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SEMI-ALGEBRAIC NEIGHBORHOODS OF CLOSED

SEMI-ALGEBRAIC SETS

NICOLAS DUTERTRE

Abstract. Given a closed (not necessarily compact) semi-algebraic set
X in Rn, we construct a nonnegative semi-algebraic C2 function f such
that X = f−1(0) and such that for δ > 0 sufficiently small, the inclusion
X ⊂ f−1([0, δ]) is a retraction. As a corollary, we obtain several formulas
for χ(X).

1. Introduction

Let X be a compact algebraic set in Rn. The set X is the set of zeros of
a nonnegative polynomial function f . This function f may not be proper
as it is explained by the following example due to H. King : let f(x, y) =
(x2 + y2)((y(x2 +1)− 1)2 + y2), then f−1(0) = {0} but f(x, (1+x2)−1) → 0
as ‖x‖ → +∞.

In [Dur], Durfee proved that any compact algebraic set X can be written
as the set of zeros of a proper nonnegative polynomial function g. Following’s
Thom terminology, he called such a function a rug function for X. Then he
defined the notion of algebraic neighborhoods : a subset T with X ⊂ T ⊂ Rn

is an algebraic neighborhood of X in Rn if T = g−1([0, δ]), where g is a
rug function for X and δ is a positive real smaller than all nonzero critical
values of g. Using the gradient vector field of g, he showed that the inclusion
X ⊂ T is a homotopy equivalence. Thanks to Lojasiewicz’s work [Lo1,Lo2]
on the trajectories of a gradient vector field, it is not difficult to see that this
homotopy equivalence is actually a retraction. Durfee also proved that two
algebraic neighborhoods of a compact algebraic set are isotopic. Here also,
this uniqueness result is obtained integrating appropriate gradient vector
fields.

If X is a non-compact algebraic set in Rn and f is a nonnegative polyno-
mial such that X = f−1(0), then X is not in general a deformation retract
of f−1([0, δ]), where δ is a small regular value of f . Let f(x, y) = [y(xy−1)]2

(f is the square of the Broughton polynomial [Br] and let X = f−1(0). For δ
a sufficiently small positive regular value of f , f−1([0, δ]) has one connected
components whereas X has three.

Our aim is to extend Durfee’s results to the case of closed (not necessarily
compact) semi-algebraic sets. More precisely, we consider a closed semi-
algebraic set X in Rn and an open semi-algebraic neighborhood U of X
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in Rn. We say that f : U → R is an approaching function for X in U
(Definition 2.2) if :

(1) f is semi-algebraic, C2, nonnegative,
(2) X = f−1(0),
(3) there exists δ > 0 such that f−1([0, δ]) is closed in U .

However, the notion of approaching function is not enough to get a defor-
mation retract as it is suggested by the Broughton example above. Let
ρ : Rn → R≥0 be a proper C2 semi-algebraic function, let f : U → R be a
C2 nonnegative semi-algebraic function such that X = f−1(0) and let Γf,g

be the set of points x in U \ X where ∇f(x) and ∇ρ(x) are colinear (here
∇f denotes the gradient vector field of f). We say that f is ρ-quasiregular
(Definition 2.5) if there does not exist any sequence (xk)k∈N of points in
Γf,ρ such that ‖xk‖ → +∞ and f(xk) → 0. A ρ-quasiregular approaching
semi-algebraic neighborhood of X in U (Definition 3.1) is defined as a set
T = f−1([0, δ]) such that :

(1) f is a ρ-quasiregular approaching function for X in U ,
(2) δ is a positive number smaller than all nonzero critical values of f ,
(3) f−1([0, δ]) is closed in U ,
(4) Γf,ρ does not intersect f−1([0, δ]) outside a compact subset K of Rn.

We prove that ρ-quasiregular approaching semi-algebraic neighborhoods al-
ways exist (Corollary 2.8) and that if T = f−1([0, δ]) is a ρ-quasiregular
approaching semi-algebraic neighborhood of X in U then X is a strong de-
formation retract of T (Theorem 3.2). In order to construct this retraction,
we study a vector field w that is equal to the gradient of f inside a compact
subset of Rn and to the orthogonal projection of the gradient of f onto the
levels of ρ outside a compact set. Using the Lojasiewicz inequality with pa-
rameters due to Fekak [Fe] and the usual Lojasiewicz gradient we establish
an inequality of “Lojasiewicz’s type” for the norm of w. The retraction is
then achieved “pushing” T = f−1([0, δ]) along the trajectories of w.

After we show that two ρ-quasiregular approaching semi-algebraic neigh-
borhoods of X are isotopic (Theorem 4.4). As above, the isotopy is obtained
integrating a vector field which is equal to a gradient vector field on a com-
pact set of Rn and to the projection of this gradient vector field onto the
levels of ρ at infinity.

As a corollary, this enables us to prove that when X is smooth of class C3,
every approaching semi-algebraic neighborhood of X is isotopic to a tubular
neighborhood of X (Theorem 5.7).

We end the paper with degree formulas for the Euler-Poincaré charac-
teristic of any closed semi-algebraic set obtained thanks to the machinery
developped before (Theorem 6.3, Corollary 6.4 and Corollary 6.5), and with
a Petrovskii-Oleinik inequality for the Euler-Poincaré characteristic of any
real algebraic set (Proposition 6.8).

The author is very grateful to Zbigniew Szafraniec, Vincent Grandjean,
Didier D’Acunto and Andreas Bernig for valuable discussions on this topic.
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2. ρ-quasiregular approaching functions

In this section, we define the notion of a ρ-quasiregular approaching func-
tion for a closed semi-algebraic set, which generalizes the notion of a rug
function introduced by Durfee [Dur].

Let us consider a closed semi-algebraic set X in Rn. Let U be an open
semi-algebraic neighborhood of X. We know that X is the zero set in U of a
continuous nonnegative semi-algebraic function f : U → R (for example one
can take for f the restriction to U of the distance function to X). For any
δ > 0, the set f−1([0, δ]) is closed in U for the induced topology. However,
even if δ is very small, it is not necessarly closed in U , as it is shown in the
following examples.

Example 1. The set X = {0} is a closed semi-algebraic set in R, the
set U =] − 1,+∞[ is an open semi-algebraic neighborhood of X in R. Let
f : U → R be defined by f(x) = x2(x + 1). It is clear that for any δ > 0,
the set f−1([0, δ]) is not closed in U = [−1,+∞[.

Example 2. The set X = {(x, y) ∈ R2 | y = 0} is a closed semi-algebraic
set in R2, the set U = {(x, y) ∈ R2 | x2y2 < 1} is an open semi-algebraic
neighborhood of X in R2. Let f : U → R be defined by f(x, y) = y2. For
any δ > 0, the set f−1([0, δ]) is not closed in U = {(x, y) ∈ R2 | x2y2 ≤ 1}.

We would like to avoid this situation. For this we need to put a condition
on the tuple (X,U, f).

Definition 2.1. Let X be a closed semi-algebraic set in Rn, let U be an open
neighborhood of X and let f : U → R be a nonnegative continuous semi-
algebraic function such that X = f−1(0). We say that (X,U, f) satisfies the
condition (A) if there does not exist any sequence (xk)k∈N of points in U
such that limk→+∞ f(xk) = 0 and such that limk→+∞ xk exists and belongs
to Bd(U) = U \ U .

It is clear that this condition is satisfied when U = Rn. Let us remark
that for any couple (X,U), X being a closed semi-algebraic set in Rn and
U an open semi-algebraic neighborhood of X, there exists a function f such
that (X,U, f) satisfies the condition (A). Let d1 : Rn → R be the distance
function to X and let d2 : Rn → R be the distance function to Bd(U). Let
d : Rn → R be defined by

d(x) =
d1(x)

d1(x) + d2(x)
.

