Ahmed Guellil 
email: guellilamed@yahoo.fr
  
Tewfik Kernane 
  
A NEW APPROACH OF POINT ESTIMATION FROM TRUNCATED DATA

Keywords: Dissection of mixture normals, EM algorithm, Minimum distance, Point estimation, Truncated data

We propose a new approach for estimating the parameters of a probability distribution from truncated data. We introduce …rst a new distance which measures the di¤erence between the variations of two discrete functions having the same support. We also introduce an auxiliary probability distribution depending on the same parameters of the considered distribution under study. We estimate the parameters of the later from truncated data. In a …rst method, we proceed by usual methods and in the second we use the minimum of the new distance. We illustrate the approach by some examples for discrete and continuous distributions. We apply the approach for dissection of mixture of two normal distributions.

Introduction

Point estimation is the most popular forms of statistical inference (see [START_REF] Lehmann | Theory of point estimation[END_REF]). We introduce in this paper a new statistical point estimation approach which found be useful in special practical situations such as truncated data and merged populations. The data are said to be truncated when measuring devices fail to report observations below and above certain readings. For example, truncated data frequently arise in the statistical analysis of astronomical observations ( see [START_REF] Efron | Nonparametric methods for doubly truncated data[END_REF]) and in medical data, and if the truncation is ignored this can cause considerable bias in the estimation (see [START_REF] Klein | Statistical challenges in comparing chemotherapy and bone marrow transplantation as a treatment for leukemia, Lifetime Data: Models in Reliability and Survival Analysis[END_REF]). There exist in the literature many approaches of estimation from "incomplete data" such as maximum likelihood based approach of the EM algorithm [START_REF] Hartley | Maximum likelihood estimation from incomplete data[END_REF], [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]), or nonparametric methods such as Kaplan-Meyer or Lynden-Bell estimators ( see [START_REF] Woodroofe | Estimating a distribution function with truncated data[END_REF], [START_REF] Efron | Nonparametric methods for doubly truncated data[END_REF]). The purpose of the present paper is to investigate other approaches based on variational aspects of probability distributions.

In estimation problems, we deal in general with three functions: a theoretical probability law f ( ; ) of a random variable X; depending on a parameter (real or vector valued), an empirical distribution f constructed from a sample of observations drawn from the random variable X; and an estimation b f ( ; b ) (where b is an estimation of ) obtained through the empirical law f . Usually, problems related to quality of the estimation b f are viewed through the theoretical properties of the estimator of : f is considered as a representative distribution of f; but in practice it is reduced to only few of its characteristics such as the mean and variance. The variational aspect of f is often neglected while its importance in our viewpoint. We can easily …nd, for instance, two distributions having the same support, mean and variance while their variations di¤er signi…cantly, or conversely having the same variations but their supports and characteristic parameters are di¤erent. But two distributions with same support and same variations in each subset of the support are necessarily the same. This suggest to look for a measure of proximity between variations of probability distributions having the same support.

One of the main tools used in parametric estimation is the method of minimum distance. We introduce here a new distance which proceed di¤erently from classical distances. It measures the di¤erence between variations of two discrete functions having same support. For estimation purposes, we build up a discrete distribution, with …nite support, associated to a sample of observations. The variations of this new distribution are assumed to be an empirical representation of those of the parent distribution restricted to the same support. In discrete case, we have only to use the empirical law of the observations. In continuous case, this could be done by considering the empirical distribution of the representative values (mid-classes or class means) after grouping the observations. The approach of estimation is then based on considering as a probability law the parent distribution restricted to the support that captures the data. In discrete case, we have simply to take the conditional distribution with respect to the observed values and we proceed analogously for the continuous case. We have to deal with two discrete probability distributions having the same …nite support, a theoretical distribution and its empirical representation with respect to the observations. The parameters of the former are those of the parent distribution and the aim is to estimate them from the …rst instead of the parent one as commonly used. We use …rst classical methods such as the method of moments or maximum likelihood principle. We proceed also by minimum distance using the new measure introduced here. We have then another way to parameter estimation giving new insights and perspectives as we will show in this paper. The setting that seems to us most suitable for illustrating our approach is the one of the estimation from truncated data. In usual practical problems, truncation can be on left or right or in either situations, and the "cut o¤" can be deterministic or random. In our approach, the truncation may be on any part of the range of the distribution so that the setting is more general. Also, classical approaches for truncated data are in general custom-made or subjective based methods. Instead, our approach is quite general and might be used in any situation where the underlying complete data come from a known family of distributions. We con…ne ourselves as a …rst presentation to deterministic truncations. Our intention is to present this new approach without exploring all possible areas of applications and extensions that it may generate.

