .

We work here with

α+ = α− = α1 , (β± = 0) ,

and we will show later that this hypothesis is not restrictive for the optimization of (α−, α+).

Following Kondratiev (see Section 5), we are led to consider the z-dependent problem derived

from the principal part

(∂2
θ − z2)ê1(z, θ) = 0, (∂θ −

α1

2
z2)ê1(z, θ−) = ĝ−(z), (∂θ +

α1

2
z2)ê1(z, θ+) = ĝ+(z) . (52)

whose solution is

a(z)ez(θ−θ−) + b(z)e−z(θ−θ+)

(
a(z)
b(z)

)
=

1

z
R(z)

(
ĝ+(z)
ĝ−(z)

)

with R(z) =

(
(1 + α1

2
z)ez(θ+−θ−) −1 + α1

2
z

1 − α1

2
z −(1 + α1

2
z)ez(θ+−θ−)

)−1

.

32



Proposition 7.5. The poles with a positive imaginary part of the factor R(z) are the purely

imaginary complex numbers z = it, with t > 0 and

tan

(
πxt

2

)
=

2

α1t
(53)

or tan

(
πxt

2

)
= −

α1

2
t (54)

with x = θ+−θ−
π

, whose positive solutions are denoted by tk, k ∈ N∗, in the increasing order.

Proof. The poles are solutions of

det

(
(1 + α1

2
z)ez(θ+−θ−) −1 + α1

2
z

1 − α1

2
z −(1 + α1

2
z)ez(θ+−θ−)

)
= 0 .

An obvious computation gives

e2z(θ+−θ+) =
(1 − α1

2
z)2

(1 + α1

2
z)2

. (55)

As z ∈ C, we note z = r + it with r, t ∈ R. Taking the module of (55) we obtain

e2r(θ+−θ−) = ϕα1(r) (56)

where

ϕα1 =
(1 − α1

2
r)2 + (α1

2
)2t2

(1 + α1

2
r)2 + (α1

2
)2t2

.

According to the proof of Proposition 7.3, z = it with t ∈ R. Hence t satisfy

e2it(θ+−θ+) =
(1 − α1

2
it

1 + α1

2
it

)2

. (57)

Then by setting

λ(z) =
1 − α1

2
z

1 + α1

2
z
e−z(θ+−θ−), (58)

z = it is a pole if and only if λ(it) = ±1. Thus we look further at the two equations

corresponding to λ(it) = +1 or λ(it) = −1, t > 0 . The same method as for Proposition 7.3

gives:

1. λ(it) = 1. Then the equation (57) becomes tan
(

t(θ+−θ−)
2

)
= −α1t

2
.

2. λ(it) = −1. Then the equation (57) becomes tan
(

t(θ+−θ−)
2

)
= 2

α1t
.
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The question which arises: Which equations from (53),(54) satisfy the first pole ?.

Again the best way to understand which equation provides the first solution t1 > 0 is the

graphical representation of t→ tan(πxt
2

), t→ 2
α1t
, and t→ −α1

2
t, with x = θ+−θ−

π
.

tan(pi.*x.t/2)
2/alpha*t
−alpha*t/2

t1 t2 t3 

1/x 3/x 2/x 

Figure 5: Case of α1 > 0

According to Figure 5, the first pole it1 is associated with the equation

tan

(
πxt

2

)
=

2

α1t
, (λ(it1 = −1)) .

c) Optimization of α+ = α− = α1.

In the subdomain Ω1 and for a general right-hand side in (51), the first artificial term in

the asymptotic expansion of en+1
1 appears with the factor rt1 , with t1 defined in Proposition

7.5 . The first (and most efficient) approach assumes that at step n the error as the natural

asymptotic type associated with the global problem:

en
2 (r, θ) = b0 + r

[
b1 cos(θ) + b2 sin(θ)

]
+ o(r) .

With an additional truncation in {r ≤ R}, we set like in the domain decomposition algorithm

g+(r) = 1{r≤R}

(
∂θ −

α1

2
(r∂r)

2
)
en
2 (r, θ+)

g−(r) = 1{r≤R}

(
∂θ + α1

2
(r∂r)

2
)
en
2 (r, θ−)

where R ∈ R∗
+ . The general strategy of matching the asymptotic types is translated here

into: if g+ and g− are associated with a regular solution outside Ω1 then the solution to (51)

in Ω1 must have a good regularity.
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After working with the first order Taylor expansion, forgetting the o(r) remainder and taking

the Mellin transform, this provides

ĝ+(z) = R1+iz

1+iz

[
b1(− sin θ+ − α1

2
cos θ+) + b2(cos θ+ − α1

2
sin θ+)

]
;

ĝ−(z) = R1+iz

1+iz

[
b1(− sin θ− + α1

2
cos θ−) + b2(cos θ− + α1

2
sin θ−)

]
.