The tuple (X,U, d|U ) satisfies the condition (A).
We will explain how to construct from a function f such that (X,U, f)

satisfies the condition (A), a nonnegative continuous semi-algebraic function
g such that X = g−1(0) and g−1([0, δ]) is closed in U for δ small enough.
Actually we will prove a stronger result.

Let us fix a proper C2 semi-algebraic function ρ : Rn → R≥0. We will
denote by Σr the set ρ−1(r), by Dr the set ρ−1([0, r]) and by Er the set
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ρ−1([r,+∞[). Note that for r sufficiently big, Σr is a non-empty compact
C2-submanifold of Rn. We will call such a ρ a control function.

Lemma 2.2. Let X be a closed semi-algebraic set in Rn, let U be an open
semi-algebraic neighborhood of X and let f : U → R be continuous nonneg-
ative semi-algebraic function such that X = f−1(0) and (X,U, f) satisfies
the condition (A). For every integer q ≥ 0, let fq : U → R be defined by
fq(x) = (1 + ρ(x))q.f(x). Let V ⊂ U be an open semi-algebraic neighbor-
hood of X. There exists an integer q0 such that for every integer q ≥ q0,
there exists δq > 0 such that f−1

q ([0, δq ]) is included in V and closed in V .
Furthermore, if X is compact then one can choose q0 such that for every
integer q ≥ q0, f−1

q ([0, δq]) is compact in V .

Proof. Let Z be the following closed semi-algebraic set : Z = U \ V .
Let d : Rn → R be a continuous nonnegative semi-algebraic function such
that X = d−1(0) and Z = d−1(1). Let U1 be the open semi-algebraic
neighborhood of X in Rn defined by U1 = d−1([0, 1

2 [) and let V1 be the
open semi-algebraic neighborhood of X in U defined by V1 = U1 ∩ U . It is
straightforward to see that V1 ⊂ V .

Let us study first the case when U is bounded. There exists δ > 0 such
that f−1([0, δ]) ⊂ V1. Otherwise, we would be able to construct a sequence
of points (xk)k∈N in U \ V1 such that limk→+∞ f(xk) = 0. By compactness
of U \V1, there would exist a subsequence of points (xϕ(k))k∈N in U \V1 such

that f(xϕ(k)) tends to 0 and xϕ(k) tends to a point y in U \ V1. If y belongs

to U then f(y) = 0, which is impossible. So y belongs to U \ U , which is
also impossible by the condition (A). Since V1 is included in V and V1 is
bounded, the set f−1([0, δ]) is compact in V .

If U is not bounded and X is not compact, then the following semi-
algebraic set F = U \ V1 is unbounded as well. There exists r0 such that
for every r ≥ r0, Σr ∩ F is not empty (the set {r ∈ R | Σr ∩ F 6= ∅} is an
unbounded semi-algebraic set of R). Let α : [r0,+∞[→ R be defined by

α(r) = inf{f(x) | x ∈ Σr ∩ F}.
The function α is a semi-algebraic function. Let us show that it is positive.
If α(r) = 0 then there exists a sequence of points (xk)k∈N in F ∩ Σr such
that f(xk) tends to 0. By compactness of Σr, we can extract a subsequence
(xϕ(k))k∈N such that f(xϕ(k)) tends to 0 and xϕ(k) tends to a point y in

Σr ∩ F , which is included in Σr ∩ U . If y belongs to U then f(y) = 0 and
so y belongs to X, which is impossible for d(y) ≥ 1

2 . Hence y is in Bd(U).

This is impossible by the condition (A). The function α−1 is semi-algebraic.
From Proposition 2.11 in [Co1] (see also Proposition 2.6.1 in [BCR]), there
exists r1 ≥ r0 and an integer q0 such that α(r)−1 < rq for every r ≥ r1

and every integer q ≥ q0. This implies that for every x in F ∩ Er1
and for

q ≥ q0, fq(x) = (1 + ρ(x))q · f(x) > 1. It is clear that (X,U, fq) satisfies
the condition (A). The same argument as in the case U bounded shows
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that there exists ǫq such that f−1
q ([0, ǫq ]) ∩ Dr1

is included in V1 ∩ Dr1
. We

take for δq the minimum of 1 and ǫq. Since V1 ⊂ V , it is easy to see that

f−1
q ([0, δq ]) is closed in V .
It remains to study the case U unbounded but X compact. There exists

r2 > 0 such that X ∩ Er2
is empty. Let β : [r2,+∞[→ R be defined by

β(r) = inf{f(x) | x ∈ U ∩ Σr}.
Thanks to condition (A), we can prove that it is a positive semi-algebraic
function. There exists r3 ≥ r2 and an integer q1 such that β(r)−1 < rq for
every r ≥ r3 and every integer q ≥ q1. Hence for x ∈ U ∩Er3

and for q ≥ q1,
fq(x) = (1 + ρ(x))q.f(x) > 1. The tuple (X,U, fq) satisfies the condition
(A). As in the previous cases, there exists ǫq > 0 such that f−1

q ([0, ǫq ])∩Dr3

is included in V1 ∩ Dr3
.We take for δq the minimum of 1 and ǫq. The set

f−1
q ([0, δq ]) is compact in V1 because it is compact in Rn. �

Definition 2.3. Let X be a closed semi-algebraic set in Rn and let U be
an open semi-algebraic neighborhood of X in Rn. A function f : U → R is
called an approaching function for X in U if :

(1) f is semi-algebraic, C2, nonnegative,
(2) X = f−1(0),
(3) there exists δ > 0 such that f−1([0, δ]) is closed in U . Furthermore

if X is compact then f−1([0, δ]) is compact in U .

Proposition 2.4. Let X be a closed semi-algebraic set in Rn and let U be
an open semi-algebraic neighborhood of X in Rn. There exist approaching
functions for X in U .

Proof. From [DM] Corollary C.12, it is possible to find a C2 semi-algebraic
function φ : Rn → [0, 1] such that X = φ−1(0) and Bd(U) = φ−1(1). Let f
be the restriction of φ to U . The tuple (X,U, f) satisfies the condition (A).
Applying Lemma 2.2 to f and U , we can construct approaching functions
for X in U . �

In his study of regularity at infinity of polynomial functions, Tibar intro-
duced the notion of ρ-regularity [Ti]. Let us recall this definition in the real
setting.

Definition 2.5. Let f : Rn → R be a polynomial function. We say that
the fibre f−1(t0) is ρ-regular at infinity if for any sequence (xk) ⊂ Rn such
that ‖xk‖ → +∞ and f(xk) → t0, there exists k0 such that if k ≥ k0, then
f−1(f(xk)) is transverse to ρ−1(ρ(xk)) at xk.

Tibar proved that if the fibre f−1(t0) is ρ-regular at infinity then f is
topologically trivial at infinity at t0. As a consequence, if an interval [a, b]
does not contain any critical value of f and is such that every fibre f−1(t),
t ∈ [a, b], is ρ-regular at infinity, then f is topologically trivial over [a, b].

We will need a slight modification of this definition. For every open semi-
algebraic set U and for every C2 semi-algebraic function g : U → R, let Γg,ρ
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be the semi-algebraic set defined by :

Γg,ρ = {x ∈ U | ∇g(x) and ∇ρ(x) are colinear and g(x) 6= 0}.
Definition 2.6. Let g : U → R be a C2 semi-algebraic function. We say
that g is ρ-quasiregular if there does not exist any sequence (xk)k∈N in Γf,ρ

such that ‖xk‖ tends to infinity and |g(xk)| tends to 0.

Note that our definition does not imply that g−1(0) has only isolated
singularities, unlike Tibar’s definition.