In the subsequent section, we propose a variational distance between probability distributions. In Section 3, we de…ne a truncation of data and associated empirical and theoretical distributions and we use two di¤erent methods for estimation from truncation, a …rst method using traditional tools of estimations such as the method of moments and a second method based on the minimum of the new distance introduced in this paper. We illustrate the procedures by three examples: a binomial probability law, a normal distribution and a Gamma density function and we apply the two methods for dissection of two merged normal distributions. We present also an application to the estimation of the …rst trial value in the celebrate EM algorithm for incomplete data in the case of truncation. In Section 4, we present a basic feature of the new approach which prove the accuracy of the method. Finally, concluding remarks are made some pointing to possible extensions and applications.

Distance Based on Proportional Variations

As is usual is practice, given a sample of n independent and identically distributed observations, (x 1 ; x 2 ; :::; x n ) ; drawn from an unknown discrete random variable X falling in a discrete family of probability laws P = fp ; 2 R r g depending on a parameter (real or vector valued), i.e., p (x) = P(X = x) one can easily summarize the sample into k couples (y 1 ; f 1 ) ; (y 2 ; f 2 ) ; :::; (y k ; f k ) ; k n; where the y i are the di¤erent values taken by the sample and f is the empirical law

f j = n j n ; (1) 
where n j represents the absolute frequency of the value y j ; j = 1; :::; k: Usually, it is hoped that f j p (y j );

in a certain probabilistic sense. However, we claim a more general assumption which is akin to the proportional allocation procedure for missing values, and take into account the variational aspects of probability distributions, so our aim is to have approximately

f i f j p (y i ) p (y j ) : (3) 
Introduce the following distance of proportional variations between p and f d v (f ; p ) = X i;j2f1;:::;kg

f i f j p (y i ) p (y j ) : (4) 
It turns out that this new distance, as we will show, measures the variations between probability distributions. One of its main powerful feature is that when using traditional distances of type P i2f1;:::;kg jf i p (y i )j we have to use the sample size n through the expression of f i = n i =n, but sometimes as for truncated data situations where measuring devices fail to report even the number of sample points in certain ranges, then the real size n is not known, but a truncated sample size n t is instead used. Using the ratios f i =f j will clear the e¤ect of the truncated sample size which can lead to considerable bias in the estimation. Furthermore, the new approach is related on the quality of the selected data and not mainly on large samples.

In continuous case also, any sample (x 1 ; x 2 ; :::; x n ) is summarized into k couples (y 1 ; f 1 ) ; (y 2 ; f 2 ) ; :::; (y k ; f k ) ; k n, which we hope contain all necessary informations about the variational aspects of the distribution of the continuous random variable X: We assume that this can be done uniquely, by grouping for example the sample in classes where the y i are the mid-classes (or class means) and the f i are the corresponding relative frequencies. This is justi…ed by the assumption that there exists an optimal number of classes which allows the empirical distribution function expressing the best the variations of the parent probability distribution. The proportional variational distance d v in this case between the density f (x; ) of X and its empirical law f is thus de…ned by

d v (f ; f ( ; )) = X i;j2f1;:::;kg f i f j f (y i ; ) f (y j ; ) : (5) 
Let be given two functions f and g; d v associates for points x and y from the intersection of their domain of de…nitions, the quantity

d v (f; g) (x; y) = f (x) f (y) g(x) g(y) + f (y) f (x) g(y) g(x) : (6) 
This measures the di¤erence between the variations of f and g on points x and y: Note that d v possesses the properties of symmetry and triangle inequality. But in the identity property

d v (f; g)(x; y) = 0 () f g; (7) 
the equality between f and g must be understood in the sense that f and g have the same variations on the points x and y: From now on f will represent a theoretical probability law in both discrete or continuous cases and f shall represent the corresponding empirical law in both cases. Denote by = fx 2 R; f (x; ) > 0g the set of atoms of f or support. Let F be the algebra generated by the sets A = B \ ! where the ! are the Borel sets of R and B : For all A 2 F; we have

P (A) = Z A f (x; ) (dx); (8) 
where is the Lebesgue measure on R.