We note that the boundary conditions do not contains a constant term, therefore g± do not

depend any more a value into zero of en
2 .

Our goal is to see whether there exists α1 such as

R(z)

(
ĝ+(z)
ĝ−(z)

)
does not have any more pole on it1, (t1 > 0).

Here the cancellation of the first artificial pole it1 is reduced to the simple condition

ĝ+(it1) = λ(it1)ĝ−(it1), λ(it1) = −1 . (59)

Proposition 7.6. The equation (59) gives

α1 =
2

tan(πx
2

)
, for x ∈]0, 1[ (60)

with x = θ+−θ−
π

.

Proof. The equation (59) does not depend on the truncation parameter R and reads simply






α1

2
(cos θ− − cos θ+) = sin θ+ + sin θ−

α1

2
(sin θ+ − sin θ−) = cos θ+ + cos θ−

(61)

The two equations of (61) are equivalent and this yields the result.

While working with only one parameter in the interface conditions, the system (61) has

no positive solution, α1 > 0, when the sector is not convex, θ+ − θ− > π. In the next

paragraph, we will show that even with two parameters we cannot cancel the first pole in a

non-convex sector.

d) Study with two parameters.
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One works in this part with α± in the interface conditions. According to the study

already made one has

(∂2
θ − z2)ê1(z, θ) = 0, (∂θ −

α−
2
z2)ê1(z, θ−) = ĝ−(z), (∂θ +

α+

2
z2)ê1(z, θ+) = ĝ+(z) (62)

whose solution is

a(z)ez(θ−θ−) + b(z)e−z(θ−θ+)

(
a(z)
b(z)

)
=

1

z
R(z)

(
ĝ+(z)
ĝ−(z)

)

with R(z) =

(
(1 + α+

2
z)ez(θ+−θ−) −1 + α+

2
z

1 − α−

2
z −(1 + α−

2
z)ez(θ+−θ−)

)−1

.

Proposition 7.7. The poles with a positive imaginary part of the factor R(z) are the purely

imaginary complex numbers z = it, with






tan(πxt) =
α++α−

2
t

α+α−

4
t2−1

, t > 0

or
πxt ≡ π

2
(π) if α+α−

4
t2 − 1 = 0

(63)

with x = θ+−θ−
π

, whose positive solutions are denoted by tk, k ∈ N
∗, in the increasing

order.

Proof. The same argument as the proposition 7.5 give that the poles are solution of

e2z(θ+−θ−) =
(1 − α+

2
z)

(1 + α+

2
z)

(1 − α−

2
z)

(1 + α−

2
z)
. (64)

If we replace z with r + it this lead to

e4r(θ+−θ−) = ϕα+(r)ϕα−
(r) . (65)

We recall that

ϕα±
(r) =

(1 − α±

2
r)2 + (α±

2
)2t2

(1 + α±

2
r)2 + (α±

2
)2t2

.

It is noticed that for r > 0, we have ϕα±
(r) < 1 but e4r(θ+−θ−) > 1, thus we cannot have

r > 0, the same argument gives that r cannot be negative.
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tan(pi.*x.t)
(alpha

+
+alpha

−
/2)*t/ [alpha

+
*alpha

−
*0.25*t2−1]

1/2x 1/x 3/2x 

t1 t2 

Figure 6: Case of 2√
α−α+

< 1
2x

.

tan(pi.*x.t)
(alpha

+
+alpha

−
/2)*t/ [alpha

+
*alpha

−
*0.25*t2−1]

1/2x 1/x 3/2x 

t1 
t2 t3 

Figure 7: Case of 2√
α−α+

> 1
2x

.

Therefore the equality (65) implies r = 0 .

The poles with a positive imaginary part have the form z = it, with t > 0 and

e2it(θ+−θ−) =
(1 − α+

2
it)(1 − α−

2
it)

(1 + α+

2
it)(1 + α−

2
it)

. (66)

Writing the second member of the equality (66) in the exponential form then by equality of

arguments we deduce that t satisfy (63).

The best way to study the two first positive solutions of (63) is the graphical representa-

tion of t→ tan(πxt) and t→
α++α−

2
t

α+α−

4
t2−1

. There are 2 different cases according to 2√
α−α+

< 1
2x

or 2√
α−α+

> 1
2x

which compares the position of the first vertical asymptote (see Figures 6

and 7).