Proposition 2.7. Let X be a closed semi-algebraic set in Rn and let U be
an open semi-algebraic neighborhood of X. Let f : U → R be a C2 semi-
algebraic nonnegative function such that X = f−1(0). For every integer q,
let fq : U → R be defined by fq = (1 + ρ(x))q.f(x). There exists an integer
q0 such that for every integer q ≥ q0, the function fq is ρ-quasiregular.

Proof. Let r0 be the greatest critical value of ρ and let β :]r0,+∞[→ R

be defined by
β(r) = inf{f(x) | x ∈ Σr ∩ Γf,ρ}.

The function β is semi-algebraic. It is positive since for r > r0, the function
f|Σr∩U admits a finite number of critical values. As in Lemma 2.2, this
implies that there exists r1 > r0 and an integer q0 such that for x ∈ Γf,ρ∩Er1

and for q ≥ q0, (1 + ρ(x))q.f(x) > 1. Since Γf,ρ = Γfq,ρ, every function fq is
ρ-quasiregular for q ≥ q0. �

Corollary 2.8. Let X be a closed semi-algebraic set in Rn and let U be
an open semi-algebraic neighborhood of X. Let f : U → R be a C2 semi-
algebraic nonnegative function such that X = f−1(0). Assume that (X,U, f)
satisfies the condition (A). For every integer q ≥ 0, let fq : Rn → R be
defined by fq(x) = (1 + ρ(x))q.f(x). There exists an integer q0 such that for
every q ≥ q0, the function is a ρ-quasiregular approaching function for X in
U . �

If X is an algebraic set, it is the zero set of a nonnegative polynomial
f . Choosing for ρ a proper nonnegative polynomial and applying the above
process, we obtain ρ-quasiregular approaching functions for X that are non-
negative polynomials.

Let us compare our notion of ρ-quasiregular approaching function with the
notion of rug function due to Durfee [Dur]. If X is a compact algebraic set
of Rn, a rug function for X is a proper nonnegative polynomial f such that
X = f−1(0). It is clear that such a function is a ρ-quasiregualr approaching
function for X in Rn.

3. Retraction on a closed semi-algebraic set

In this section, we prove that any closed semi-algebraic set is a strong
deformation retract of certain closed semi-algebraic neighborhoods of it.
First let us specify the closed semi-algebraic neighborhoods that we will
consider.
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Definition 3.1. Let X ⊂ Rn be a closed semi-algebraic set, let ρ be a
control function and let U be an open semi-algebraic neighborhood of X . A
subset T with X ⊂ T ⊂ U is a ρ-quasiregular approaching semi-algebraic
neighborhood of X in U if T = f−1([0, δ]) where :

(1) f is a ρ-quasiregular approaching function for X in U ,
(2) δ is a positive number smaller than all nonzero critical values of f ,
(3) f−1([0, δ]) is closed in U and compact in U if X is compact,
(4) if Γf,ρ is the following polar set :

Γf,ρ = {x ∈ U \ X | ∇f(x) and ∇ρ(x) are colinear} ,

then Γf,ρ does not intersect f−1([0, δ]) outside a compact subset K
of Rn.

For short, we will say that such a T is an approaching semi-algebraic
neighborhood. By the results of the previous section, it is clear that ap-
proaching semi-algebraic neighborhoods always exist.

Theorem 3.2. Let X be a closed semi-algebraic set and let T be an ap-
proaching semi-algebraic neighborhood of X. Then X is a strong deforma-
tion retract of T .

Proof. If X is compact, this is already proved by Durfee [Du] and Lo-
jaziewicz [Lo1,Lo2]. So let us assume that X is not compact.

Let us fix f , U , δ, ρ and K which satisfy the conditions of the above
definition and such that T = f−1([0, δ]). Furthermore let us assume that
δ < 1. We will focus first on the behaviour of f at infinity.

Let r0 > 0 be such that K ∩ Er0
is empty and such that Σr is a C2

submanifold for r ≥ r0. Let A = T ∩ Er0
. The set A is a closed semi-

algebraic set of Rn and A ∩ Γf,ρ is empty. Let us consider the following
closed semi-algebraic set Y of Rn+1 :

Y =
{

(x, t) ∈ Rn+1 | x ∈ A and ρ(x) = t
}

.

We will denote by Yt the fibre {x ∈ A | (x, t) ∈ Y }. Observe that Yt = A∩Σt.
Let F : A → R be defined by :

F (x) =

∥

∥

∥

∥

∇f(x) − 〈∇f(x),
∇ρ(x)

‖∇ρ(x)‖〉 ·
∇ρ(x)

‖∇ρ(x)‖

∥

∥

∥

∥

.

The function F is just the norm of the orthogonal projection of ∇f(x) on the
manifold Σρ(x). Moreover it is a continuous semi-algebraic function on A.

Let f̃ and F̃ be the semi-algebraic functions defined on Y by f̃(x, t) = f(x)

and F̃ (x, t) = F (x). They are continuous in x and verify F̃−1(0) ⊂ f̃−1(0).
This inclusion is easy to check since F (x) = 0 if and only if ∇f(x) and
∇ρ(x) are colinear. On A, this can occur only if x belongs to X.

We can apply Lojasiewicz’s inequality with parameters due to Fekak (see

[Fe], p128). We need some notations : for every t, f̃t and F̃t are the functions

on Yt defined by f̃t(x) = f̃(x, t) and F̃t(x) = F̃ (x, t) ; for every S ⊂ R, YS

denotes the set Y ∩(Rn×S). Fekak’s theorem states that there exists a finite
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partition into semi-algebraic subsets of R = ∪Si, continuous semi-algebraic
functions hi : Y|Si

→ R and rationnal numbers pi/qi such that :

i) |f̃(x, t)|pi/qi ≤ hi(x, t)|F̃ (x, t)| on Y|Si
for t ∈ Si,

ii) pi/qi is the Lojasiewicz exponent of f̃t with respect to F̃t for t ∈ Si.

Since ∪Si is a finite semi-algebraic partition of R, there exist t0 ∈ R and i0
such that Si0 = [t0,+∞[. Then for every t ≥ t0, we have:

i) |f̃(x, t)|pi/qi ≤ hi(x, t)|F̃ (x, t)| for x ∈ Yt,

ii) pi0/qi0 is the Lojasiewicz exponent of f̃t with respect to F̃t.

We know that f̃t = f|Yt
and F̃t = ‖∇(f|Yt

)‖. By Lojasiewicz’s gradient
inequality applied to f|Yt

, we get pi0/qi0 < 1. Let α = pi0/qi0 and let
B = T ∩ Et0 . We have proved that there exist 0 ≤ α < 1 and a continuous
semi-algebraic function h : B × [t0,+∞[→ R such that for every x ∈ B :

|f(x)|α ≤ h(x, ρ(x)).F (x),

where F (x) is the norm of the vector field

v(x) = ∇f(x) − 〈∇f(x),
∇ρ(x)

‖∇ρ(x)‖〉 ·
∇ρ(x)

‖∇ρ(x)‖ .

Let C be the compact semi-algebraic set defined by C = T ∩ D2t0 . By the
Lojasiewicz gradient inequality, there exits d > 0 and 0 ≤ β < 1 such that
on C :

|f(x)|β ≤ d.‖∇f(x)‖.
Here we have applied the Kurdyka-Parusinski version of the Lojasiewicz
gradient inequality [KP].

We will glue the two vector fields v and ∇f . Let ϕ : Rn → R be a
C∞-function such that :

• ϕ(x) = 1 if ρ(x) ≤ 1, 3t0,
• ϕ(x) = 0 if ρ(x) ≥ 1, 7t0,
• 0 < ϕ(x) < 1 if 1, 3t0 < ρ(x) < 1, 7t0.

Let w be the following vector field on T :

w(x) = (1 − ϕ(x)) v(x) + ϕ(x)∇f(x).