In discrete case, we have

P (A) = X x2A f (x; ): (9) 
For all i 1; we set i = ; F i = F and P i = P:

Let (n) = 1 2 ::: n ; F (n) = F 1
F 2 ::: F n and P (n) = P 1 P 2 ::: P n : The probability space (n) ; F (n) ; P (n) represents the space of samples of size n from the random variable X:

Let be given a classical distance d between two functions f and g which associates for points x and y from the intersection of their domain of de…nitions, the quantity

d (f; g) (x; y) = jf (x) g(x)j + jf (y) g(y)j (10) 
Proposition 1 We have the following properties for the distance d v :

1. d(f; g)(x; y) = 0 =) d v (f; g)(x; y) = 0; the converse is not always true. 2. lim n!1 d v (f ; f ) = 0 in probability.
3. Let f and g be two functions de…ned on R and E R satisfying:

8 (x; y) 2 E E; d v (f; g)(x; y) = 0: (11) If Z R f d = Z R g d = 1; (12) 
where is the Lebesgue measure on R, then

E = 0 =) f = g almost surely on R. (13) 
Proof. 1. Follows directly from the de…nitions of d and d v :

2. Follows from the fact that whenever

lim n!1 d(f ; f ) = 0 then lim n!1 d v (f ; f ) = 0 in the same probabilistic notion of convergence. 3. Fix y 0 2 E; we have f (x)=f (y 0 ) = g(x)=g(y 0 ) for all x 2 E: This implies that Z E f (x)dx = 1 () Z E f (y 0 ) g(x) g(y 0 ) dx = f (y 0 ) g(y 0 ) Z E g(x)dx = 1: (14) 
We deduce that f (y 0 ) = g(y 0 ) and the result follows.

Application to Truncated Data

Consider a sample of observations (x 1 ; x 2 ; :::; x n ) drawn from a theoretical probability law f ( ; ); depending on a parameter 2 R r : As usual, the data are summarized, in discrete or continuous cases (as shown in Section 2), into k couples (y 1 ; f 1 ) ; (y 2 ; f 2 ) ; :::; (y k ; f k ) ; k n; and let 4 = fu 1 ; u 2 ; :::; u m g a part from the set fy 1 ; y 2 ; :::; y k g ; m k; which we will call truncation.

De…ne the empirical distribution e f corresponding to a given truncation 4 by:

e f (x) = e f i if x = u i ; i = 1; :::; m; 0 otherwise, (15) 
where the e f i satisfy the following set of proportional allocation equations

e f i e f j = f i f j ; (16) 
for i; j = 1; :::; m and e f 1 + e f 2 + ::: + e f m = 1: De…ne the following auxiliary distribution from f ( ; ); which is based on proportional allocation as follows

h (x; ) = 8 < : f (x; ) f (u 1 ; ) + f (u 2 ; ) + ::: + f (u m ; ) if x = u i ; i = 1; :::; m; 0 otherwise (17)
Remark 2 If the truncation is random, that is, there exists a random variable T such that we observe, for example, the random variable X only if X > T or X < T; then the probability law used in (17) is replaced by the conditional law of X with respect to fX > T g or fX < T g respectively.

The distance d v and the auxiliary density h were found be useful for estimation problems in truncated data. Indeed, it is well known in classical estimation from truncated data (see [START_REF] Hartley | Maximum likelihood estimation from incomplete data[END_REF]) that missing values could be recovered by "proportional allocation" procedures, then the auxiliary density h; which is already based on proportional allocation, and the distance d v , which is based on proportional variations, will be intuitive and natural tools for estimation purposes from truncated data. The function h is a theoretical probability distribution depending on the same parameters of those of f . It has also the same support (atoms) as that of e f :

De…nition 3
We call e f and h( ; ) the empirical and theoretical distributions of a given truncation 4 = fu 1 ; u 2 ; :::; u m g from a sample of observations (x 1 ; x 2 ; :::; x n ) :

Methods of Estimation

As well known, two distribution having the same parameters (of central tendency for example) must fall in the same family to be similar. Classical distances do not give informations about variational aspects of probability distributions. So that, the distance d v will give an additional information about a sample of observations. This help making decisions about the accuracy of the estimation and having a measure of quality of the observations themselves. Indeed, the parameters are only a way for determining the theoretical distribution which …ts well the data. Whereas, probability distributions may also be characterized by both variations and supports. We notice that in general the classical and new approaches lead to approximately the same estimations. But in some cases they di¤er signi…cantly and this seems to be related to the situation where the estimation distribution obtained from classical approach does not …t well in variational viewpoint the parent distribution of the data. We will use mainly two methods of estimation. The …rst approach is similar to traditional ones such as the method of substitution or maximum likelihood principle, by considering e f as an empirical estimation of h( ; ): The second approach is a minimum distance estimation using the metric d v between e f and h: It was noticed, as will be shown in the examples below, that the two methods lead to approximately the same estimation results except few cases. Nevertheless, if the two estimations are signi…cantly di¤erent, it seems related to the quality of the selected data. However, We do not discuss the properties of the estimation by the minimum of distance d v ; since it is a complex problem which needs a separate thorough study. Our aim here is to validate new approaches that may be useful in some cases such as truncation in data or merged populations (see section 4). In order to test the performance of the proposed approach, we use synthetic datasets which are generated by simulation from three examples of probability law: binomial law, normal density and a Gamma distribution. The examples were selected from various simulation studies from di¤erent family of probability distributions and the two approaches have shown their e¤ectiveness and never deviate signi…cantly from the true parameter provided that the information contained in the truncation about the variational aspects of the parent distribution is su¢ cient. The reason for using synthetic datasets is that the true parameters for the synthetic datasets are known and the accuracy of the results obtained by using the two new methods can be compared.