Below is the discussion between the two possible treatments of the first pole it1 according

to the general strategy presented in Section 6.

1. If 2√
α+α−

< 1
2x

, the poles check

k = 1, t1 ∈ ] 2√
α+α−

, 1
2x

[

k ≥ 2, tk ∈ ]k−1
x
,

k− 1
2

x
[

2. If 2√
α+α−

> 1
2x

the poles check

k = 1, t1 ∈ ] 1
2x
,min( 2√

α+α−
, 1

x
)[

k ≥ 2, tk ≥ 1
x
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3. In the borderline cases 2√
α+α−

= 1
2x

the first pole is given by t1 = 1
2x

.

4. The second approach consists in pushing as far as possible the first pole it1 from

z = 0. In practice it is done by choosing α+ > 0 and α− > 0 very small so that

t1 ≃
1
x
. Asymptotically this coincides with the choice of Neumann interface boundary

conditions in the vicinity of the corner and the matching (7)(8) has to be modified.

When it is possible the first approach with t2 >
1
x

is always better than the second one

with t1 <
1
x
.

The same computations as in the former case α+ = α− = α1 give

ĝ+(z) = R1+iz

1+iz

[
b1(− sin θ+ − α+

2
cos θ+) + b2(cos θ+ − α+

2
sin θ+)

]
,

ĝ−(z) = R1+iz

1+iz

[
b1(− sin θ− + α−

2
cos θ−) + b2(cos θ− + α−

2
sin θ−)

]
.

The same procedure as Proposition 7.6 gives: the cancellation of the first artificial pole it1

is reduced to the simple condition

ĝ+(it1) = λ(it1)ĝ−(it1) (67)

with

λ(it1) =
1 − iα+

2
t1

1 + iα−

2
t1
e−it1(θ+−θ−) ∈ R .

The Figures 6 and 7 show that in all the cases t1 <
π

θ+−θ−
, therefore for a non-convex sector

we have t1 < 1.

Proposition 7.8. Assume that θ+ − θ− > π. If ĝ+(it1) = λ(it1)ĝ−(it1) then α+ = α−.

Proof. The equation (67) does not depend on the truncation parameter R and reads simply





λ(it1)
(

sin θ− − α−

2
cos θ−

)
=

(
α+

2
cos θ+ + sin θ+

)

λ(it1)
(

cos θ− + α−

2
sin θ−

)
= −

(
α+

2
sin θ+ − cos θ+

) (68)

this lead to consider






|λ(it1)|
2
(

sin θ− − α−

2
cos θ−

)2

=
(

α+

2
cos θ+ + sin θ+

)2

|λ(it1)|
2
(

cos θ− + α−

2
sin θ−

)2

=
(

α+

2
sin θ+ − cos θ+

)2
(69)
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with

|λ(it1)|
2 =

1 + (α+

2
)2t21

1 + (α−

2
)2t21

.

This lead to

|λ(it1)|
2
[
(sin θ−−

α−
2

cos θ−)2+(cos θ−+
α−
2

sin θ−)2
]

= (
α+

2
cos θ++sin θ+)2+(

α+

2
sin θ+−cos θ+)2

(70)

with

|λ(it1)|
2 =

1 + (α+

2
)2t21

1 + (α−

2
)2t21

.

The equation (70) gives

[
(
α+

2
)2 − (

α−
2

)2
]
(t21 − 1) = 0. (71)

This yields the result.

We end this general presentation by two remarks.

1. For a decomposition into two subdomains, with Ω1 convex and Ω2 non-convex. In Ω1

we can choose α1 > 0 and its value is given by (60). In the second one we use the

second approach which consists in pushing as far as possible the first pole it1(Ω2) from

z = 0. A good choice is α1 very small and t1(Ω2) ≃ 1
x(Ω2)

. This combination of the

two approaches permits to expect after enough iterations a matching of the domain

decomposition approximation and the full solution up to O(rmin{t2(Ω1),t1(Ω2)}) .

2. Another way, is to make a decomposition in three convex subdomains. In such cases,

the first approach permits to expect after enough iterations a matching of the domain

decomposition approximation and one hopes that the full solution up toO(rmin{t2(Ω1),t2(Ω2),t2(Ω3)}) .

The notation t2(Ωj) refers to the second positive solution to (60) adapted to the domain

Ωj , j = 1, . . . , 3.
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l’équation d’advection-diffusion. C. R. Acad. Sci. Paris,t. 313, serie I, 1991, pp. 623-

626.

[4] C.Chniti. Version unifée de traitement des singularités en décomposition de domaine.
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