We want to find an inequality of “Lojasiewicz’s type” for ‖w‖. First observe
that ‖w(x)‖ ≥ ‖v(x)‖, for

w(x) = v(x) + ϕ(x) · 〈∇f(x),
∇ρ(x)

‖∇ρ(x)‖〉 ·
∇ρ(x)

‖∇ρ(x)‖ .

Let M be defined by :

M = max{h(x, ρ(x)) | x ∈ T and 1, 2t0 ≤ ρ(x) ≤ 1, 8t0}.
We have |f(x)|α ≤ M.‖w(x)‖ for x ∈ T ∩ {x |1, 2t0 ≤ ρ(x) ≤ 1, 8t0}. For
x ∈ T ∩ D1,3t0 , |f(x)|β ≤ d.‖∇f(x)‖ and ∇f(x) = w(x). Calling γ the
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maximum of α and β and N the maximum of M and d and since δ < 1, we
get that for x ∈ T ∩ D1,8t0 :

|f(x)|γ ≤ N.‖w(x)‖. (1)

Now for x ∈ T ∩ E1,7t0 , w(x) = v(x) and then :

|f(x)|γ ≤ h(x, ρ(x))).‖w(x)‖. (2)

On one hand, we have :

〈∇f(x), w(x)〉 = (1 − ϕ(x))〈∇f(x), v(x)〉 + ϕ(x)〈∇f(x),∇f(x)〉,
hence

〈∇f(x), w(x)〉 = (1 − ϕ(x))〈v(x), v(x)〉 + ϕ(x)〈∇f(x),∇f(x)〉,
since 〈v(x),∇f(x)〉 = 〈v(x), v(x)〉. On the other hand,

〈w(x), w(x)〉 = (1 − ϕ(x)2)〈v(x), v(x)〉 + ϕ(x)2〈∇f(x),∇f(x)〉.
Using the fact that 0 ≤ ϕ(x) ≤ 1, it is easy to see that

〈∇f(x), w(x)〉 ≥ 〈w(x), w(x)〉 ⇔ 〈∇f(x),∇f(x)〉 ≥ 〈v(x), v(x)〉.
Since the inequality on the right hand side is verified, we have proved :

〈∇f(x), w(x)〉 ≥ 〈w(x), w(x)〉. (3)

We are going to integrate the vector field − w
‖w‖ . Let φt be the flow

associated with the differential equation :

ẋ = − w

‖w‖ .

For every x ∈ T , let b(x) = sup{t | f(φt(x)) ≥ 0} and ω(x) = limt→b(x) φt(x).
We write φx(t) the trajectory that passes through x. The following facts are
proved using inequalities (1), (2) and (3) and adapting to our situation the
techniques of Lojasiewicz (see [Lo1], [Lo2], [Ku], [KMP] or [NS] for details).

Fact 1 For all x ∈ T , {φx(t) | 0 ≤ t ≤ b(x)} ⊂ T .

Fact 2 For all x ∈ T ∩ E1,7t0 , for all t such that 0 ≤ t ≤ b(x), ‖φx(t)‖ =
‖x‖.

Fact 3 For all x ∈ T ∩ D1,8t0 , for all t such that 0 ≤ t ≤ b(x), ‖φx(t)‖ ≤
1, 8t0.

Fact 4 For all x ∈ T , b(x) < +∞.

Fact 5 For all x ∈ T , f(ω(x)) = 0.

Fact 6 The mapping ω : T → X, x 7→ ω(x) is continuous.

Fact 7 The mapping b : T → X, x 7→ b(x) is continuous.
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Now we can end the proof of Theorem 3.2. The retraction is given by the
following mapping :

G : [0, 1] × T → T
(t, x) 7→ G(t, x) = φ(tb(x), x).

If δ ≥ 1, we can push f−1([0, δ]) onto f−1([0, δ′]), δ′ < 1, along the trajec-
tories of V . �

We end this section with a remark. Using the same method, one can
prove the following result. Let X ⊂ Rn be a closed semi-algebraic set and let
f : Rn → R be a nonnegative semi-algebraic function such that X = f−1(0).
Let Γf,ρ be the set defined by

Γf,ρ = {x ∈ Rn | ∇f(x) and ∇ρ(x) are not colinear and f(x) 6= 0}.
Let r be a regular value of ρ. Assume that the following assumption is
satisfied : there is no sequence of points (xk) in Γf,ρ∩Dr such that ρ(xk) → r
and f(xk) → 0. Then for δ > 0 sufficiently small, the inclusion X ∩ Dr ⊂
f−1([0, δ]) ∩ Dr is a deformation retract.

For example, this result can be applied if f has only isolated critical points
on its zero level and X intersects Σr transversally.

4. Uniqueness of ρ-quasiregular approaching neighborhood

In this section, we prove that two ρ-quasiregular approaching semi-algebraic
neighborhoods of a closed non-compact semi-algebraic set are isotopic. Let
us recall what Durfee proved in the case of a compact semi-algebraic set.

Theorem 4.1. Let X be a compact semi-algebraic set, let f1 and f2 be
two rug functions for X. Let δ1 (resp. δ2) be a positive regular value of
f1 (resp. f2) smaller than all nonzero critical values of f1 (resp. f2). Let
T1 = f−1

1 ([0, δ1]) and T2 = f−1
2 ([0, δ2]). There is a continuous family of

homeomorphisms ht : Rn → Rn, 0 ≤ t ≤ 1, such that :

(1) h0 is the identity,
(2) for all t, ht|X is the identity,
(3) h1(T1) = T2 and h1 is a smooth diffeomorphism of T1\X onto T2\X.

Proof. See [Dur], Proposition 1.7. Actually Durfee considers the case of
a compact algebraic set but his proof works in our case. �

We will prove the following theorem.

Theorem 4.2. Let X be a closed non-compact semi-algebraic set and let
ρ be a control function. If T1 and T2 are two ρ-quasiregular approaching
semi-algebraic neighborhoods of X in U then there is a continuous family of
homeomorphisms ht : Rn → Rn, 0 ≤ t ≤ 1, such that :

(1) h0 is the identity,
(2) for all t, ht|X is the identity,
(3) h1(T1) = T2 and h1 is a smooth diffeomorphism of T1\X onto T2\X.
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Proof. Let us write Ti = f−1
i ([0, δi]) where fi is a ρ-quasiregular approach-

ing function for X in Ui, i = 1, 2. We will prove our result adapting the
ideas of Durfee [Dur]. There are three steps.

Let us first consider the case f1 = f2 = f and U1 = U2 = U . We can
assume without loss of generality that δ1 < δ2. Thanks to condition (4) in
Definition 3.1, we see that f−1(δ) is ρ-regular at infinity for every δ in [δ1, δ2].
Since [δ1, δ2] does not contain any critical value of f , Tibar’s work implies
that T1 and T2 are diffeomorphic. Let us be more precise and explain how
the family ht is obtained. As we did in the proof of Theorem 3.2 , we can
construct a vector field w on f−1([δ1, δ2]) which is equal to the orthogonal
projection of ∇f on the levels of ρ outside a set DR, and equal to ∇f inside
a set DR′ , R′ < R. Then we extend w to a complete vector field w̃ defined
on Rn using a smooth function equal to 1 on the closed set f−1([δ1, δ2]) and
to 0 on the closed set X ∪ (Rn \ U). Integrating this vector field gives the
required family ht.