Examples

Binomial distribution We generate a synthetic dataset of size 500 from a binomial law B(n; p) with n = 10 and p = 0:3: The data are summarized in the following table Our aim is to estimate the parameter p; with the knowledge of n = 10, from di¤erent truncation of the data.

For illustrating the two methods, consider the truncation 4 = f2; 3; 4; 5g with truncated sample size n t = 386: We have then a truncation proportion of Q = (n n t )=n = 22; 8 % in data. For the …rst method, the empirical distribution e f given the truncation = f2; 3; 4; 5g is given by e

f (2) = 108=386; e f (3) = 134=386, e f (4) = 97=386; e f (5) = 47=386 and e f (x) = 0 if x = 2 : Let f (x; p) = C x n p x (1 p) n x
the binomial probability law. The auxiliary distribution h( ; p) is given by:

h(x; p) = f (x; p) f (2; p) + f (3; p) + f (4; p) + f (5; p) if x = u i ; u i 2 f2; 3; 4; 5g 0 otherwise. ( 18 
)
By the method of substitution, the estimation of p is obtained by solving the equation:

X u i 2f2;3;4;5g u i h(u i ; p) = X u i 2f2;3;4;5g u i e f (u i ) (19) that is 2 C 2 10 p 2 (1 p) 8 + 3 C 3 10 p 3 (1 p) 7 + 4 C 4 10 p 4 (1 p) 6 + 5 C 5 10 p 5 (1 p) 5 C 2 10 p 2 (1 p) 8 + C 3 10 p 3 (1 p) 7 + C 4 10 p 4 (1 p) 6 + C 5 10 p 5 (1 p) 5
= 1241 386 :

(20) Using a computer algebra package we obtain the result e p 1 = 0:3001.

For the second method, we have to search the value of the parameter p which minimizes the distance d v ; that is: Using computer algebra package, we obtain the result e p 2 = 0:2991: In the following table we present the estimations e p 1 from the …rst method using the auxiliary distribution, and e p 2 from the minimum distance approach using the distance d v ; of the parameter p; for known n; according to the truncation 4 = fu 1 ; :::; u m g considered. As previously said, the two estimations by the new approach, e p 1 and e p 2 ; are very accurate in all cases and close to each other, except few cases, since they are based on the same spirit. In practice, when the two estimations are close then we can take one of them or their mean. On the other hand, if they are signi…cantly di¤erent we can assert that the sample does not restore in a coherent way all the properties of the distribution from which it emanated. We then have to take the …rst estimation and use the second as a tool of decision on whether the estimation is credible or not.

min p d v ( e f ; h) = min p C 2 
Normal distribution Consider a sample of size 400 drawn from a normal population with mean m = 0 and standard deviation = 1: Consider the data falling in 10 …xed class intervals as shown in the following table, with mid-classes u i and absolute frequencies n i Table 3 It should be noted that for the normal distribution the two estimations e m 1 and e m 2 by the new approach are somewhat close to each other for all the truncations considered, except the truncation n 12; however, for the latter, they are also close to the true value m = 0. For the …rst method ( e b 1 ), we remark that left truncations (n 1 10) are more accurate than right ones (n 11 21). Also, in general, it seems that the …rst method is better than the minimum of distance d v in this case of a continuous gamma density, but the distance d v may give a judgment about the accuracy and e¤ectiveness of the estimation from a given truncation. It means that if the two estimations are close then this will reassure us about the quality of the estimation.

Gamma probability density

Application to Dissection of Merged Normal Populations

We shall present in this section an application of the previous method used for truncated data in the situation where we have a mixture population of normal distributions.