The second case is when f2 = (1 + ρ)qf1 and U1 = U2 = U . Let δ be the
minimum of δ1 and δ2. Let v1 (resp. v2) be the orthogonal projection of
∇f1 on the levels of ρ. By condition (4) in Definition 3.1, there exists R > 0
such that v1 and v2 do not vanish in f−1

1 (]0, δ])∩ER. It is clear that on this
set, they do not point in opposite direction. There exists a neighborhood U ′

of X ∩D2R in D2R such that ∇f1 and ∇f2 are nonzero and do not point in
opposite direction on U ′ \X. This fact is proved in the same way as Lemma
1.8 in [Dur]. Hence there exists δ′ such that ∇f1 and ∇f2 are nonzero
and do not point in opposite direction on f−1

1 (]0, δ′]) ∩ D2R. Let δ” be the
minimum of δ and δ′. By the first case, it is enough to prove that f2([0, δ”])
and f1([0, δ”]) are isotopic. Let S be the closed set f−1

1 ([0, δ”])\ f−1
2 ([0, δ”[)

and let g : S → [0, 1] be defined by :

g(x) =
f2(x) − δ”

f2(x) − f1(x)
.

Note that g−1(0) = f−1
2 (δ”) and g−1(1) = f−1

1 (δ”). The gradient of g is

∇g(x) =
(f2(x) − δ”)∇f1(x) + (δ” − f1(x))∇f2(x)

(f2(x) − f1(x))2
.

Let v be its orthogonal projection on the levels of ρ. It is nonzero in S∩ER.
Moreover, ∇g is nonzero in S ∩ D2R. Gluing these two vector fields, we
obtain a C1 vector field w on S and we proceed as in the first case.

The third case is the general case. Let U = U1 ∩ U2. By Lemma 2.2 and
the second case above, we can assume that T1 ⊂ U , T2 ⊂ U and T1 and T2

are closed in U . We need some lemmas.

Lemma 4.3. For every integer q ≥ 0, let f1q : Rn → R be defined by
f1q(x) = (1 + ρ(x))q.f1(x). Let v1q (resp. v2)be the orthogonal projection of
∇f1q (resp ∇f2) on the levels of ρ. There exist q0 ∈ N and R > 0 such that
for all q ≥ q0 the vector fields v1q and v2 are nonzero and do not point in
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opposite direction in f−1
1q (]0, δq ]) ∩ ER, where δq is a small regular value of

f1q such that f−1
1q ([0, δq ]) ⊂ U and f−1

1q ([0, δq ]) is closed in U .

Proof. We known that there exists R′ > 0 and U ′ ⊂ U such that v1 and
v2 do not vanish in U ′ ∩ ER′ since f1 and f2 are ρ-quasiregular. Let Γf1,ρ,
Γf2,ρ and Γf1,f2,ρ be the following semi-algebraic sets :

Γf1,ρ = {x ∈ U \ X | v1(x) = 0} , Γf2,ρ = {x ∈ U \ X | v2(x) = 0} ,

Γf1,f2,ρ = {x ∈ U \ X | v1(x) and v2(x) point in opposite direction} ,

and let Γ be the union of these three sets. Let r0 be the greatest critical value
of ρ and let α :]r0,+∞[→ R be defined by α(r) = inf {f1(x) | x ∈ Σr ∩ Γ}.
Then α is a positive semi-algebraic function. To see that it is positive, it is
enough to apply Lemma 1.8 of [Dur] to the semi-algebraic subset X ∩Σr of
the smooth semi-algebraic set Σr. As in Lemma 2.2, this implies that there
exists R > r0 and an integer q0 such that for x ∈ Γ ∩ ER and for q ≥ q0,
(1+ρ(x))q .f1(x) > 1. Since v1q = (1+ρ)q .v1, we see that Γf1,f2,ρ = Γf1q,f2,ρ.
We take δq to be the minimum of δ1 and 1. This ends the proof of Lemma
4.3. �

Lemma 4.4. For every integer q ≥ 0, let f1q : Rn → R (resp. f2q : Rn → R)
be defined by f1q(x) = (1 + ρ(x))q.f1(x) (resp. f2q(x) = (1 + ρ(x))q.f2(x)).
Let v1q (resp. v2q) be the orthogonal projection of ∇f1q (resp ∇f2q) on the
levels of ρ. There exist q0 ∈ N and R > 0 such that for all q ≥ q0 and for all
l ∈ N the vector fields v1q and v2l are nonzero and do not point in opposite

direction in f−1
1q (]0, δq ]) ∩ ER, where δq is a small regular value of f1q such

that f−1
1q ([0, δq ]) ⊂ U and f−1

1q ([0, δq ]) is closed in U .

Proof. It is clear because v2l = (1 + ρ)l.v2 and Γf1k,f2l,ρ = Γf1k,f2,ρ. This
ends the proof of Lemma 4.4. �

Let us fix q and δq which satisfy the conclusion of Lemma 4.3. Apply-

ing Lemma 2.2 to the open semi-algebraic neighborhood f−1
1q ([0, δq [) of X

and the approaching function f2, we can find l such that f−1
2l ([0, ǫl]) ⊂

f1
−1
q ([0, δq [), where ǫl is a small regular value of f2l. Thanks to Lemma 4.4,

we can proceed as we did for the second case, namely we consider the closed
set S′ = f−1

1q ([0, δq ]) \ f−1
2l ([0, ǫl[) and the function h : S′ → [0, 1] defined by:

h(x) =
f2l(x) − ǫl

(f2l(x) − ǫl) − (δq − f1q(x))
.

This ends the proof of Theorem 4.2. �

We end this section with this question : if X is a closed non-compact
semi-algebraic set in Rn, if ρ1 and ρ2 are two distinct control functions,
are a ρ1-quasiregular approaching semi-algebraic neighborhood and a ρ2-
quasiregular approaching semi-algebraic neighborhood of X isotopic ?
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5. The smooth case

In this section, we assume that X is a closed non-compact semi-algebraic
set in Rn and also a C3 submanifold of dimension k < n. We also assume
that ρ is a control function of class C3. We show that any ρ-quasiregular
approaching semi-algebraic neighborhood of X is isotopic to a tubular neigh-
borhood of X. For this, we construct a kind of distance function to X which
is C2 in a semi-algebraic neighborhood of X and ρ-quasiregular.

Let us fix X and ρ satisfying the above assumptions. Let r0 > 0 be such
that for all r ≥ r0, Σr is a C3 submanifold that intersects X transversally.
Let F be the following set :

F = {(x, v) ∈ X × Rn | ρ(x) > r0, 〈v,∇ρ(x)〉 = 0

and 〈v,w〉 = 0 for all w ∈ Tx(X ∩ Σρ(x))
}

.

It is a C2-vector bundle over X ∩ {x |ρ(x) > r0} whose fibers are n − k-
dimensional. Moreover it is semi-algebraic. We will denote the fiber over x
by Fx. Observe that Fx is the normal space of X ∩ Σρ(x) in Σρ(x).

Let N be the normal bundle over X ∩ {x |ρ(x) < 2r0} :

N = {(x, v) ∈ X × Rn | ρ(x) < 2r0 and v ⊥ TxX} .

Is is also a C2 semi-algebraic vector bundle. We denote the fiber over x by
Nx.

We will glue these two bundles. By [DM] Corollary C.12, it is possible
to find a C2 semi-algebraic function φ : X 7→ [0, 1] such that X ∩ E7/4r0

=

φ−1(1) and X ∩ D5/4r0
= φ−1(0). For each x such that r0 < ρ(x) < 2r0, let

Px be restriction to Fx of the orthogonal projection to Nx.
We can define a bundle H ⊂ X × Rn over X in the following way :

if ρ(x) < 5/4r0 then Hx = Nx,

if r0 < ρ(x) < 2r0 then Hx = {v ∈ Rn | ∃w ∈ Fx

such that v = φ(x)w + (1 − φ(x))Px(w)} ,

if ρ(x) > 7/4r0 then Hx = Fx.

It is an exercise of linear algebra to prove that H is a vector bundle whose
fibres are n − k-dimensional planes. Furthermore, it is C2 semi-algebraic
because F and N are C2 semi-algebraic bundles and because φ is a C2

semi-algebraic function. This bundle H will enables us to construct the
desired “distance” function to X. Let ϕ be the following C2 semi-algebraic
mapping :

ϕ : H → Rn

(x, v) 7→ x + v.

Then there exists a semi-algebraic open neighborhood U of the zero-section
X × {0} in H such that the restriction ϕ|U is a C2 diffeomorphism onto a
neighborhood V of X. Moreover, we can take U of the form :

U = {(x, v) | ‖v‖ < ε(x)} ,
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where ε is a positive C2 semi-algebraic function on X. The proof of this
result is given in [Co2], Lemma 6.15 for the normal bundle. This proof actu-
ally holds in our case. This provides us with a C2 semi-algebraic retraction
π : V → X and a C2 semi-algebraic distance function d′ : V → X defined
by π(ϕ(x, v)) = x and d′(ϕ(x, v)) = ‖v‖2.

Lemma 5.1. There exists an open semi-algebraic neighborhood W of X in
V such that for every y ∈ W , ρ(y) ≤ 1, 1ρ(π(y)). Furthermore, one can
choose W of the form :

W =
{

y ∈ V | d′(y) < ε′(π(y))
}

,

where ε′ : X → R is a positive C2 semi-algebraic function.

Proof. Let A be the following semi-algebraic set :

A = {y ∈ V | ρ(y) > 1, 1ρ(π(y))} .

Let α : π(A) → R be the function defined as follows :

α(x) = inf
{

d′(y) | y ∈ π−1(x) ∩ A
}

.

This is a semi-algebraic function on π(A). Let us prove that it is positive.
The continuity of ρ ◦ϕ implies that for every x in π(A), there exists δx with
0 < δx < ε(x), such that for every v in Hx with ‖v‖ ≤ δx, ρ(ϕ(x, v)) ≤
1, 1ρ(ϕ(x, 0)). Since ‖v‖2 = d′(y) if y = ϕ(x, v), this proves that α(x) ≥
δx > 0. Let us show that α is locally bounded from below by positive
constants, i.e for every x ∈ π(A), there exist c > 0 and a neighborhood
Ω of x in π(A) such that α > c on Ω. If it is not the case, we can find
a sequence of points xn in π(A) tending to x such that α(xn) tends to 0.
Hence there exists a sequence of points yn = ϕ(xn, vn) such that vn tends
to 0, xn tends to x and ρ(ϕ(xn, vn)) > 1, 1ρ(ϕ(xn, 0)). By continuity, we
obtain ρ(ϕ(x, 0)) ≥ 1, 1ρ(ϕ(x, 0)), which is impossible. Let α̃ : X → R be
defined by α̃(x) = α(x) if x ∈ π(A) and α̃(x) = ε(x) if x /∈ π(A). The
function α̃ is semi-algebraic, positive and locally bounded from below by
positive constants. Applying Lemma 6.12 of [Co2], we can find a positive
semi-algebraic C2 function ε′ : X → R such that ε′ < α̃ on X. �

Let us study the function d′ : W → R more precisely. Let B be the
following semi-algebraic set :

B =

{

y ∈ W ∩ E2r0
| 〈∇ρ(y),∇ρ(π(y))〉
‖∇ρ(y)‖ · ‖∇ρ(π(y))‖ < 0, 9

}

.

Let β : π(B) → R be the function defined as follows :

β(x) = inf
{

d′(y) | y ∈ π−1(x) ∩ B
}

.

This is a semi-algebraic function on π(B) and for every x ∈ π(B), β(x) ≤
ε′(x). The same argument as in the above lemma shows that β is positive

and locally bounded from below by positive constants. Let β̃ : X → R

be defined by β̃(x) = β(x) if x ∈ π(B) and β̃(x) = ε′(x) if x /∈ π(B).

The function β̃ is semi-algebraic, positive and locally bounded from below
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by positive constants. We can find a positive semi-algebraic C2 function
ε” : X → R such that ε” < β̃ on X.

Let W ′ be defined by :

W ′ =
{

y ∈ V | d′(y) < ε”(π(y))
}

.

Note that W ′ is included in W . For every y in W ′ ∩ E2r0
, we have :

〈∇ρ(y),∇ρ(π(y))〉
‖∇ρ(y)‖ · ‖∇ρ(π(y))‖ ≥ 0, 9.

Since ∇d′(y) belongs to [∇ρ(π(y))]⊥, this can be reformulated in the follow-
ing way : for every y in W ′ ∩ E2r0

, we have :

〈∇ρ(y),∇d′(y)〉
‖∇ρ(y)‖ · ‖∇d′(y)‖ ≤

√

0, 19.

Lemma 5.2. There exist q0 ∈ N and r′0 > 0 such that for every q ≥ q0 and
for every x ∈ X ∩ Er′

0
,

1

(1 + ρ(x))q
≤ ε”(x).

Proof. Let h : [0,+∞[→ R be defined by :

h(r) = min {ε”(x) | x ∈ X ∩ Σr} .

Since h is a positive semi-algebraic function, there exists an integer q0 and
a real r′0 > 0 such that 1

h(r) < rq0 for every r ≥ r′0. Hence for every q ≥ q0

and every x ∈ X ∩ Er′
0
, we have :

1

(1 + ρ(x))q
≤ ε”(x).

�

Corollary 5.3. There exist q0 ∈ N and r0” > 0 such that for every q ≥ q0

and for every y ∈ W ′ ∩ Er0”,

1

(1 + ρ(π(y)))q
≤ ε”(π(y)).

Proof. By Lemma 5.1, we can find r0” > 0 such that π(y) belongs to
X ∩ Er′

0
if y belongs to W ′ ∩ Er0”. �

Lemma 5.4. There exist q1 ∈ N and r′1 > 0 such that for every q ≥ q1 and
for every x ∈ X ∩ Er′

1
, ‖∇ρ(x)‖ ≤ (1 + ρ(x))q.

Proof. Let c > 0 be such that [c,+∞[ does not contain any critical value
of ρ. Let l : [c,+∞[→ R be defined by :

l(r) = max {‖∇ρ(x)‖ | x ∈ X ∩ Σr} .

Since l is a positive semi-algebraic function, there exits an integer q1 and a
real r′1 > 0 such that l(r) < rq1 for every r ≥ r′1. Hence for every q ≥ q1 and
every x ∈ X ∩ Er′

1
, we have ‖∇ρ(x)‖ ≤ (1 + ρ(x))q. �
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Corollary 5.5. There exist q1 ∈ N and r1” > 0 such that for every q ≥ q1

and for every y ∈ W ′ ∩ Er1”, ‖∇ρ(π(y))‖ ≤ (1 + ρ(π(y)))q .

Proof. The proof is the same as Corollary 5.3. �

Proposition 5.6. There exists an integer q2 such that for every q ≥ q2,
the function d′q : W ′ → R defined by d′q(y) = (1 + ρ(π(y))q.d′(y) is a ρ-

quasiregular approaching function for X in W ′.

Proof. Since W ′ = {y ∈ V | d′(y) < ε”(π(y))} and ε” is a positive func-
tion, (X,W ′, d′) satisfies the condition (A). Let

W1 =

{

y ∈ V | d′(y) <
1

2
ε”(π(y))

}

.

We have W1 ⊂ W ′. By Corollary 5.3, for every q ≥ q0, the set Er0” ∩
d−1

q ([0, 1
4 ]) is included in W1. The tuple (X,W ′, d′q) satisfies the condition

(A). As it has been already explained in Lemma 2.2, there exists ǫq > 0

such that d−1
q ([0, ǫq ]) ∩ Dr0” ⊂ W1 ∩ Dr0”. Let δq be the minimum of 1

4 and

ǫq. The set d′−1
q ([0, δq ]) is included in W1, hence closed in W1 and in W ′.