Assume we have merged two samples of observations of sizes n 1 and n 2 generated from two normal distributions f 1 = N (m 1 ; 1 ) and f 2 = N (m 2 ; 2 ), with m 1 6 = m 2 . By assuming that 1 and 2 are known, our aim is to estimate the means m 1 and m 2 and also the merging proportion of each population.

In classical methods, we use the merged distribution f = f 1 + ( 1) f 2 and we estimate the parameters ; m 1 and m 2 using for example the EM algorithm. We will use a method based on truncations. The main idea being to split the range of the merged sample into three suitably chosen parts. A central part where the observations are highly merged, a left and right truncated parts where the observations become mainly from one of the distributions considered. If for example m 1 < m 2 , then to estimate m 1 we have to use the chosen right truncated part (left truncation 4).

The procedure is summarized as follows:

1. We compute the sample mean m g of the merged observations.

2. For determining the location of the two means m 1 and m 2 , we compute the empirical standard deviation S l of the observations less than m g ; and S r for those that are greater. Assume that S l < S r , in this case if 1 < 2 then we deduce that m 1 is situated on the left of m g . Otherwise, it will be assumed to be on its right. We follow the same idea for the case S l > S r : If 1 = 2 we pass directly to the third step.

3. Assume that m 1 is on the left. It is well known that for a normal distribution N (m; ) we have P (]m ; m + [) ' 0:68: We hope that on the left of sup l = m g 2 the number of observations generated from N (m 2 ; 2 ) is negligible, and on the right of min r = m g + 1 the number of observations generated from N (m 1 ; 1 ) is also negligible. Hence, to estimate m 1 , we consider only the part of observations situated on the left of m g 2 , and to estimate m 2 we consider the part situated on the right of m g + 1 :

The following example will provide some feel for the accuracy of the procedure.

Example

We consider the case where 1 = 2 : consider two samples of observations generated from N (m 1 ; 1 ) and N (m 2 ; 2 ); where m 1 = 1:3 and m 2 = 2:4, with known 1 = 2 = 1 and sizes n 1 = 300 and n 2 = 200: We combine them to obtain a merged sample of size n = 500: We have chosen the distributions in such a way that the histogram (Fig. 1) of the merged sample does not show directly the existence of a mixture of two distributions. When the histogram of the merged population is bimodal the situation is more easier, since when taking a suitably left (or right) part we get more accurate estimation from the situation that this part will have a negligible number of observations from the second distribution. It should be stressed that the histogram is one modal and does not show at …rst glance any mixture situation. Following the steps of the procedure we begin by calculating the mean of the resulting merged sample and we obtain m g = 1:8046. Since the standard deviations are assumed to be equal then we compute directly sup l = m g 2 = 0:8046: By grouping the observations on the left of sup l (which constitute the chosen right truncated part) in 7 classes we obtain the following table: The sample mean of the observations on the left of sup l is given by u l = 0:1483: Using the …rst method we have to solve on m the following formula

u 1 exp h (u 1 m) 2 2 2 i + y 2 exp h (u 2 m) 2 2 2 i + ::: + y k exp h (u k m) 2 2 2 i exp h (u 1 m) 2 2 2 i + exp h (u 2 m) 2 2 2 i + ::: + exp h (u k m) 2 2 2 i = u l : (22)
we obtain the estimation e m 1 = 1:2646: By deleting the …rst value u 1 which has a weak frequency n 1 = 1; that is using the truncation 4 = fu 2 ; u 3 ; u 4 ; u 5 ; u 6 g ; (we compute again u l = 0:1734) we obtain a better estimation e m 1 = 1:3011; which is very close to the true value m 1 = 1:3. = 2:3971: The mixture proportion can easily be estimated using the formula: e m 1 + ( 1) e m 2 = m g :

Estimation of the initial value in EM Algorithm

The initial starting value is of great importance in convergence behavior of algorithms such as EM Algorithm. Usually, as for the latter, the initial trial value is guessed. Surprisingly, we will show that our procedure gives an estimation of the starting value instead of having to guess. The approach will be illustrated by the following classical example which was the basis of the EM algorithm.

Example of Hartley (1958) revisited

Hartley (1958) used an algorithmic procedure to estimate the parameter of a Poisson distribution from data on the pollution of seeds of Phleum pratense by the presence of noxious weed seeds quoted from [START_REF] Snedecor | Statistical Methods[END_REF] and truncated them by missing the frequencies of the values 0 and 1 as shown in the following table ( 

Hartley [START_REF] Hartley | Maximum likelihood estimation from incomplete data[END_REF] has guessed the frequencies of the missing values 0 and 1 by taking n 0 = 4 and n 1 = 14 and after 4 steps of his algorithmic procedure, which has been the basis of the well known EM algorithm for incomplete data [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], has reached the estimation b = 3:026 (see table 1 p.177 [START_REF] Hartley | Maximum likelihood estimation from incomplete data[END_REF]). Using the …rst method we get the estimation e 1 = 3:1149: And by proportional allocation procedure we can see that the frequencies we get are n 0 = 4:29 and n 1 = 13:38 which are close to the guessed values.

A Basic Feature of the New Approach

The preceding results have shown the e¤ectiveness of the new approach and worked well in simulation experiments. Furthermore, the proposition below will give an insight of a major feature of the new approach by considering the one parameter exponential family. We will prove that for all truncation considered formed by more than two points, from a sample of observations , if the ratios of the relative frequencies of the u i are exact, then we may obtain the true value of the parameter. We may conjecture that when considering an arbitrary law of probability depending on r parameters, such that we have a truncation composed by r + 1 points having exact empirical ratios of the relative frequencies then we obtain the true values of the r parameters.

Proposition 4 Consider a probability distribution f from the one-parameter exponential family with density

f (x j ) = k(x) exp[ T (x) A( )]; (23) 
where 2 R is the parameter, T a statistic, k(x) a function of x and A is a function of the parameter : Assume that we wish to estimate the parameter : If we consider a truncation having two points x and y with empirical frequencies f 1 and f 2 satisfying f 1 =f 2 = f (x j )=f (y j ), then, using the approach considered here, we obtain the true value of :

Proof. 1. If we consider the minimum of distance d v the result is immediate. 2. Consider now the second method to estimate m. Consider two values x and y from the exponential family with density given by (23); with e being the estimation by the new approach, and assume that their empirical frequencies f 1 and f 2 are such that

f 1 f 2 = f (x j e ) f (y j e ) : (24) 
We obtain Remark 5 Note that the frequencies f 1 and f 2 need not be exact, that is f 1 may be di¤ erent from f (x j ) and also f 2 ; but we require only that their ratio is equal to the theoretical one f (x j )=f (y j ): 

and also we get the true value e p 2 = 0:3.

Gamma distribution

Consider the Gamma probability distribution G(a; b) with a = 10 and b = 5: Assume that a is known and we wish to estimate b: Consider in table 5 the truncation 4 = fu 3 ; u 8 g with u 3 = 30:13 and u 8 = 60:02. We have the following value of the ratio f (u 3 j b) =f (u 8 j b) 0:7993 (the result is an approximate result since for probability density functions it is di¢ cult to get an exact rational value but we will show that the estimations are very close to the true value). Consider the absolute frequencies n 3 = 79:93 (or 80) and n 8 = 100 for the values u 3 = 30:13 and u 8 = 60:02 respectively. We have then n 3 =n 8 f (u 3 j b) =f (u 8 j b) : From the …rst method, we compute u = 46:7438 and solve on b the following equation (30:13 46:7438) 30:13 9 exp( 30:13=b)

parameters a = 10 and b = 5 :

 5 Consider a sample of size 400 drawn from a Gamma distribution G(a; b) with density given by f (x j a; b) Consider the data falling in 13 …xed class intervals as shown in the following

4 size e b 1 e b 2

 42 show the estimations e b 1 and e b 2 ; by the two methods, of b; with known a = 10; according to the truncation 4 considered Table 6.The estimations e b 1 and e b 2 by the new approach of the parameter b of the Gamma probability distribution G(a; b) with b = 5 and known a = 10. n

Fig 1 .

 1 Fig 1. Merged histogram of two normal distributions N (1:3; 1) and N (2:4; 1):

1 = 1 :

 11 Using the distance d v we obtain for all the truncation e m (dv) 244 and by deleting u 1 we get the value e m To estimate m 2 we consider the part situated on the right of inf d = m g + 1 = 2:8046: Grouping the observations on the right of inf d (which constitute the chosen right part) in 7 classes we obtain the following table:

u i 2

 2 The sample mean of the observations on the right part is given by u d = 3:5227: Using formula (22) with u d , we obtain the result e m 2 = 2:245: Deleting the extreme values u 1 and u 6 we obtain e m 2 = 2:4124: Using the distance d v for all the truncation we get e m (dv) 2

u = xf 1 + 1 A 1 A

 111 yf 2 = xk(x) exp e T (x) + yk(y) exp e T (y) k(x) exp e T (x) + k(y) exp e T (y) : Then, we solve on the following equation: 0 @ x xk(x) exp e T (x) + yk(y) exp e T (y) k(x) exp e T (x) + k(y) exp e T (y) k(x) exp ( T (x)) + 0 @ y xk(x) exp e T (x) + yk(y) exp e T (y) k(x) exp e T (x) + k(y) exp e T (y) k(y) exp ( T (y)) = 0; after straightforward algebra we obtain (x y) exp e T (y) + T (x) + (y x) exp e T (x) + T (y) = 0; yielding the true value e = : The proof is complete.