This proves that d′q is an approaching function for X in W ′.
Let us show that it is ρ-quasiregular. Let us fix r greater than r0”, r1”

and 2r0 and let us fix q2 greater than q0 and q1. For every y in W ∩ Er, let
Py be the orthogonal projection onto the space ∇ρ(y)⊥. We have :

∇d′q(y) = (1 + ρ(π(y)))q−1 ·
[

(1 + ρ(π(y)))∇d′(y) + qd′(y)∇ρ(π(y))
]

,

hence,

Py(∇d′q(y))

(1 + ρ(π(y)))q−1 = (1 + ρ(π(y))) Py(∇d′(y)) + qd′(y)Py(∇ρ(π(y))).

Let us prove that, for q ≥ q2 and R ≥ r sufficiently big, T (y) can not vanish
if y belongs to d′−1

q (]0, 1]) ∩ ER, where

T (y) = (1 + ρ(π(y))) Py(∇d′(y)) + qd′(y)Py(∇ρ(π(y))).

First observe that if y lies in d′−1
q ([0, 1]) ∩ ER, q ≥ q2 and R ≥ r, then :

〈∇ρ(y),∇ρ(π(y))〉
‖∇ρ(y)‖ · ‖∇ρ(π(y))‖ ≥ 0, 9,

and
〈∇ρ(y),∇d′(y)〉

‖∇ρ(y)‖ · ‖∇d′(y)‖ ≤
√

0, 19.

This implies that

‖Py(∇ρ(π(y)))‖ ≤
√

0, 19‖∇ρ(π(y))‖
and

‖Py(∇d′(y))‖ ≥ 0, 9‖∇d′(y)‖.
Therefore, we have :

‖qd′(y)Py(∇ρ(π(y)))‖ ≤
√

0, 19qd′(y)‖∇ρ(π(y))‖,
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and,

‖ (1 + ρ(π(y))) Py(∇d′(y))‖ ≥ 0, 9 (1 + ρ(π(y))) · ‖∇d′(y)‖,

that is to say :

‖ (1 + ρ(π(y))) Py(∇d′(y))‖ ≥ 0, 9 (1 + ρ(π(y))) · 2
√

d′(y).

In order to prove that T (y) does not vanish if y ∈ d′−1
q ([0, 1])∩ER for q ≥ q2

and R ≥ r sufficiently big, it is enough to prove that :

1, 8√
0, 19

>
q
√

d′(y)‖∇ρ(π(y))‖
1 + ρ(π(y))

.

But if y ∈ d′−1
q (]0, 1]) ∩ ER where q ≥ q2 and R ≥ r then we have :

√

d′(y) ≤ 1

(1 + ρ(π(y)))
q

2

.

So, if we show that

1, 8√
0, 19

>
q‖∇ρ(π(y))‖

(1 + ρ(π(y)))
q

2
+1

,

then the required result is established. Let q be such that q
2 + 1 > q1. By

Corollary 5.5, we have :

q‖∇ρ(π(y))‖
(1 + ρ(π(y)))

q

2
+1

≤ q

(1 + ρ(π(y)))
q

2
+1−q1

,

for y ∈ d′−1
q ([0, 1])∩ER , R ≥ r. Lemma 5.1 implies that there exists Rq ≥ r

such that if y belongs to d′−1
q ([0, 1]) ∩ ER, with R ≥ Rq, then we have :

q

(1 + ρ(π(y)))
q
2
+1−q1

<
1, 8√
0, 19

.

This proves the proposition. �

We can state the main result of this section.

Theorem 5.7. Let X be a closed non-compact semi-algebraic set in Rn

which is a C3 submanifold. Let ρ be a control function of class C3. Any
ρ-quasiregular approaching semi-algebraic neighborhood of X is isotopic to
a tubular neighborhood of X.

Proof. By the previous proposition, we known that there exist ρ-quasiregu-
lar approaching functions d′q for X in W of the form d′q(y) = (1+ρ(π(y)))q ·
d′(y). But for ν > 0 sufficiently small the set d′−1

q ([0, ν]) is a tubular neigh-
borhood of X. It is enough to use Theorem 4.2 to conclude. �



18 NICOLAS DUTERTRE

6. Degree formulas for the Euler-Poincaré characteristic of

a closed semi-algebraic set

In this section, we give degree formulas for the Euler-Poincaré character-
istic of a closed semi-algebraic set X included in Rn. When X is algebraic,
we deduce from these formulas a Petrovskii-Oleinik inequality for |1−χ(X)|.

Let X ⊂ Rn be a closed semi-algebraic set and let f : Rn → R be a
nonnegative C2 semi-algebraic function such that X = f−1(0), i.e f is an
approaching function for X in Rn. Let ρ be a control function. For every
q ∈ N, we will denote by fq the function defined by fq(x) = (1+ρ(x))q ·f(x).
We will also denote by Γf,ρ (resp. Γfq,ρ) the following polar set :

Γf,ρ = {x ∈ Rn \ X | ∇f(x)( resp. ∇fq(x)) and ∇ρ(x) are colinear} .

Note that Γf,ρ = Γfq,ρ for each q ∈ N. The following proposition is similar
to Proposition 2.7 and is proved in the same way.

Proposition 6.1. There exists an integer q0 such that for every q ≥ q0,
the following property holds : for any sequence (xk)k∈N ⊂ Γfq,ρ such that
limk→+∞ ‖xk‖ = +∞, we have limk→+∞ fq(xk) = +∞.

Let us fix an integer q satisfying the property of the previous proposition.
Let Σ(fq) be the set of critical points of fq and let Σ∗(fq) be the set of
critical points of fq lying in Rn \ X.

Corollary 6.2. The set Σ∗(fq) is compact.

Proof. It is clearly closed as the set of preimages of the nonzero critical
values of fq. If it is not bounded, there exists a sequence of points (xk)k∈N

such that xk /∈ X, ∇fq(xk) = 0 and limk→+∞ ‖xk‖ = +∞. Since for each
k ∈ N, xk also belongs to Γfq,ρ, this gives a contradiction. �

Let us decompose Σ∗(fq) into the finite union of its connected components
Kq

1 , . . . ,Kq
mq :

Σ∗(fq) =

mq
⋃

i=1

Kq
i .

Before stating the main results of this section, we need to introduce some
notations. For each i ∈ {1, . . . ,mq}, let Ui be a relatively compact neighbor-
hood of Kq

i such that ∂Ui is a smooth hypersurface and Ui ∩ Σ∗(fq) = Kq
i .

For any mapping F : Rn → Rn such that F−1(0) ∩ Ui = Kq
i or F−1(0) ∩ Ui

is empty, we will denote by degKq
i
F the topological degree of the following

mapping :
F

‖F‖ : ∂Ui → Sn−1

x 7→ F (x)
‖F (x)‖ .

It is well-known that this topological degree does not depend on the choice
of the relatively compact neighborhood Ui.
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Theorem 6.3. The Euler-Poincaré characteristic of X is related to ∇fq by
the following formula :

χ(X) = 1 −
mq
∑

i=1

degKq
i
∇fq.

Proof. By Proposition 6.1, fq is a ρ-quasiregular approaching function for
X in Rn. Theorem 3.2 implies that for ε > 0 sufficiently small :

χ(X) = χ({fq ≤ ε}).
By the Mayer-Vietoris sequence, we have :

1 = χ({fq ≤ ε}) + χ({fq ≥ ε}) − χ({fq = ε}). (1)

We will apply Morse theory to the manifold with boundary DR and to
the function fq. We will follow the terminology of [Dut], Section 2, p.46-
47. Let us first show that fq does not admit any inward critical point on
ΣR∩{fq ≥ ε} for R sufficiently big and ε sufficiently small (an inward critical
point p is a point critical point p of fq|ΣR

such that ∇fq(p) is a negative

multiple of ∇ρ(p)). If it is not the case, then we can find a sequence of points
(xk)k∈N in Γfq,ρ such that ∇fq(xk) is a negative multiple of ∇ρ(xk). Using
the version at infinity of the Curve Selection Lemma (see [NZ], Lemma 2), we
obtain that limk→+∞ fq(xk) exists and belongs to [0,+∞[, which contradicts
the property of Proposition 6.1.

Let us fix R sufficiently big and ε sufficiently small so that Σ∗(fq) ⊂ DR,
fq does not have inward critical points in ΣR ∩ {fq ≥ ε} and

χ({fq ≥ ε}) = χ({fq ≥ ε} ∩ DR) and χ({fq = ε}) = χ({fq = ε} ∩ DR).

Since fq does not have inward critical points in ΣR∩{fq ≥ ε}, Morse theory
for manifolds with boundary implies that

χ({fq ≥ ε} ∩ Dr) − χ({fq = ε} ∩ Dr) =

mq
∑

i=1

degKq
i
∇fq. (2)

The final result is just a combination of equality (1) and equality (2). �

Let Fq : Rn → Rn be the mapping defined by Fq(x) = q·f ·∇ρ+(1+ρ)·∇f .
Note that for every x ∈ Rn, ∇fq(x) = (1 + ρ(x))q−1.Fq(x). Hence ∇fq and
Fq admit the same zeros in Rn.

Corollary 6.4. The Euler-Poincaré characteristic of X is related to Fq by
the following formula :

χ(X) = 1 −
mq
∑

i=1

degKq
i
Fq.

Proof. It is enough to prove that for every i ∈ {1, . . . ,mq}, degKq
i
Fq =

degKq
i
∇fq. Let us choose a relatively compact neighborhood Ui of Kq

i such

that ∂Ui is a smooth manifold, F−1
q (0) ∩ Ui = Kq

i = ∇f−1
q (0) ∩ Ui. The

result is clear since on ∂Ui, we have
∇fq

‖∇fq‖
=

Fq

‖Fq‖
. �
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Corollary 6.5. Let Gq : Rn+1 → Rn+1 be the mapping defined by Gq(λ;x) =
(f(x)λ − 1, Fq(x)). The set G−1

q (0) is compact and if R > 0 is such that

G−1
q (0) ( Bn+1

R , then
χ(X) = 1 − degSn

R
Gq.

Here Bn+1
R and Sn

R are the ball and the sphere of radius R in Rn+1.

Proof. Since Gq(λ;x) = 0 if and only if Fq(x) = 0, f(x) 6= 0 and λ = 1
f(x) ,

it is straightforward to see that G−1
q (0) is compact. The rest of the proof is

easy. �

These formulas are global versions of a result due to Khimshiasvili [Khi]
on the Euler characteristic of the real Milnor fibre. It states that, if g :
(Rn, 0) → (R, 0) is an analytic function-germ with an isolated critical point
at the origin, then

χ(g−1(δ) ∩ Bn
ε ) = 1 − sign (−δ)ndeg0∇g,

for any regular value δ of g, 0 < |δ| ≪ ε ≪ 1. Here deg0∇g is the topological

degree of ∇g
‖∇g‖ : Sn−1

ε → Sn−1.

In their fundamental paper [OP], Petrovskii and Oleinik estimated the
Euler characteristic of some real projective algebraic sets. More precisely
they gave an upper bound for the following quantities :

• |χ(Y ) − 1| where Y is a real projective hypersurface of even dimen-
sion,

• |2χ(Z−) − 1| where Z− is the subset of RPn that is bounded by a
real projective hypersurface Y of odd dimension and even degree and
corresponds to the negative values of the polynomial that determines
Y .

These results were generalized by Kharlamov [Kha1,Kha2]. In [Ar], Ar-
nol’d found a new proof based, on Khimshiashvili’s formula, and an equiva-
lent formulation of the original Petrovskii-Oleinik inequalities. Let us state
Arnol’d’s version of these inequalities. We need some notations. With ev-
ery n-tuples of positive integers m = (m1, . . . ,mn) and with every positive
integer m0, we will associate the following objects :

• ∆n(m) is the parallelepiped in Rn defined by the inequalities

0 ≤ x1 ≤ m1 − 1, . . . , 0 ≤ xn ≤ mn − 1,

• µ = m1 · · ·mn is the number of integral points in the parallelepiped
∆n(m),

• ν = 1
2(m1 + · · · + mn − n) is the mean value of the sum of the

coordinates of the points in ∆n(m),
• Πn(m) is the number of integral points on the central section x1 +
· · · + xn = ν of the parallelepiped ∆n(m),

• Πn(m,m0) is the number of integral points in ∆n(m) that lie in the
strip

ν − 1

2
m0 ≤ x1 + · · · + xn ≤ ν +

1

2
m0,



SEMI-ALGEBRAIC NEIGHBORHOODS OF CLOSED SEMI-ALGEBRAIC SETS 21

• On(m,m0) is the number of integral points in ∆n(m) that satisfy
the inequalities

ν − 1

2
m0 ≤ x1 + · · · + xn ≤ ν.

Arnol’d [Ar] proved the following theorem.

Theorem 6.6. Let f be a homogeneous polynomial of degree d in Rn defin-
ing a non-singular hypersurface Y in RPn−1. If n is even, we have :

|1 − χ(Y )| ≤ Πn(d− 1), where d − 1 = (d − 1, . . . , d − 1) in Nn.

If n is odd and d is even, let Z− be the subset of RPn that is bounded by Y
and corresponds to the negative values of the polynomial f . We have :

|1 − 2χ(Z−)| ≤ Πn(d − 1).

In [Kho1] (see also [Kho2]), Khovanskii gave an affine version of this
theorem.

Proposition 6.7. Let f : Rn → R be a polynomial of degree d such that the
surface {f = 0} is nonsingular and the domains {f ≤ c} are compact for
every c ∈ R. Then the Euler-Poincaré of the domain {f ≤ 0} satisfies the
inequality

|1 − 2χ({f ≤ 0})| ≤ Πn(d − 1, d − 1),

where d − 1 = (d − 1, . . . , d − 1) in Nn.

Our aim is to give a Petroskii-Oleinik inequality for the Euler-Poincaré
characteristic of any algebraic set in Rn. Let X be an algebraic set in Rn

defined as the zero set of the polynomials f1, . . . , fk, each fi having degree
di. Hence X = {x ∈ Rn | f(x) = 0} where f = f2

1 + · · ·+ f2
k . The degree of

the polynomial f is d = 2Max{d1, . . . , dk}. The following proposition gives
an upper bound for |1 − χ(X)| in terms of d.

Proposition 6.8. Let X be an algebraic set in Rn defined as the set of zeros
of a nonnegative polynomial f of even degree d. We have :

|1 − χ(X)| ≤ On+1(d + 1, 2),

where d + 1 = (d + 1, . . . , d + 1) in Nn+1.

Proof. Let ω : Rn → R be defined by ω(x) = x2
1 + . . . + x2

n. Applying
the argument described above to the functions f and ω, we find that there
exists an integer q sufficiently big and a real R > 0 sufficiently big such that:

χ(X) = 1 − degSn
R
Gq.

Let δ be a small positive regular value of Gq and let {p1, . . . , pl} be the set
of preimages of δ by Gq lying in Sn

R. We have :

1 − χ(X) = degSn
R
(Gq − δ) =

l
∑

j=1

degpj
(Gq − δ).
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Since each component of Gq−δ has a degree not exceeding d+1, the square of
the euclidian distance function in Rn+1 has degree 2 and 2+(n+1)(d+1) ≡
n+1 mod 2, Theorem 2 of [Kho1] applied to the vector field Gq − δ and the
function R − (x2

1 + · · · + x2
n + λ2) gives :

|
l

∑

j=1

degpj
(Gq − δ)| ≤ On+1(d + 1, 2),

where d + 1 = (d + 1, . . . , d + 1) in Nn+1. �
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