4. 1 we obtain the exact result e p 1 = 0: 3 :

 113 Examples4.1.1 Binomial distributionConsider again the binomial distribution B(n; p) with n = 10 and p = 0:3 and assume n is known and we wish to estimate p: Assume we have the following truncation with only two points 4 = f0; 1g : The exact ratio of their probability distribution is given by f (0; p)=f (1; p) = 7=30; which is a rational value that will simplify the example. Choose the absolute frequencies of the two values considered as being n 1 = 7 and n 2 = 30 for the values u 1 = 0 and u 2 = 1 respectively, in order for having f 1 =f 2 = f (x; p)=f (y; p) = 7=30: Using the …rst method we have to solve the following equation on p Using the second approach, that of the minimum of distance d v ; we have to solve min p d v ( e f ; h) = min p

Table 1 .

 1 

	y i 0	1	2	3	4	5	6 7
	n i 15 71 108 134 97 47 23 5

Table 2 .

 2 The estimations e p 1 and e p 2 by the new approach of the parameter p of the binomial probability law B(n; p) with p = 0:3 and known n = 10.

		Truncated	Proportion of
	n 1 2 3 f0; 1; 2; 3; 4; 5; 6; 7g 4 f0; 1; 2; 3; 4g f0; 1; 2; 3; 4; 5g 4 f1; 2; 3; 4; 5g 5 f1; 2; 3; 4g 6 f2; 3; 4; 5g 7 f2; 3; 4g 8 f3; 4; 5g 9 f0; 3; 4; 5g 10 f1; 3; 4; 5g 11 f0; 2; 3; 4; 5g 12 f0; 1; 3; 4; 5g 13 f0; 1; 4; 5; 6; 7g 14 f2; 4; 5; 6; 7g 15 f0; 4; 5; 6; 7g 16 f0; 2; 3; 4g 17 f0; 5; 6; 7g 18 f0; 5g 19 f1; 4; 5; 6; 7g 20 f0; 1; 2; 5; 6; 7g	sample size truncation Q (%) 425 15 472 5:6 500 0 457 8:6 410 18 386 22:8 339 32:2 278 44:4 293 41:4 349 30:2 401 19:8 364 27:2 258 48:4 280 44 187 62:6 354 29:2 90 82 62 87:6 243 51:4 269 46:2	e p 1 0:2928 0:2952 e p 2 0:2926 0:2952 0:2978 0:3053 0:2922 0:2877 0:2922 0:2868 0:3001 0:2991 0:3052 0:3049 0:2906 0:2901 0:2932 0:2952 0:2872 0:2870 0:2983 0:2952 0:2892 0:2952 0:2945 0:3013 0:3071 0:3077 0:3018 0:3071 0:3009 0:2952 0:3011 0:3014 0:2937 0:2937 0:2935 0:3028 0:2985 0:2981

Table 4 .

 4 In the following table we show the estimations of m according to the truncation 4 considered, where e m 1 represents the estimation by the …rst method and e m 2 that of the minimum of the variational distance d v The estimations e m 1 and e m 2 by the new approach of the parameter m of the standard normal distribution with known standard deviation = 1.

		.							
	i	1	2	3	4	5	6	7	8
	u i	2:5808	2:057	1:5331	1:0092	0:4853 0:0386 0:5625 1:0863
	n i	5	8	23	48	71	89	72	43
	9	10	11						
	1:6102 2:1341 2:658						
	25	10	6						
	n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 fu 1 ; u 2 ; u 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 g 394 size 4 161 fu 6 ; u 7 g 119 fu 4 ; u 5 g 79 fu 2 ; u 3 ; u 4 g 78 fu 8 ; u 9 ; u 10 g 232 fu 5 ; u 6 ; u 7 g 204 fu 6 ; u 7 ; u 8 g 142 fu 3 ; u 4 ; u 5 g 166 fu 3 ; u 5 ; u 7 g 140 fu 7 ; u 8 ; u 9 g 150 fu 2 ; u 3 ; u 4 ; u 5 g 231 fu 3 ; u 4 ; u 5 ; u 6 g 229 fu 6 ; u 7 ; u 8 ; u 9 g 300 fu 5 ; u 6 ; u 7 ; u 8 ; u 9 g 348 fu 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 g 371 fu 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 g	e m 1 0:1039 0:0003 6 10 6 e m 2 0:1040 0:1631 0:1769 0:2436 0:2181 0:0518 0:052 0:1284 0:1319 0:0529 0:0665 0:0574 0:0593 0:0323 0:0767 0:0845 0:1179 0:1092 0:1137 0:0402 0:0165 0:0119 0:0520 0:0216 0:0515 0:0325 0:0592 0:0521 0:0651	

  table, with mid-classes u i and absolute frequencies n i :

	Table 5.									
	i	1	2	3	4	5	6	7	8	9	10
	u i 18:18 24:16 30:13 36:11 42:09 48:07 54:04 60:02 66:00 71:97
	n i	5	16	31	45	69	62	53	51	36	11
	11	12	13								
	77:95 83:93 89:91								
	9	5	7								
	In the following table we							

  12 g 393 4:9575 4:7758 10 fu 1 ; u 2 ; u 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 ; u 12 ; u 13 g 400 4:9947 4:8856 11 fu 2 ; u 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 ; u 12 ; u 13 g 395 5:0047 4:9695 12 fu 2 ; u 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 ; u 12 g

	1 2 3 4 5 6	97 4:5856 4:5058 166 5:0985 4:8489 228 5:0488 4:7949 281 5:0174 4:7554 332 5:1145 4:7949 fu 388 4:9666 4:7577 fu 1 ; u 2 ; u 3 ; u 4 g fu 1 ; u 2 ; u 3 ; u 4 ; u 5 g fu 1 ; u 2 ; u 3 ; u 4 ; u 5 ; u 6 g fu 1 ; u 2 ; u 3 ; u 4 ; u 5 ; u 6 ; u 7 g fu 1 ; u 2 ; u 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 g
	13 14 15 16 17 18 19 20	fu 2 ; u 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 g fu 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 g fu 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 g fu 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 ; u 12 g fu 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 g fu 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 g fu 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 ; u 12 g fu	383 4:9901 4:7290 367 4:9973 4:7577 336 4:9665 4:7290 341 4:9373 4:7350 327 5:0200 4:7089 291 4:8478 4:7290 227 4:8117 4:7269

1 ; u 2 ; u 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 g 368 5:1386 4:8174 7 fu 1 ; u 2 ; u 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 g 379 5:0158 4:7949 8 fu 1 ; u 2 ; u 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 g 388 4:9790 4:7949 9 fu 1 ; u 2 ; u 3 ; u 4 ; u 5 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 ; u 6 ; u 7 ; u 8 ; u 9 ; u 10 ; u 11 ; u 12 ; u 13 g 234 4:9247 5:3153 21 fu 7 ; u 8 ; u 9 ; u 10 ; u 11 ; u 12 ; u 13 g 172 4:8494 5:3153 10

Table 7 .

 7 

	u i	1:5589	1:1294	0:6998	0:2703	0:1593 0:5888
	n i	1	3	6	17	24	41

Table 1

 1 

	in Hartley

Concluding Remarks

In the foregoing study, we have presented a new statistical point estimation method which found be useful in truncated data situations. A new distance between probability distributions was introduced. It measures the di¤erence between the proportional variations between two given probability distributions. We introduced a new auxiliary distribution based on a truncation, from a chosen family of probability distributions. This new distribution will have the same parameters to estimate as the parent one.

We use then statistical methods to estimate the parameter of the variable under study using the empirical and the new auxiliary distribution in the region that captures the data, from which we determine the corresponding parent distribution. The later is the estimation by the new method. Using the new distance introduced we also estimate by the minimum distance approach. We have obtained a result which state that if we have to estimate the parameter of a probability distribution from the one parameter exponential family, then it su¢ ces to have two points with exact ratio of frequencies, that is equal to the theoretical one expressed by the ratio of the value of the density function on these two points, to obtain the true value of the parameter. We have conjectured that if we have in general r parameters, then it su¢ ces to have r + 1 points with exact ratios of their frequencies to obtain the r true parameters exactly. The later result need to be proved rigorously in a general setting for other distributions than the class considered. A large comparative study between the classical and new methods should also be investigated. We also shown the possible and interesting perspective of discrimination of merged populations and mixture of distributions by the new method by considering the case of two normal merged populations. It would be interesting to investigate this area for more than two distributions and to other standard families.